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ABSTRACT. Firstly, we obtain conditions for stable extendibility and extendibility of
complex vector bundles over the (2n + 1)-dimensional standard lens space L"(p) mod p,
where p is a prime. Secondly, we prove that the complexification c(z,(p)) of the
tangent bundle 7,(p) (= z(L"(p))) of L"(p) is extendible to L***!(p) if p is a prime,
and is not stably extendible to L?"*2(p) if p is an odd prime and n > 2p — 2. Thirdly,
we show, for some odd prime p and positive integers n and m with m > n, that t(L"(p))
is stably extendible to L™(p) but is not extendible to L™ (p).

1. Introduction

Let IF denote cither the real number field IR or the complex number field
C. Let A4 be a subspace of a space X. A t-dimensional IF-vector bundle «
over A is said to be stably extendible (respectively extendible) to X if and only
if there is a r-dimensional IF-vector bundle over X whose restriction to A4 is
stably equivalent (respectively equivalent) to a (cf. [3] and [9]). For simplicity,
we use the same letter for an [F-vector bundle and its equivalence class and &
for the k-dimensional trivial IF-bundle.

For an integer p with p > 1, let L"(p) (= S*"*!/(Z/p)) be the (2n + 1)-
dimensional standard lens space mod p. Then, we obtain conditions for stable
extendibility and extendibility of a C-vector bundle over L"(p) in the following
theorem.

THEOREM 1. Let p be a prime and o a t-dimensional C-vector bundle over
L"(p) which is stably equivalent to a sum of s non-trivial C-line bundles. Then
the following hold.

(1) o is stably extendible to L™ (p) for every m >n if s <t

(2) o is extendible to L'(p) if n<t<s.
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If # < s, the conclusion of Theorem 1(1) does not hold in general. In fact,
for t =2n+ 1 and s = 2n + 2, there exists a 7-dimensional C-vector bundle over
L"(p) which is stably equivalent to a sum of s non-trivial C-line bundles and is
not stably extendible to L?"*2(p). Such C-vector bundle is given in the latter
part of the following theorem.

Let ¢(x) be the complexification of an R-vector bundle «, and 7,(p)
(=1(L"(p))) denote the tangent bundle of L"(p).

THEOREM 2. The complexification c(t,(p)) of the tangent bundle t,(p) is
extendible to L**'(p) if p is a prime, and is not stably extendible to L****(p) if
p is an odd prime and n>2p — 2.

Furthermore, we show, for some odd prime p and positive integers n and
m with m > n, that 7,(p) is stably extendible to L™(p) but is not extendible to
L™(p).

For n > p, we have the following.

THEOREM 3. Let p be an odd prime and n an integer with n > p. Then
t,(p) is stably extendible to L*'*'(p) but is not extendible to L*"*'(p).

The next theorem for n < p is an explicit statement of the fact that
remarked in Section 1 of [4].

THEOREM 4. Let p be an odd prime.

(1) Let n be an integer with p—3 <n<p and n+#0,1 and 3, and m
an integer with m > n. Then t,(p) is stably extendible to L™ (p) but is not
extendible to L™ (p).

(2) Let p=+1 (mod 12) and m an integer with m > 2. Then ©y(p) is
stably extendible to L™ (p) but is not extendible to L™ (p).

COROLLARY 1. Let p be a prime with p > 5 and m an integer with m > p.
Then t,(p) is stably extendible to L™(p) but is not extendible to L™(p).

COROLLARY 2. Let p be an odd prime and m an integer with m > p — 1.
Then t,_1(p) is stably extendible to L™(p) but is not extendible to L"(p).

COROLLARY 3. Let p be a prime with p>17 and m an integer with
m>p—2. Then 1, 5(p) is stably extendible to L"(p) but is not extendible
to L™ (p).

COROLLARY 4. Let p be a prime with p>5 and m an integer with
m>p—3. Then t,_3(p) is stably extendible to L™(p) but is not extendible
to L™ (p).

This paper is organized as follows. After preparing some known results,
we prove Theorem 1 in Section 2. Using some known facts, we study stable
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extendibility of c¢(z4(3)) and ¢(75(3)) in Section 2, and prove Theorem 2 in
Section 3. Using several conditions for stable extendibility and extendibility,
we give proofs of Theorems 3-4 and Corollaries 1-4 in Section 5.

2. Proof of Theorem 1

Let CP" (= S?*!1/S') denote the complex projective space of complex
dimension n and u, stand for the canonical C-line bundle over CP". Then we
define #, = n*(y,), the bundle induced by the natural projection z: L"(p) —
CP" from u,, and o, =75, — 1 (€ K(L"(p))). We call 7, the canonical C-line
bundle over L"(p). The structure of the ring K(L"(p)) is determined in [5] as
follows.

THEOREM 2.1 ([5, Theorem 1]). Let p be a prime and n a positive
integer. Let n=s(p—1)+r, where s and r are integers with 0 <r < p— 1.
Then

f((Ln(p)) ~ (Z/szrl)r + (Z/ps)pfrfl'

(Here, (Z/q)k denotes the direct sum of k-copies of Z/q.) The first r
summands are generated by 0,1,05,.‘.,05, and the last p —r— 1 summands

by a'*l g!*2 ... aP~l. Moreover, the ring structure of K(L"(p)) is given by
the relations:

(oo + D) (=n)=1 and o' =0.
For a real number x, let (x) denote the smallest integer ¢ with x < g¢.

THEOREM 2.2 ([2, Theorem 1.2, p. 99]). Let X be a finite dimensional
CW-complex and { an s-dimensional C-vector bundle over X. If t=
A(dim X) — 1}/2> <'s, then there exists a t-dimensional C-vector bundle vy
over X such that { =y @® (s—1t). (Here, @ denotes the Whitney sum.)

THEOREM 2.3 ([8, Theorem 2.3]). Let Y be a subcomplex of a finite
dimensional CW-complex X and « a C-vector bundle over Y such that dim a >
{(dim Y)/2>. Then o is extendible to X if and only if o is stably extendible
o X.

Using Theorems 2.1, 2.2 and 2.3, we prove Theorem 1.

ProoF oF THEOREM 1. By Theorem 2.1, there exist non-negative integers
ai,a,...,d,—; such that

a—t= Y am—s (€KL"(p)),

1<j<p-1

where Zlngrl a; = s.
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(1) Let m be any integer with m >n and i:L"(p) — L™(p) be the
standard inclusion. Then, if s < ¢, for the non-negative integers aj,az, ..., ap—1
with >, _;_, @ =s, a C-vector bundle

B= D> am,®(-s)

1<j<p-1

over L™(p) is t-dimensional and, for the induced homomorphism i* : K(L™(p))
— K(L"(p)),

Fp =Y am@-s) =uo
1<j<p-1
since i*(#,,) =#, and i*(t —s) =t —s. Hence « is stably extendible to L™(p).
(2) Letn<t<s. Ifn=t, the conclusion is trivial. So we may assume
n<t<s. Setting X =L'(p)and {=>_,_, ajn], where Dljcp1 G =5,
in Theorem 2.2, we see that there exists a ~-dimensional C-vector bundle y over
L'(p) such that

Yo aml=y@®(s—1).

1<j<p-1

Let i: L"(p) — L'(p) be the standard inclusion. Then, applying the induced
homomorphism i*: K(L'(p)) — K(L"(p)) to the both sides of the above
equality, we have

S aml=i"() @ (s— ).
1<j<p-1
So a—t=3"1_;cp aml —s=i*"(y)—t in K(L"(p)). Thus « is stably
extendible to L'(p). Setting X = L'(p) and Y = L"(p) in Theorem 2.3, we
have dima =r¢>n+1={(dim L"(p))/2>. Hence « is extendible to L'(p).
O

3. Stable extendibility of c(z4(3)) and c(z5(3))
We recall some known facts for the proofs.

Fact 3.1. Let ¢:KO(X) — K(X), r: K(X) — KO(X) and t: K(X) —
K(X) be the complexfication, the real restriction and the complex conjugation,
respectively. Then they are natural with respect to maps and satisfy: rc =72
and cr =1+t In particular, for the canonical C-line bundle n, over L"(p),
cr(n,) =n, +n;t =n, +ui".

FAct 3.2.  For the tangent bundle ©,(p) of L"(p), t.(p) ® 1 = (n + 1)r(n,).
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Fact 3.3.  The total Chern class C(n!) of n! is given by C(n}) =1+ iz,,
where z, = C\(n,), the first Chern class of n,, is the generator of H*(L"(p);Z)
(=Z/p).

Fact 34. Let p be a prime and let a=>_,_,a(i)p’ and b=
Yo<icmb@)p’ (0<a(i) < p,0<b(i) < p). Then

()= 11 (%) moar)

We prove results on stable extendibility of c¢(74(3)) and c¢(zs(3)). The
method is similar to that of Theorem 8 in [1].

Tueorem 3.1.  ¢(t4(3)) is not stably extendible to L'°(3).

PrROOF. Suppose that there exists a 9-dimensional C-vector bundle f
over L'°(3) satisfying i*(f8) = c(t4(3)), where i : L*(3) — L'°(3) is the standard
inclusion. According to Theorem 2.1, there exist integers ¢ and b such that

B—9=acy+baj, e K(L'"(3)) (=2Z/3° +27/3°).

Applying the induced homomorphism i* : K(L'%(3)) — K(L*(3)) to the both
sides of the above equality, we obtain

i*(B—9) = agy +baj e K(L*(3)) (=Z/9+Z)/9).
Using Facts 3.2 and 3.1, we have
i(B—9)=c(ta(3)) —9=c(ua(3) ® 1) — 10
= ¢(5r(n4)) = 10 = Scr(yg) — 10 = 5(py +n5) — 10
= 15(n, — 1)+ 5(, — 1)* = 1504 + 507

Since g4 and g are of order 9 by Theorem 2.1, @ =9x + 6 and b =9y + 5 for
some integers x and y. So

B—=9=0x+6)(mo—1)+ 9y +5) (10— 1)2
= (9x — 18y — 4710 + (9y + S)ndy + 9y — 9x — 1.

Define 4 =9x—18y—-4 (=9(x—2y—1)+5) and B=9y+5. Since we
may take integers ¢ and b with a > 2b > 0, we may consider that x and y
satisfy inequalities: A4 >0 and B >0. Now, by Fact 3.3, the total Chern
class of f is given by

C(B) = Clmp)*" Cniy)® = (14 z10)" (1 +2210)® = (1 + z10)* (1 — z10) *.
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Hence, the 10-th Chern class of f§ is given as follows.
A\ (B ;
cuip)= 3 (1)) v
=10 N1/ NS

Here, by Fact 3.4, we have

()

(B) =0 (mod 3) for i=6,7,8,

l

1 (mod 3) for i=0,2,3,5,
=2 (mod 3) for i=1,4,

<1;1) =x—2y—1 (mod 3), (g) =y (mod 3),

(ﬁ)) =2(x -2y —1) (mod3), (S) =2y (mod 3).

Therefore

com={(5) (1)~ (D 5) - () (E)- () (1) () (6) =4
= {2y -2y —1-2(x—2y— 1) +2(x — 2y — D)}zl = —z{$ #0.

On the other hand, Cjo(f) =0 since f is 9-dimensional. This is a
contradiction. []

THEOREM 3.2.  ¢(t5(3)) is not stably extendible to L'?(3).

PrROOF. Suppose that there exists an 11-dimensional C-vector bundle S
over L'2(3) satisfying i*(8) = ¢(t5(3)), where i : L°(3) — L'>(3) is the standard
inclusion. According to Theorem 2.1, there exist integers ¢ and b such that

B—11 =aagyy + boi, e K(L(3)) (=Z/3°+2/3°).

Applying the induced homomorphism i* : K(L'*(3)) — K(L*(3)) to the both
sides of the above equality, we obtain

i*(B—11) = aos + ba? e K(L°(3)) (= Z/27+Z)9).
Using Facts 3.2 and 3.1, we have

(B —11) = c(t5(3) = 11 = c(ts(3) @ 1) — 12
= ¢(6r(ns)) — 12 = 6cr(ns) — 12 = 6(y5 +73) — 12

= 18(ns — 1) +6(5s — 1)* = 1805 + 602.
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Since o5 is of order 27 and o2 are of order 9 by Theorem 2.1, @ = 27x + 18 and
b=9y+ 6 for some integers x and y. So

B—11=(27x+18)(ny — 1) + (99 + 6)(m, — 1)’
= (27x — 18y + 6515 + (9y + 6)53, + 9y — 27x — 12.

Define 4 =27x—18y+6 (=9(3x—2y)+6) and B=9y+ 6. Since we may
take integers ¢ and b with a > 2b > 0, we may consider that x and y satisfy
inequalities: A4 >0 and B > 0. Now, by Fact 3.3, the total Chern class of f§
is given by

C(B) = Clnp) " Cuh)? = 1+ z202) (1 +2202) " = (1 + z1) (1 — z12) %,

Hence, the 12-th Chern class of f§ is given as follows.

cop= 3 (7)(7) vk

Here, by Fact 3.4, we have

i i

A B
()E( )EO (mod 3) for i=1,2,4,5,7,8,10,11,

=1 (mod 3) for i =0,6,
=2 (mod 3) for i =3,

(5)=(5) = tmoas ((5)=((3) =2 moas

12
Therefore

s -{((E)- () (OO (- ()

=2y—2y+1-2y+2p)zl3 =23 #0.

On the other hand, Cj»(f) =0 since f is 11-dimensional. This is a
contradiction. [

4. Proof of Theorem 2

For a real number x, let [x] denote the largest integer ¢ with ¢ < x. Then,
for the proof of the latter part of Theorem 2, we use the following.

THEOREM 4.1 (|7, Theorem 4.5]). Let p be a prime and o a t-dimensional
C-vector bundle over L"(p) which is stably equivalent to a sum of s non-trivial
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C-line bundles where t < s < p"/(P=Vl Then n < s and o is not stably extend-
ible to L*(p).

To apply Theorem 4.1, the next lemma is useful.

Lemva 4.2, (1) 2n+2 < 302 if and only if n> 6.
(2) For p=>5, 2n+2< p"=V1 if and only if n>2p —2.

Proor. Since (1) is clear, we prove (2).
If n>2p—2, we may set n=a(p— 1)+ b, where a and b are integers
with a >2 and 0 <b < p—1. Then

p =Dl (2p42) = p?—2a(p—1)—2b—2> p* —2(p— Da—2(p—1).

For each integer a > 2, define f(a) = p*—2(p—1)a—2(p—1). Then, for
p=5 fQ=(p-3°-3>0 and fla+1)-f(a)=(p"=2)(p—1)>0.
We therefore have f(a) >0 for every integer @ >2. Since f(a) <
pl/r=D — (2n 4+ 2), we have 2n+42 < pl/(»=Dl Thus the “if” part of (2)
is proved. In case n < 2p—2,

m4+2—pP VN =2p41>0 ifl<n<p-—1,
=p>0 if n=p-—1, and
>p>0 if p—1<n<2p-2.

We therefore have 2n+2 > p/(=Dl Thus the “only if” part of (2) is
proved. []

ProOF OF THEOREM 2. By Facts 3.2 and 3.1,

c(tn(p) ® 1) = c((n+ Vr(y,)) = (n+ 1), +n; ).

Put o = ¢(74(p)), t=2n+1 and s = 2n+ 2 in Theorem 1(2). Then the former
part follows immediately from Theorem 1(2). The latter part is proved as
follows. Using Theorem 4.1, we have the results for p =3 and n > 6 by
Lemma 4.2(1), and for p >5 and n>2p —2 by Lemma 4.2(2). For p=3
and n=4,5, we have the results by Theorems 3.1, 3.2, respectively. []

5. Proofs of Theorems 3—4 and Corollaries 1-4

We recall some known results on stable extendibility and extendibility of
7,(p) for the proofs of Theorems 3-4 and Corollaries 1-4.

THEOREM 5.1 ([4, Theorem 1.2]). Let p be an odd prime and n an integer
with n > p. Then t,(p) is stably extendible to L>'*'(p) and is not stably
extendible to L*"**(p).
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THEOREM 5.2 ([4, Theorem 1.3]). Let p be an odd prime.

(1) Let n be an integer with p—3<n<p. Then t,(p) is stably
extendible to L™ (p) for every m > n.

(2) If p=+1 (mod 12), 12(p) is stably extendible to L™(p) for every
m > 2.

THEOREM 5.3 ([6, Theorems 5.1 and 5.3]). Let p be an integer with p > 1.
Then the following three conditions are equivalent to one another:

(i) tu(p) is extendible to L™(p) for every m > n.

(i) t.(p) is extendible to L"'(p).

(i) n=0,1 or 3.

COROLLARY 5.4. Let p be an integer with p>2 and p #3 and m an
integer with m > p.  Then t,(p) is not extendible to L"(p).

Proor. Suppose that 7,(p) is extendible to L™(p). Then, by the
implication (i) = (iii) of Theorem 5.3, we have p=0,1 or 3, since
L?*(p) C L"(p). This contradicts to the assumption. []

COROLLARY 5.5. Let p be an integer with p >3 and p #4 and m an
integer with m > p — 1. Then t,_1(p) is not extendible to L™(p).

ProoF. Suppose that 7,_;(p) is extendible to L™(p). Then, by the
implication (ii) = (iii) of Theorem 5.3, we have p—1=0,1 or 3, that is,
p=1,2 or 4, since L?(p) C L™(p). This contradicts to the assumption. []

Similarly, we have

COROLLARY 5.6. Let p be an integer with p >4 and p #5 and m an
integer with m > p — 2. Then 1, 5(p) is not extendible to L™ (p).

COROLLARY 5.7. Let p be an integer with p>5 and p #6 and m an
integer with m > p — 3. Then t,_3(p) is not extendible to L™ (p).

Proor oF THEOREM 3. The former part is equal to that of Theorem
5.1. The latter part is proved as follows. By the assumption n > p, we see
that n # 0,1 and 3. Hence the implication (ii) = (iii) of Theorem 5.3 shows
that 7,(p) is not extendible to L"*!(p). Thus the latter part holds, since
Ln+1(p) C L211+1(p). |:|

PrOOF OF THEOREM 4. (1) The former part is a consequence of Theorem
5.2(1).

The latter part follows from the implication (ii) = (iii) of Theorem 5.3,
since L"'(p) ¢ L™(p).

(2) The former part is a consequence of Theorem 5.2(2).
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The latter part follows from the implication (ii) = (iii) of Theorem 5.3,

since L3(p) C L™(p). O

PrROOF OF COROLLARIES 1-4. Using Theorem 5.2(1), we can prove these

corollaries by Corollaries 5.4-5.7, respectively. []

For p=11,13 and 17, additional results are obtained (cf. [4, Lemma

1.4]). Combining these results with Theorem 5.3, we have results similar to
those in Theorem 4.
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