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Abstract. Firstly, we obtain conditions for stable extendibility and extendibility of

complex vector bundles over the ð2nþ 1Þ-dimensional standard lens space LnðpÞ mod p,

where p is a prime. Secondly, we prove that the complexification cðtnðpÞÞ of the

tangent bundle tnðpÞ ð¼ tðLnðpÞÞÞ of LnðpÞ is extendible to L2nþ1ðpÞ if p is a prime,

and is not stably extendible to L2nþ2ðpÞ if p is an odd prime and nb 2p� 2. Thirdly,

we show, for some odd prime p and positive integers n and m with m > n, that tðLnðpÞÞ
is stably extendible to LmðpÞ but is not extendible to LmðpÞ.

1. Introduction

Let F denote either the real number field R or the complex number field

C. Let A be a subspace of a space X . A t-dimensional F-vector bundle a

over A is said to be stably extendible (respectively extendible) to X if and only

if there is a t-dimensional F-vector bundle over X whose restriction to A is

stably equivalent (respectively equivalent) to a (cf. [3] and [9]). For simplicity,

we use the same letter for an F-vector bundle and its equivalence class and k

for the k-dimensional trivial F-bundle.

For an integer p with p > 1, let LnðpÞ ð¼ S2nþ1=ðZ=pÞÞ be the ð2nþ 1Þ-
dimensional standard lens space mod p. Then, we obtain conditions for stable

extendibility and extendibility of a C-vector bundle over LnðpÞ in the following

theorem.

Theorem 1. Let p be a prime and a a t-dimensional C-vector bundle over

LnðpÞ which is stably equivalent to a sum of s non-trivial C-line bundles. Then

the following hold.

(1) a is stably extendible to LmðpÞ for every m > n if sa t.

(2) a is extendible to LtðpÞ if na ta s.
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If t < s, the conclusion of Theorem 1(1) does not hold in general. In fact,

for t ¼ 2nþ 1 and s ¼ 2nþ 2, there exists a t-dimensional C-vector bundle over

LnðpÞ which is stably equivalent to a sum of s non-trivial C-line bundles and is

not stably extendible to L2nþ2ðpÞ. Such C-vector bundle is given in the latter

part of the following theorem.

Let cðaÞ be the complexification of an R-vector bundle a, and tnðpÞ
ð¼ tðLnðpÞÞÞ denote the tangent bundle of LnðpÞ.

Theorem 2. The complexification cðtnðpÞÞ of the tangent bundle tnðpÞ is

extendible to L2nþ1ðpÞ if p is a prime, and is not stably extendible to L2nþ2ðpÞ if

p is an odd prime and nb 2p� 2.

Furthermore, we show, for some odd prime p and positive integers n and

m with m > n, that tnðpÞ is stably extendible to LmðpÞ but is not extendible to

LmðpÞ.
For n > p, we have the following.

Theorem 3. Let p be an odd prime and n an integer with n > p. Then

tnðpÞ is stably extendible to L2nþ1ðpÞ but is not extendible to L2nþ1ðpÞ.

The next theorem for na p is an explicit statement of the fact that

remarked in Section 1 of [4].

Theorem 4. Let p be an odd prime.

(1) Let n be an integer with p� 3a na p and n0 0; 1 and 3, and m

an integer with m > n. Then tnðpÞ is stably extendible to LmðpÞ but is not

extendible to LmðpÞ.
(2) Let p1G1 ðmod 12Þ and m an integer with m > 2. Then t2ðpÞ is

stably extendible to LmðpÞ but is not extendible to LmðpÞ.

Corollary 1. Let p be a prime with pb 5 and m an integer with m > p.

Then tpðpÞ is stably extendible to LmðpÞ but is not extendible to LmðpÞ.

Corollary 2. Let p be an odd prime and m an integer with m > p� 1.

Then tp�1ðpÞ is stably extendible to LmðpÞ but is not extendible to LmðpÞ.

Corollary 3. Let p be a prime with pb 7 and m an integer with

m > p� 2. Then tp�2ðpÞ is stably extendible to LmðpÞ but is not extendible

to LmðpÞ.

Corollary 4. Let p be a prime with pb 5 and m an integer with

m > p� 3. Then tp�3ðpÞ is stably extendible to LmðpÞ but is not extendible

to LmðpÞ.

This paper is organized as follows. After preparing some known results,

we prove Theorem 1 in Section 2. Using some known facts, we study stable

58 Mitsunori Imaoka and Teiichi Kobayashi



extendibility of cðt4ð3ÞÞ and cðt5ð3ÞÞ in Section 2, and prove Theorem 2 in

Section 3. Using several conditions for stable extendibility and extendibility,

we give proofs of Theorems 3–4 and Corollaries 1–4 in Section 5.

2. Proof of Theorem 1

Let CPn ð¼ S2nþ1=S1Þ denote the complex projective space of complex

dimension n and mn stand for the canonical C-line bundle over CPn. Then we

define hn ¼ p�ðmnÞ, the bundle induced by the natural projection p : LnðpÞ !
CPn from mn, and sn ¼ hn � 1 ðA ~KKðLnðpÞÞÞ. We call hn the canonical C-line

bundle over LnðpÞ. The structure of the ring ~KKðLnðpÞÞ is determined in [5] as

follows.

Theorem 2.1 ([5, Theorem 1]). Let p be a prime and n a positive

integer. Let n ¼ sðp� 1Þ þ r, where s and r are integers with 0a r < p� 1.

Then

~KKðLnðpÞÞG ðZ=psþ1Þr þ ðZ=psÞp�r�1:

(Here, ðZ=qÞk denotes the direct sum of k-copies of Z=q:) The first r

summands are generated by s1
n ; s

2
n ; . . . ; s

r
n, and the last p� r� 1 summands

by srþ1
n ; s rþ2

n ; . . . ; sp�1
n . Moreover, the ring structure of ~KKðLnðpÞÞ is given by

the relations:

ðsn þ 1Þpð¼ hp
n Þ ¼ 1 and snþ1

n ¼ 0:

For a real number x, let hxi denote the smallest integer q with xa q.

Theorem 2.2 ([2, Theorem 1.2, p. 99]). Let X be a finite dimensional

CW-complex and z an s-dimensional C-vector bundle over X. If t ¼
hfðdim XÞ � 1g=2ia s, then there exists a t-dimensional C-vector bundle g

over X such that z ¼ gl ðs� tÞ. (Here, l denotes the Whitney sum.)

Theorem 2.3 ([8, Theorem 2.3]). Let Y be a subcomplex of a finite

dimensional CW-complex X and a a C-vector bundle over Y such that dim ab

hðdim YÞ=2i. Then a is extendible to X if and only if a is stably extendible

to X.

Using Theorems 2.1, 2.2 and 2.3, we prove Theorem 1.

Proof of Theorem 1. By Theorem 2.1, there exist non-negative integers

a1; a2; . . . ; ap�1 such that

a� t ¼
X

1ajap�1

ajh
j
n � s ðA ~KKðLnðpÞÞÞ;

where
P

1ajap�1 aj ¼ s.
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(1) Let m be any integer with m > n and i : LnðpÞ ! LmðpÞ be the

standard inclusion. Then, if sa t, for the non-negative integers a1; a2; . . . ; ap�1

with
P

1ajap�1 aj ¼ s, a C-vector bundle

b ¼
X

1ajap�1

ajh
j
m l ðt� sÞ

over LmðpÞ is t-dimensional and, for the induced homomorphism i� : KðLmðpÞÞ
! KðLnðpÞÞ,

i�ðbÞ ¼
X

1ajap�1

ajh
j
n l ðt� sÞ ¼ a;

since i�ðhmÞ ¼ hn and i�ðt� sÞ ¼ t� s. Hence a is stably extendible to LmðpÞ.
(2) Let na ta s. If n ¼ t, the conclusion is trivial. So we may assume

n < ta s. Setting X ¼ LtðpÞ and z ¼
P

1ajap�1 ajh
j
t , where

P
1ajap�1 aj ¼ s,

in Theorem 2.2, we see that there exists a t-dimensional C-vector bundle g over

LtðpÞ such that

X
1ajap�1

ajh
j
t ¼ gl ðs� tÞ:

Let i : LnðpÞ ! LtðpÞ be the standard inclusion. Then, applying the induced

homomorphism i� : KðLtðpÞÞ ! KðLnðpÞÞ to the both sides of the above

equality, we have

X
1ajap�1

ajh
j
n ¼ i�ðgÞl ðs� tÞ:

So a� t ¼
P

1ajap�1 ajh
j
n � s ¼ i�ðgÞ � t in ~KKðLnðpÞÞ. Thus a is stably

extendible to LtðpÞ. Setting X ¼ LtðpÞ and Y ¼ LnðpÞ in Theorem 2.3, we

have dim a ¼ tb nþ 1 ¼ hðdim LnðpÞÞ=2i. Hence a is extendible to LtðpÞ.
r

3. Stable extendibility of cðt4ð3ÞÞ and cðt5ð3ÞÞ

We recall some known facts for the proofs.

Fact 3.1. Let c : KOðX Þ ! KðXÞ, r : KðX Þ ! KOðX Þ and t : KðX Þ !
KðX Þ be the complexfication, the real restriction and the complex conjugation,

respectively. Then they are natural with respect to maps and satisfy: rc ¼ 2

and cr ¼ 1þ t. In particular, for the canonical C-line bundle hn over LnðpÞ,
crðhnÞ ¼ hn þ h�1

n ¼ hn þ hp�1
n .

Fact 3.2. For the tangent bundle tnðpÞ of LnðpÞ, tnðpÞl 1 ¼ ðnþ 1ÞrðhnÞ.
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Fact 3.3. The total Chern class Cðh i
nÞ of h i

n is given by Cðh i
nÞ ¼ 1þ izn,

where zn ¼ C1ðhnÞ, the first Chern class of hn, is the generator of H 2ðLnðpÞ;ZÞ
ðGZ=pÞ.

Fact 3.4. Let p be a prime and let a ¼
P

0aiam aðiÞpi and b ¼P
0aiam bðiÞpi ð0a aðiÞ < p; 0a bðiÞ < pÞ. Then

b

a

� �
1

Y
0aiam

bðiÞ
aðiÞ

� �
ðmod pÞ:

We prove results on stable extendibility of cðt4ð3ÞÞ and cðt5ð3ÞÞ. The

method is similar to that of Theorem 8 in [1].

Theorem 3.1. cðt4ð3ÞÞ is not stably extendible to L10ð3Þ.

Proof. Suppose that there exists a 9-dimensional C-vector bundle b

over L10ð3Þ satisfying i�ðbÞ ¼ cðt4ð3ÞÞ, where i : L4ð3Þ ! L10ð3Þ is the standard

inclusion. According to Theorem 2.1, there exist integers a and b such that

b � 9 ¼ as10 þ bs2
10 A ~KKðL10ð3ÞÞ ðGZ=35 þ Z=35Þ:

Applying the induced homomorphism i� : ~KKðL10ð3ÞÞ ! ~KKðL4ð3ÞÞ to the both

sides of the above equality, we obtain

i�ðb � 9Þ ¼ as4 þ bs2
4 A ~KKðL4ð3ÞÞ ðGZ=9þ Z=9Þ:

Using Facts 3.2 and 3.1, we have

i�ðb � 9Þ ¼ cðt4ð3ÞÞ � 9 ¼ cðt4ð3Þl 1Þ � 10

¼ cð5rðh4ÞÞ � 10 ¼ 5crðh4Þ � 10 ¼ 5ðh4 þ h24Þ � 10

¼ 15ðh4 � 1Þ þ 5ðh4 � 1Þ2 ¼ 15s4 þ 5s2
4 :

Since s4 and s2
4 are of order 9 by Theorem 2.1, a ¼ 9xþ 6 and b ¼ 9yþ 5 for

some integers x and y. So

b � 9 ¼ ð9xþ 6Þðh10 � 1Þ þ ð9yþ 5Þðh10 � 1Þ2

¼ ð9x� 18y� 4Þh10 þ ð9yþ 5Þh210 þ 9y� 9x� 1:

Define A ¼ 9x� 18y� 4 ð¼ 9ðx� 2y� 1Þ þ 5Þ and B ¼ 9yþ 5. Since we

may take integers a and b with ab 2bb 0, we may consider that x and y

satisfy inequalities: Ab 0 and Bb 0. Now, by Fact 3.3, the total Chern

class of b is given by

CðbÞ ¼ Cðh10Þ
A
Cðh210Þ

B ¼ ð1þ z10ÞAð1þ 2z10ÞB ¼ ð1þ z10ÞAð1� z10ÞB:
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Hence, the 10-th Chern class of b is given as follows.

C10ðbÞ ¼
X

iþj¼10

A

i

� �
B

j

� �
ð�1Þ jz1010 :

Here, by Fact 3.4, we have

A

i

� �
1

B

i

� �
1 0 ðmod 3Þ for i ¼ 6; 7; 8;

1 1 ðmod 3Þ for i ¼ 0; 2; 3; 5;

1 2 ðmod 3Þ for i ¼ 1; 4;

A

9

� �
1 x� 2y� 1 ðmod 3Þ; B

9

� �
1 y ðmod 3Þ;

A

10

� �
1 2ðx� 2y� 1Þ ðmod 3Þ; B

10

� �
1 2y ðmod 3Þ:

Therefore

C10ðbÞ ¼
A

0

� �
B

10

� �
� A

1

� �
B

9

� �
� A

5

� �
B

5

� �
� A

9

� �
B

1

� �
þ A

10

� �
B

0

� �� �
z1010

¼ f2y� 2y� 1� 2ðx� 2y� 1Þ þ 2ðx� 2y� 1Þgz1010 ¼ �z1010 0 0:

On the other hand, C10ðbÞ ¼ 0 since b is 9-dimensional. This is a

contradiction. r

Theorem 3.2. cðt5ð3ÞÞ is not stably extendible to L12ð3Þ.

Proof. Suppose that there exists an 11-dimensional C-vector bundle b

over L12ð3Þ satisfying i�ðbÞ ¼ cðt5ð3ÞÞ, where i : L5ð3Þ ! L12ð3Þ is the standard

inclusion. According to Theorem 2.1, there exist integers a and b such that

b � 11 ¼ as12 þ bs2
12 A ~KKðL12ð3ÞÞ ðGZ=36 þ Z=36Þ:

Applying the induced homomorphism i� : ~KKðL12ð3ÞÞ ! ~KKðL5ð3ÞÞ to the both

sides of the above equality, we obtain

i�ðb � 11Þ ¼ as5 þ bs2
5 A ~KKðL5ð3ÞÞ ðGZ=27þ Z=9Þ:

Using Facts 3.2 and 3.1, we have

i�ðb � 11Þ ¼ cðt5ð3ÞÞ � 11 ¼ cðt5ð3Þl 1Þ � 12

¼ cð6rðh5ÞÞ � 12 ¼ 6crðh5Þ � 12 ¼ 6ðh5 þ h25Þ � 12

¼ 18ðh5 � 1Þ þ 6ðh5 � 1Þ2 ¼ 18s5 þ 6s2
5 :
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Since s5 is of order 27 and s2
5 are of order 9 by Theorem 2.1, a ¼ 27xþ 18 and

b ¼ 9yþ 6 for some integers x and y. So

b � 11 ¼ ð27xþ 18Þðh12 � 1Þ þ ð9yþ 6Þðh12 � 1Þ2

¼ ð27x� 18yþ 6Þh12 þ ð9yþ 6Þh212 þ 9y� 27x� 12:

Define A ¼ 27x� 18yþ 6 ð¼ 9ð3x� 2yÞ þ 6Þ and B ¼ 9yþ 6. Since we may

take integers a and b with ab 2bb 0, we may consider that x and y satisfy

inequalities: Ab 0 and Bb 0. Now, by Fact 3.3, the total Chern class of b

is given by

CðbÞ ¼ Cðh12Þ
A
Cðh212Þ

B ¼ ð1þ z12ÞAð1þ 2z12ÞB ¼ ð1þ z12ÞAð1� z12ÞB:

Hence, the 12-th Chern class of b is given as follows.

C12ðbÞ ¼
X

iþj¼12

A

i

� �
B

j

� �
ð�1Þ jz1212 :

Here, by Fact 3.4, we have

A

i

� �
1

B

i

� �
1 0 ðmod 3Þ for i ¼ 1; 2; 4; 5; 7; 8; 10; 11;

1 1 ðmod 3Þ for i ¼ 0; 6;

1 2 ðmod 3Þ for i ¼ 3;

A

9

� �
1

B

9

� �
1 y ðmod 3Þ; A

12

� �
1

B

12

� �
1 2y ðmod 3Þ:

Therefore

C12ðbÞ ¼
A

0

� �
B

12

� �
� A

3

� �
B

9

� �
þ A

6

� �
B

6

� �
� A

9

� �
B

3

� �
þ A

12

� �
B

0

� �� �
z1212

¼ ð2y� 2yþ 1� 2yþ 2yÞz1212 ¼ z1212 0 0:

On the other hand, C12ðbÞ ¼ 0 since b is 11-dimensional. This is a

contradiction. r

4. Proof of Theorem 2

For a real number x, let ½x� denote the largest integer q with qa x. Then,

for the proof of the latter part of Theorem 2, we use the following.

Theorem 4.1 ([7, Theorem 4.5]). Let p be a prime and a a t-dimensional

C-vector bundle over LnðpÞ which is stably equivalent to a sum of s non-trivial
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C-line bundles where t < s < p½n=ðp�1Þ�. Then n < s and a is not stably extend-

ible to LsðpÞ.

To apply Theorem 4.1, the next lemma is useful.

Lemma 4.2. (1) 2nþ 2 < 3½n=2� if and only if nb 6.

(2) For pb 5, 2nþ 2 < p½n=ðp�1Þ� if and only if nb 2p� 2.

Proof. Since (1) is clear, we prove (2).

If nb 2p� 2, we may set n ¼ aðp� 1Þ þ b, where a and b are integers

with ab 2 and 0a b < p� 1. Then

p½n=ðp�1Þ� � ð2nþ 2Þ ¼ pa � 2aðp� 1Þ � 2b� 2b pa � 2ðp� 1Þa� 2ðp� 1Þ:

For each integer ab 2, define f ðaÞ ¼ pa � 2ðp� 1Þa� 2ðp� 1Þ. Then, for

pb 5, f ð2Þ ¼ ðp� 3Þ2 � 3 > 0 and f ðaþ 1Þ � f ðaÞ ¼ ðpa � 2Þðp� 1Þ > 0.

We therefore have f ðaÞ > 0 for every integer ab 2. Since f ðaÞa
p½n=ðp�1Þ� � ð2nþ 2Þ, we have 2nþ 2 < p½n=ðp�1Þ�. Thus the ‘‘if ’’ part of (2)

is proved. In case n < 2p� 2,

2nþ 2� p½n=ðp�1Þ� ¼ 2nþ 1 > 0 if 1a n < p� 1;

¼ p > 0 if n ¼ p� 1; and

> p > 0 if p� 1 < n < 2p� 2:

We therefore have 2nþ 2 > p½n=ðp�1Þ�. Thus the ‘‘only if ’’ part of (2) is

proved. r

Proof of Theorem 2. By Facts 3.2 and 3.1,

cðtnðpÞl 1Þ ¼ cððnþ 1ÞrðhnÞÞ ¼ ðnþ 1Þðhn þ hp�1
n Þ:

Put a ¼ cðtnðpÞÞ, t ¼ 2nþ 1 and s ¼ 2nþ 2 in Theorem 1(2). Then the former

part follows immediately from Theorem 1(2). The latter part is proved as

follows. Using Theorem 4.1, we have the results for p ¼ 3 and nb 6 by

Lemma 4.2(1), and for pb 5 and nb 2p� 2 by Lemma 4.2(2). For p ¼ 3

and n ¼ 4; 5, we have the results by Theorems 3.1, 3.2, respectively. r

5. Proofs of Theorems 3–4 and Corollaries 1–4

We recall some known results on stable extendibility and extendibility of

tnðpÞ for the proofs of Theorems 3–4 and Corollaries 1–4.

Theorem 5.1 ([4, Theorem 1.2]). Let p be an odd prime and n an integer

with n > p. Then tnðpÞ is stably extendible to L2nþ1ðpÞ and is not stably

extendible to L2nþ2ðpÞ.
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Theorem 5.2 ([4, Theorem 1.3]). Let p be an odd prime.

(1) Let n be an integer with p� 3a na p. Then tnðpÞ is stably

extendible to LmðpÞ for every m > n.

(2) If p1G1 ðmod 12Þ, t2ðpÞ is stably extendible to LmðpÞ for every

m > 2.

Theorem 5.3 ([6, Theorems 5.1 and 5.3]). Let p be an integer with p > 1.

Then the following three conditions are equivalent to one another:

(i) tnðpÞ is extendible to LmðpÞ for every m > n.

(ii) tnðpÞ is extendible to Lnþ1ðpÞ.
(iii) n ¼ 0; 1 or 3.

Corollary 5.4. Let p be an integer with pb 2 and p0 3 and m an

integer with m > p. Then tpðpÞ is not extendible to LmðpÞ.

Proof. Suppose that tpðpÞ is extendible to LmðpÞ. Then, by the

implication (ii) ) (iii) of Theorem 5.3, we have p ¼ 0; 1 or 3, since

Lpþ1ðpÞ � LmðpÞ. This contradicts to the assumption. r

Corollary 5.5. Let p be an integer with pb 3 and p0 4 and m an

integer with m > p� 1. Then tp�1ðpÞ is not extendible to LmðpÞ.

Proof. Suppose that tp�1ðpÞ is extendible to LmðpÞ. Then, by the

implication (ii) ) (iii) of Theorem 5.3, we have p� 1 ¼ 0; 1 or 3, that is,

p ¼ 1; 2 or 4, since LpðpÞ � LmðpÞ. This contradicts to the assumption. r

Similarly, we have

Corollary 5.6. Let p be an integer with pb 4 and p0 5 and m an

integer with m > p� 2. Then tp�2ðpÞ is not extendible to LmðpÞ.

Corollary 5.7. Let p be an integer with pb 5 and p0 6 and m an

integer with m > p� 3. Then tp�3ðpÞ is not extendible to LmðpÞ.

Proof of Theorem 3. The former part is equal to that of Theorem

5.1. The latter part is proved as follows. By the assumption n > p, we see

that n0 0; 1 and 3. Hence the implication (ii) ) (iii) of Theorem 5.3 shows

that tnðpÞ is not extendible to Lnþ1ðpÞ. Thus the latter part holds, since

Lnþ1ðpÞ � L2nþ1ðpÞ. r

Proof of Theorem 4. (1) The former part is a consequence of Theorem

5.2(1).

The latter part follows from the implication (ii) ) (iii) of Theorem 5.3,

since Lnþ1ðpÞ � LmðpÞ.
(2) The former part is a consequence of Theorem 5.2(2).
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The latter part follows from the implication (ii) ) (iii) of Theorem 5.3,

since L3ðpÞ � LmðpÞ. r

Proof of Corollaries 1–4. Using Theorem 5.2(1), we can prove these

corollaries by Corollaries 5.4–5.7, respectively. r

For p ¼ 11; 13 and 17, additional results are obtained (cf. [4, Lemma

1.4]). Combining these results with Theorem 5.3, we have results similar to

those in Theorem 4.
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