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Asymptotic cut-off point in linear discriminant rule to adjust the
misclassification probability for large dimensions
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ABSTRACT. This paper is concerned with the problem of classifying an observation
vector into one of two populations I7| : N,(u;,X) and IT, : N,(u,,X). Anderson (1973,
Ann. Statist.) provided an asymptotic expansion of the distribution for a Studentized
linear discriminant function, and proposed a cut-off point in the linear discriminant rule
to control one of the two misclassification probabilities. However, as dimension p
becomes larger, the precision worsens, which is checked by simulation. Therefore, in
this paper we derive an asymptotic expansion of the distribution of a linear discriminant
function up to the order p~' as N, N,, and p tend to infinity together under the
condition that p/(N; + N, — 2) converges to a constant in (0,1), and N;/N, converges
to a constant in (0, o0), where N; means the size of sample drown from I7; (i = 1,2).
Using the expansion, we provide a cut-off point. A small-scale simulation revealed that
our proposed cut-off point has good accuracy.

1. Introduction

This paper is concerned with the problem of classifying an observation
vector x coming from either 17, : N,(u;,X) or Il : N,(u,,X) based on random
samples

Xit, ..., Xiv, ~ Np(@;, X) (i=1,2).
Let

W= (% — xz)’sl{x —%(fl +fz)},

where X;, ¥;, and § are the sample mean vectors and the pooled sample
covariance matrix, respectively, and are defined by
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x,-_ﬁg (i=1,2),

n=~N-2=N;+N,—2.

The linear discriminant rule (W-rule) classifies x as I7; if W > ¢ and as IT, if
W < ¢ for a constant ¢. This classification causes two types of misclassifi-
cation. One of those is to allocate x to I7; even though it is actually in I7,.
The other is that x is classified as I7, although it actually belongs to I7;.
These probabilities are represented as

e(1)2) = P(W > c|x e IT,), e(2|1) = P(W < c|xe ).

The distribution of W when x € IT; is the same as that of —W when x e I,
by interchanging N; and N,. This indicates that ¢(1]2) is obtained from e(2|1)
by replacing (N, N2, ¢) with (N2, Nj,—c). Thus, in this paper, we only deal
with e(2|1).

Generally, it is difficult to provide an analytic expression of e(2|1).
Instead, the probability has been studied to derive an asymptotic approxima-
tion under large sample asymptotic framework AO:

A01N1—>OO, N2—>OO, N]/N2—>y€(0,00).

For a review of the results under A0, see, e.g., Anderson [3], and Fujikoshi
et al. [7]. As p becomes large, the accuracy of the approximation worsens.
In order to improve it, it has been studied under the high-dimensional
asymptotic framework Al:

Al : p— oo, N — oo, N> — o0, p/n— € (0,1),
and Ni/Ny — y€ (0, 0).

Raudys [11] derived an asymptotic approximation of the misclassification
probability for the case in which Ny = N,, and Fujikoshi and Seo [6] derived
this approximation without assuming that Ny = N,. Following Lachenbruch
[9], for x e IT, it can be expressed that

W = (% —xz)lsl{x—%(xl—l—xz)}: 2z — U, (1)
where
V= (% —%)S'ES(% - %),
Z=v "z -x)s (x - ),

U=(x-%)S'(x —u)-5D%
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and D? is the squared sample Mahalanobis distance defined by D? =
(¥ — %)'S (X — %). The normality of x indicates that Z is distributed as
the standard normal distribution under the condition that X;, ¥,, and S are
given. Since the conditional distribution does not depend on {¥,%,,S}, Z is
independent from {U, V'}. Based on the location and scale mixture represen-
tation (1), Fujikoshi [4] provided an error bound for the asymptotic approx-
imation of e(2|1). These results were subsequently reviewed in Fujikoshi
et al. [7]. It is noted that the limiting distribution of W under Al is normal
with mean —uy = —limu; E[U] and variance vy = lima {E[V] + Var(U)} when
x ~ N,(u,X). The analytic expression for Var(U) provided by Fujikoshi [4],
shows that Var(U) — 0 under the assumption that the Mahalanobis distance

4= \/ (u; — my)'E ' (u; — m,) converges to a positive constant; thus, it can be
abbreviated as vy = limp; E[V].

It may be necessary to determine the cut-off point ¢ to adjust the prob-
ability of misclassification. Such a cut-off point is needed when one requires
one of two misclassification probabilities to take a small value. The result
under A0 was obtained from the work of Anderson [1], [2] (as cited in a
more recent book by this author [3]). It is based on the asymptotic expan-
sion for the distribution of a Studentized W ((W — D?*/2)/D for xeIl;,
—(W + D?/2)/D for x e Il,) up to terms n~!. Fujikoshi and Kanazawa [5]
derived an asymptotic expansion for the distribution of a Studentized maxi-
mum likelihood classification statistic up to terms n~'. Kanazawa [8] used this
expansion to propose a cut-off point to control the misclassification probability.
Since these cut-off points are asymptotic results under A0, the precision worsens
as p becomes large.

The location and scale mixture representation (1) and probability con-
vergences of {U, V'} implies that the limiting distribution of (W +u)/\/v is
N(0,1) under Al when x € IT,, where

s (6 4))

_ n*(n+1) 2, Np
0= (m—1)m+1)(m+2) (A +N1N2)’

m=n—p. Note that u = E[U], and v is asymptotically equal to E[V] under
Al. Since u and v contain the unknown parameter A2, this parameter needs
to be estimated to provide a Studentized statistic. A commonly used unbiased
estimator of A2 is

> n—p—1

N
VE Y - 5)'ST(E - 5) - L
; (%1 —X%) (X1 — X%2) NN,

(2)
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This 4% has consistency under Al. _Let ¢ = —ii 4 \/ix, where (i, d) is obtained
from (u,v) by replacing 4% with 4>. From Slutsky’s theorem (cf., Rao [10]),
the limit of e(2|1) under Al is given as

lim P ( Wia_ .
Al NG
where @(.) denotes the cumulative distribution function of the standard normal
distribution. In order to improve the accuracy of the asymptotic approxima-
tion, we would need to use the asymptotic expansion of the distribution under
Al.

In this paper, we derive an asymptotic expansion for the distribution of
(W +i1)/v/o when x € IT; under Al. Using the expansion, we specify a cut-off
point such that one of the two misclassification probabilities takes the presetting
value.

This paper is organized as follows. In Section 2, we derive an asymptotic
expansion for the distribution of (W + @)/v/4 under Al when x e IT,. Based
on the expansion, in Section 3 we specify cut-off point ¢, such that e(2|1) takes
the presetting values. In Section 4, we show the limiting value for ¢(1]2) for
the case in which the cut-off point ¢; is used. Section 5 presents the simula-
tion results for the misclassification probability. This paper is concluded in
Section 6. The proof of the lemma is given in Appendix.

Hereafter, we denote “Z» a5 the equality in distribution,
probability of convergence, and “1l” as the independence.

xeﬂl) = @(x),

13

P
—” as the

2. Asymptotic expansion for the distribution of a Studentized linear
discriminant function under Al

Assume that 4% converges to a positive value as p — oo. Using Lachen-
bruch’s [9] expression given in (1), we have

W + i Vix+ U —a
P( 7 <X CD(T)} (3)

Note that we use the fact which (#,0) 1L Z in the above equality. Let

er1>:E

1 1\ 2 1/2
= — — 27 X —-X
u; (Nl +N2> (*1 = %),
w = 1_2*1/2(]\71_?1 + NaXo — Ny —N2,u2),
VN

B=xl2gy-1/2,
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Then u;, u, and B are independent. In addition, u; ~ N,((1/N; + 1/N,) s,
I,) and uy ~ N,(0,1,), where 6 =X '?(u; —p,). It also holds that nB is
distributed as a Wishart distribution with n degrees of freedom and covariance
matrix I,, which is denoted as W,(n,I,). Substituting them, we have

U 1 (p p ) u B 'u p wBl'uy B 'u
= — = _— — 7T 5
2\N, M p NN, p VP
_ Np u| B u,

NN, p

i | PN2
NN,

In addition, the unbiased estimator of 4 given as (2) can be written
as

- Np (m—1u/B 'u
A% = ! —15%. 4
N]Nz{ n P ( )

Replacing 42 in (u,v) with (4), we have

o __n Np m—lu{B’luli Np (P _r
2(m—1) N1N2 n P N1N2 N2 N1 ’
b nn+1) Np u{B 'u
_(m+1)(m—|—2) NN, p '
Then,
Vix+ U —i
nintl) le_l(P_P>Q1+ p_B
(m+1)(m+2) D 2\N, Ni) p NN, p
B0 o o bon (b
2 p 2m-1” +2ml(N2 N1>’ )
2O
V=w?=, 6
» (6)

where Q) = u{B 'u;, Qo =u/B*u;, By =0'B'u; and B, =u}B 'u;, »® =
NiN,/(Np). The following lemma is used to express Q;, Q», Bj, and B, as
functions of the independent standard normal and chi-squared variables,
simultaneously.
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LemMA 1. Let v; ~ Ny(d,1,), v ~ Ny(0,1,), A~ Wy(n,I,), and let vy,
vy, and A be independent. Then the following equalities in distribution hold

simultaneously:
1 9 4 Y,
A 'L (z+4- |27
1 Y, 1+ Ys 2,

b1 a9 |1 Y> 2
v2A v =4/53 1 +— {(Zl -‘rA) +Z2 + Y4}Z37

Y; Y3

g 1

vid o = o {(Z0+ 4)° + Z3 + Y,

1
p g2, 2 1 Y, 2, 0
v, A v = Y2 14+—= % {(Zl -I-A) +7Z5 + Y4},

3

where A =Vd'6; Z\, Zy, Zs, and Yi,..., Yy are independent, Z; ~ N(0,1),
i=1,23 Y, ~ )(%, chi-squared distribution with f; degrees of freedom, i=
1,....,4, ‘

fi=n—p+1,  fai=p-1,  fi=n—-p+2, fa=p-

The proof of Lemma 1 is given in Appendix A. From Lemma 1, we
have

< 1O
[I©

) n 1 S
A 1+2/iw

n_ 4 (L4 LT A
f11+~/—z/lwl<w3+“"' ﬁﬁﬁ>’

IS
S

S

~ |
1S

% +\/;’/TW1 (Hfz )Sf

2 1 1+QT>S

1
p f_f(u«/z/lWl)Z( f
where W, = /f;/2(Y;/fi—1) for i=1,...,4,

Az N (2 p-2 2

s=(Zrot) () 22 (15 2m). o
:1+\/2/2W2 (8)
1—|—\/2/3W3'

2

IS
1S
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Then (7) is written as

1 2p 1
S=(14+?’ 4 +— | 204Z, + | =Wy | +—(Z7 + 73 -2
( ) \/13< T p( i > —2)

1 1
=50 +—81 +-5>. 9

Write

1 - 4 /9\k/2 . 2\3/2 wp
1+ 2/]-W,-_kzo(ﬁ) =) _(Z> L+ 2[W; 10

Then (8) is
- 2 (2N e 2[RI
T<1+\/;W2>{1+;(f3) L Y VA2

1 2p 2p 1(2]7 ,  2p )
=1+— —W, — —W +— =W ———Wr) W5 | +r
\/ﬁ<\/fz VA 3) p\L AT
1 1

=l+—T1+;T2+Vl, (11)

VP

where r; = r,S” (Z1,2Z5,Z5, Wy, Wo, W3, W4) is a remainder term consisting

of p~3? times a homogeneous polynomial of degree 3 in the Z,, Z,, Z3,
Wi, Wy, Wi, and W4 of which the coefficients are O(1) as p — oo under
Al, plus p~—2 times a homogeneous polynomial of degree 4, plus a remainder
term that is O(p~>/?) under Al for fixed Z|, Z», Zs, Wi, W>, Wi, and
Wy.

From (10) for j =1, and (9), we have

Q_n_ 1
y4 f11+\/2/1W1

_n LN (V2
_ﬁ{H;(ﬁ) I

1
: (So +—=35 +—Sz>
p
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n 2p
—SO ff] (S ZS0W1>

1 2 2
+;%<Sz ,/;SIWwa’soWl)m

1 1
ZQ1,0+713Q1,1 +;Q1,2+”2, (12)
(2)

where ry =1, (21,22, 23, W1, Wa, W3, W4) is a remainder term consisting of
p /% times a homogeneous polynomial of degree 3 in the Z;, Z,, Z3, Wi, W»,
W3, and Wy of which the coefficients are O(1) as p — oo under Al, plus p—3/?
times a homogeneous polynomial of degree 1, plus p~2 times a homogeneous
polynomial of degree 4, plus p~> times a homogeneous polynomial of degree 2,
plus a remainder term that is O(p~>/?) under Al for fixed Z|, Z>, Z3, Wi, Wa,
W3, and Wjy.
From (12), it is written as

! q ( q IQ q 1Q q 0 )1/
V41,0 1 1,1 . 1,2 . r
p ) \/]_7 1,0 p 1,0 1,0

=q0(l+ xl)l/za

where

| | -1
X1 =—=q109011 +=4q1.001.2 + 41 o2
P 1,0 510 1,0

. . . /2 .
Maclaurin series expansion of (1 + xj) 2 gives

O _ I Qi 1 Q1,2_Q12,1
\/;—\/_q {+f2qlo+p<2q170 gin)}*”’ (13)

where ;3 = r,(, )(Zl,Zz,Zg, Wi, W, Wi, Wy) is a remainder term consisting of
p3/* times a homogeneous polynomial of degree 3 in the Z,, Z,, Z3, Wi,
W,, W3, and Wy of which the coefficients are O(1) as p — oo under Al, plus
p3/% times a homogeneous polynomial of degree 1, plus p~2> times a homo-
geneous polynomial of degree 4, plus p~2 times a homogeneous polynomial of
degree 2, plus p~? times a constant that is O(1) as p — co under Al, plus a
remainder term that is O(p~>/?) under Al for fixed Z,, Z,, Z3, W\, W1, W,
and Wj.
From (9) and (11), we have




Cut-off point in discriminant rule 327
%) { G A
S=q1+= —I——T1+ Ty +n so+—=81+=-%
( E Ve VPP Y/

g ()R e

+—= {<1+£>S2+2S1T1 j;S()Tz}-f—m, (14)

where ry = r,(,4) (Z1,25,Z5, Wy, W, W3, W4) is a remainder term with the same
property as rp. Write

. 5
| Y 2\/5W 2 ] (2\/%W1+1%W12>
m—; SNAT AT w22 im+ s

Then, we have

2= () vy (1578
) (14 2o ()
X {(1 +7§)Sl +%s0T, —2\/%’<1 —i—%)soW]}

=] =

/3

+7rs

(s (4o

1 1
=t]2,o+ﬁQ2,1 +;Q2‘2+V5, (15)

where rs = rl(,s)(Zl,Zz7Z3, Wy, Wy, W3, Wy) is a remainder term with the same

property as rs.
From (14), it can be described that

(e gm)s=y (1o

where
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so{(ve)ed [R{ 05 fom}

+;{<1 ?>S2+}F2S1T1+§S0T2}+V4:|.

. . . /2 .
Maclaurin series expansion of (1 + x») 2 gives

\/<1+%T)S=\/( j:j) {1+L\/—<T1+SI)}+r6a (16)

where S’] = Sl/So, T] = {(fz/f3)/(1 +f2/f3)}T1, re = Vp( )(21,22,23, W], Wz,
W3, W) is a remainder term consisting of p~! times a homogeneous polyno-
mial of degree 2 in Z|, Z,, Z5, W, W,, W3, and W, of which the coefficients
are O(1) as p — oo under Al, plus p~3? times a homogeneous polynomial of
degree 3, plus p~3/? times a homogeneous polynomial of degree 1, plus p~!
times a constant that is O(1) as p — oo under Al, plus a remainder term that
is O(p~2) under Al for fixed Zi, Z,, Z3, Wy, W>, W3, and Wy. From (10)
for j=1, and (16), we have

By _ ! Nz
p f11+\/2/1W1 <1 T)Sf

/ f T\ + S 2p
ffl S023+ (1+f3s S0 > lel Z3 + 17
:—Bz1+p322+1’77 (17)

VP

where r; = r[(,7) (Z1, 25,25, Wi, Wo, W5, Wy) is a remainder term with the same
property as rs.
From (11), it can be described that

ﬁ: \/1+X3,

where

1 1
X3=—T1+;T2+1’1~

VP

. . . 1/2 .
Maclaurin series expansion of (1 + x3)"/? gives

1 1/1 1
T=1 T + T, — T, 1
VI tegoties (57577 (19)
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where rg = r,(,g)(Zl,Zz7Z3, Wi, Wy, Wi, W4) is a remainder term with the same
property as r;. From (10) for j =1, and (18), we have

B_n_ 4 (Zi _ Nyrl
\/ﬁ_ﬁ1+\/2/1W1<\/ﬁ+wA ﬁﬁﬁ)

LIPS _ L 2
COA +\/~fl{<Zl \/;22>A \/; wA W]}
S8 e oo

—b10+—311+p312+r97 (19)

VP

where rg = }’1§9)(21,ZZ7Z3, Wy, Wa, Wi, Wy) is a remainder term with the same
property as ry.

From the expansions of Q;/p, \/Q1/p, Q2/p, B2/p, and Qi /,/p, which are
given as (12), (13), (15), (17), and (19), respectively, we have

2+ 1 1 1
\/5X+U—ﬁ= \/(rl(n—+)sow_1x+—U1+;Uz+V107

m+1)*(m +2) VP

n*(n+1) w? w2
V=w?——a——s50+—=0s1+—— 022+,

(m+1)*(m+2) VP p

where

= AQ, 1 — 1B + By 1,
Qllfll\/M—NZ,l

nn+1) o 'x D
s Dn 3) 577 O P R

NN,
e ) )

B nn+1) ! . 1/p p w?
4= (m+1)(m+2)2,/q10 2< >+

Uy=A401> —

rl():r[(,lo)(Zl,Zz,Z3,WI,WZ,W3,W4) is a remainder term with the same

property as r3, and ri; = r,S“” (Z1, 25, Z5, Wi, Wo, W3, W4) is a remainder term
with the same property as r,. Write
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| { n2(n+ 1) }”2 1
—— =Wy 5
m+ D% +2) 7] i (1) @a + (1/p) 0o + 1

~1/2
» n*(n+1) S 1
m+ Dim+2) [ VT+xs
where

1 - | -
X4 =— 2,1+;Q2,2+"11,

\/}).Q

—1
_— n*(n+1) ‘ o
= (m+1)2(m+2)so} &y U=12),

_— n’(n+1) p _lwzr
"= 12 m 1 2) 0 -

. . . ~1/2 .
Maclaurin series expansion of (1 + x4) /% gives

NN SRSV

Na% m+ D2m+2)

1_LQ2.1+1 3Q§,1_Q2,2 e
P2 p| 8 2 ?

(12)

where ry =1, (21,22, 2Z3, Wi, W, W3, W,) is a remainder term with the same
property as r;. From (18) and (20), we have

; (20)

R Yix+U-—i
VV
1 1 - - 1 3. 1 ~ 1 ~ ~ N
:x+ﬁ|:—§XQ211+U1:|+;|:x<§Qil—§Q2’2>—§U1Q2’1+U2 + 713
+ 1 R +1R + (21)
=X =1\ — 2 rs,
VP P

where rj3 = r,(,m(Zl,Zz, Zy, Wy, W, W5, Wy) is a remainder term with the same

property as rs3,

- n*(n+1) e )
U{m} °t U=12)
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The Taylor series expansion of @(.) in (3) up to order 5 gives

Viox+ U —i
¢< V7 )

1 1
=@ x+—R1+—R2+r13>
( VPP

4 ) j
45] 1 /
+Z [ R, +pR2+V1%]

Jj=1

o0 (x+ e(ﬁRl iR +rs)) 1y
5 7

1 1 1 5 1 1
= (D()C) +¢(X){\/ﬁRl Jr; <R2 2XRI>} p3/2714+p 5715 + 716 (22)

_|_

| 5
Ri+—-Ry + r13}
V4

for some real number 0 e (0,1), where ri4 = rI(,M) (Z1, 25, Z3, Wi, Wo, W3, Wa)
is a term consisting of a homogeneous polynomial of degree 3 in Z;, Z>,
Zs, Wy, W, W3, and W, of which the coefficients (which depend on x) are
O(1l) as p — oo under Al, plus a homogeneous polynomial of degree 1, rj5s =
r,ﬁlS)(Zl,Zz,Z3, Wi, Wy, Wi, W) is a term consisting of a homogeneous poly-
nomial of degree 4 in Z), Z,, Z3, Wi, W,, Wi, and W, of which the
coefficients (which depend on x) are O(1) as p — oo under Al, plus a homo-
geneous polynomial of degree 2, plus a constant that is O(1) as p — co under
Al, and r :r,(,lé)(Zl,Zz,Z3, Wy, Wy, Wi, W4) is a remainder term that is
O(p~>/?) under Al for fixed Z,, Z, Z3, Wi, W, W3, Wy, and x.
Let J, be the set of Zi, Z,, Z3, Wi, W,, W3, and W, such that

Z] <2/logp  (i=1.2,3),
Wil <V21logp  (i=1,2,3,4).
Using the same derivation as given in Appendix of Anderson [2],

P(Jy)=1-o0(p™?)

under Al. The difference between E[®(.)] and the integral of &(.) times the

joint probability density function of Z, Z,, Z3, Wy, W>, W3, and Wy over J,

is o(p~?) under Al, because 0 < @(.) < 1. For the elements of J,,

5 log p ’ log P
V »p VP

f

Eh
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For a sufficiently large p that satisfies (log p)/\/p < 1/v2, it holds that

A< [
— < 17 .
VP VP
For such a large p, there exists a constant xs, which is O(1) under Al such
that

< L

5
}’;1@(21,22,23, Wi, Wy, Wi, W4) < X5 <log p)
/2

for the element of J,. Hence the integral of this element times the joint
density function of Z\, Z,, Z3, Wi, W,, W3, and W, over J, is o(p~?) under
Al. Since the fourth-order absolute moments of Z;, Z,, Z5, Wy, W, W3, and
W, exist and are bounded, the integral of r;s times the joint density func-
tion of Z, Z,, Z3, Wy, Wy, W3, and W, is bounded. Thus, (1/p?)E[ris] =
o(p~).

The differences between E[R)], E[R?], E[R,], E[ri), and E[ris] and the
integrals over J, of Ry, R,Z, Ry, ri4 and rys times the joint probability density
function of Zy, Z,, Z3, Wi, W,, W3, and Wy, respectively, are o(p~2) under

Al. Thus,
P<W¢+5u <x er1>
]
= os) o) { o pIR 1 (ER] =S ELRD) b B+ 067

— 00 + 1 ¢(x)(EIR] - S ELR3] ) + O(p ) 23)

=F

because the third-order moments of the elements of Zy, Z,, Z3, Wy, W, Wjs,
and Wj are either 0 or O(p~'/?) under Al. Note that R is represented as the
linear combination of {Z,Z,,Zs, Wi,..., W4}. Hence E[R,] = 0.

Next, we show the analytic expressions of E[R]] and E[R,]. It can be
expressed that

2 ~ ~ ~ ~
E[RY) = E[03 ) + E|U}) — xE[0s , U],

We show the analytic expressions of E[Q3 ], E[U}], and E[Q, U], respec-
tively.
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Since S; AL Ty 1L W7,

fz AW fz >
£} = 7 (1 ﬁ) E[s?) + (ﬁ) i1 ﬁ) REWR|.
Write
St =40’ A*Z} + = W} + dw4 2—pz1 Wa.
Ja Ja
Then
E[S}] = 4w’ 4% + =4
1 j;‘
Write
> 2p 2p 2p
T = 2W2+fW3 2\/f2_f3W2W3.
Then
2 21’ 217
Hence
fz 242 > (fz> (217 2p>
E0}1]= 73 <1 f3> <4 A7) () (et (T g
fz 2
+F< ﬁ) (1+ w4 )]. (24)

It can be described that

2
E[Uf] = A°E(Q]] + E[B]] + ﬁE[B%,J ~247E(Q11B, |
2p

_|_
NN,

AE[Q1,1B>,1] — TE[By,1B1].

Write

2
Q12,1 <S1 =i sgWi — ?051 W1>

12
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Then,
2 2 2
E[lel] :;—12 |:(4602A2 +7i7> +711)S4
§ 242 4 2) 2p 2 42 2]
flK4wA f4+f(l+wA) .
Write
2
e
Then,
E[B }”2< fz) ”—2(1+f2)(1+w 2,
PR A ANZ
Write
312_1:;—122{<22+ﬁ22 \/%ZZ)A%%M“WE
2 7’: A W1<Z1 \/{EZZ>A}.
Then,
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o= (s 5)e )

From the independence, we have

E[Bi,1B> 1] = E[Bi1|E[B>,1] =0,
E[Q1,1B2,1] = E[Q1.1]E[B,1] = 0.

It is written as

n? 2p 2p
B =—5204Z) + | W4y — y [ ——s0 W
01,1B11 f12< 1 ”f4 4 5o

Thus, we have

(25)
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E[Q11B1,1] = 7 (2 A% + 2750coA )
i

1

n* 2p 2 21’ 3 }
fl{(“ﬁ) oAt e
Hence

- G e{fwr3) 3w
—2TA{( if:’>wA2+i,—i’w3A4}+Ni’jv2<1 ﬁ)(wwzg)

LR 9

We also write that

Q2‘1=( ?)Sl‘f‘?SOTl_Z\/—f:(l ?)SOWI
_(n fz S S
‘(ﬁ) 2142 Joaz - 2\&0%) ol fs\/;sOWZ
S S
-zJ%sWﬁ( )

=A011 — B 1 + ——=

)4
VNN

S
(2wA —7)4Z 2 47, z
A=Az g +\/NI—N ‘“
SoA — wtd° )W + AW,
\/fl(o ) 1 ”f4 4

n
1

Thus,
3
_(n f _ ap »
E[0>1U)] _<f1) <1+f3> {ZwA(ZwA T)A-l-f So(sod — w4 )—l—AfJ
_(n : f I 4 2 4242
(71) (17)[{4 £+ 22 (14 o) }A
o W Mgy a)zAz)AZ} (27)

N AN N
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Next, we show the analytic expression of E[R;]. It can be expressed
that

BIRe] = (3 EIQ3 ] - 3 £10:.1) - 3 B2\ 01 + B[O

The analytic expression of E[Q3 |] and of E[Q, U] have already been obtained
s (28) and (27), respectively. Therefore, we show E[Q,,] and E[U,].
Since S; AL 77 1L Wi, we have

s~ (G [(+2)ms s (1 £

It is found that E[S;] =0 and E[T»] =2p/f;. Thus,

E[Qs 1] = (%)zu w4 >[2jfﬂ+j—’1’< +2)} (28)

It can be expressed that

nn+1) -
(m+1)(m+2) g4 2/2

s E i ()~

Here, the analytic expression of E[Qil] is obtained as (25). It is also shown
that

E[Uy] = AE[Q) 5] -

[Ql 1]

— TE[Blﬁz] —+

_n|(2p 2 (2
E[le]—fl |:fl (1+ w4 )]7

E[B, ] =0,

2pn 5

E[Bl,z] :f_izwA

Hence
_2np _ B n 202, 2 2

E[Uz]—fl (l—l-a)A)A 8(1+w2A2)f1{<4wA +f21) fl(l—l-co )}
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where

. n(n+1) ! .

(m+1)(m+2) {fﬁ(l R w2A2)}1/2

Summarizing these results, we have the following proposition.

PROPOSITION 1. Assume that A*> converges to a positive constant as

p — . Let
n 0 V4 V4
_ A? A
2(”1—1){ +<N2 Nl)}’

_ n*(n+1) - Np
S m—=1)(m+1)(m+2) (Az + N1N2>’

NS
I

<>

where A* is the unbiased estimator for A defined as (2). Then,

W +a
Pl—"<x
(x/?;

as p — oo under the high-dimensional asymptotic framework Al, where

xe )=o)+ 00 (ElR] - SEIRT) + 0

x2

2
E[Q3 |+ S E[U}] — x= E[0,1 U],

2—_
E[Rl]_4c4 My ¢

3 1
H&FWQ?H%J—zﬂmmo—fﬂ@mw+9ﬂm,

¢
B n(n+1) w2 A?
C_¢W+NW+3“+2A%

N1 N>
Np ~

Here, the expectations appearing in E[R?] and E[Ry) have the following analytic

expressions.
fz) ( 2 42 2P>
1+ 4o A° + —
(143) (102

st ;)
@) 2 s
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E[Uﬁ]-(%)z {A {4 24’2+2+3{?(1+a}2112)2}

AR 3o )

P2 S 2 42
+N1N2(1+f3>(l+wzt)

AR e
g

[QNUI]=< )( >{ wa? 1+ 2 +j,]1)(1+ 2A2)2}A
ZAPE %%(H W)gﬂ,

s G050 5)

E[Uy] = 2np(l—ka)A)A— B n

12 8(1 + w24?) fi

AN 4 2 2np Ny
S AR A B S

oo )~

where fi=n—p+1, i=p—1, i=n—p+2, fa=p-—2,

3. Asymptotic cut-off point which ¢(2|1) takes presetting value

In this section, we propose an asymptotic cut-off point that the misclassifi-
cation probability takes as its presetting value with the error O(p~2) under Al.
Let
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From Proposition 1, we have
Wi
P( f”<x
Vi

as p— oo under Al. We next estimate E[R,] and E[R?].
From (1), the unbiased estimator of A defined as (2) can be written

xe 171) =d(x)+0(p?)

as

) ]\[p
12

f‘l_2 é " 2 é 2
A+ 27 in){<\/l7+ 1) +<\/ﬁ>
+1’T_2(1+\/2/4W4)}_1].

From (10), we can write it as

Az = AZ + 17,
where r17 = rf,m (Z\,Z2,Z5, W1, Wy, W3, Wy4) is a remainder term consisting of
p~'/? times a homogeneous polynomial of order 1 in Z,, Z», Z3, Wi, W», W3,
and Wy of which the coefficients are O(1) as p — co under Al, plus p~! times
a homogeneous polynomial of order 2, plus p~' times a constant that is O(1)
as p — oo under Al, plus a remainder term that is O(p~*/?) under Al for fixed
Zy, Zy, Zs, Wi, W, W3, and Wy. Let {, E[Q3 ], E[U}], E[Q>1U1], E[Qs2],
and E[U,] be obtained from {, E[Q3 ], E[UZ], E[Q1U1], E[Q2], and E[U3],

respectively, by replacing 4> with 4%, where {, E[Q3,], E[U}], E[Q:1U1],
E[Q>,], and E[U,] are given in Proposition 1. We next evaluate these
estimators.

It can be expressed that

i = n?(n+1)
N m+1)*(m+2)

B n2(n+1) 2,
= \/(m+l)2(m+2_){l+w2(A +r17)}

=V 1+,
(18

where 15 = r, )(ZI,ZZ, Zy, Wy, W, W5, Wy) is a remainder term with the same
property as rj;. Maclaurin series expansion of /1 + rjg gives

(1 + w24?)

C:C+r197
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where ri9g = r,(,lg)(Zl,Zz, Zs3, Wi, Wy, W3, Wy) is a remainder term with the same

property as rj7. Maclaurin series expansion of (1 +C_lr19)7/ gives

1 1 1
T:-—,~:*-+"20,'7 (30)
goda+ ey 0
where ry ; = r,§2°*f>(zl,zz7z3, Wy, Wa, W3, Wy) is a remainder term with the
same property as ri7 for j=1,2,3,4. Using the same derivation, we have

—

E[Q3,] = E[Q3 ] +ra, (31)
E[U}] = E[U] + rx, (32)
E[Q21U1] = E[Q2,1 Ui] + 133, (33)
E[0s2] = E[021] + s, (34)
E[Un] = E[U3] + 15, (35)

where r; = rs) (Z1,25,Z5, Wi, Wo, W3, W4) is a remainder term with the same
property as ri7 for j=21,...,25.
From (30) to (35), we find that

E[R?] = E[R?] + ras, (36)
ETR\z] = E[Rz] + 127, (37)

where 16 = 71(726>(21,ZZ7Z37 Wi, Wy, Wi, Wy) and ry; = 71(127)(21722,23, Wi, Wa,

W3, Wy) are remainder terms with the same property as ry7.
Let

x:x—%{ETRZ] —%ETR\%]}.

From (36) and (37), it can be expressed that

X =X+ g, (38)

where ryg = r}fs)(zl,zz,z3, Wi, Wa, Wi, Wy) is a remainder term consisting of

p~3/* times a homogeneous polynomial of order 1 in Z,, Z», Z3, Wi, Wa, W3,
and W, of which the coefficients are O(1) as p — oo under Al, plus p~2 times
a homogeneous polynomial of order 2, plus p~2 times a constant that is O(1)
as p — oo under Al, plus a remainder term that is O(p~>/?) under Al for fixed
2y, Ly, Zz, Wi, Wr, Wi, and Wy. Then,
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Vix+ U —1a
o)

Vix+U—i %
@(T—l— \/%Vzg)].

u

P<W\/E <X

_|_

XEH1> =F

=F

We proceed to evaluate +/v/V.
Write

\/E: n(n+1) 60—1\/Q1/P
vV (m+1)(m+2) N2

From (13) and (20), we have

0 nn+1)

v\t D)@ VI

1 1 2
|4 Q1,1+_ Ql‘z_Q12.1 s
\/1_7241,0 p 2(]1,0 86]110

n2n+1) /5 _713 r| 8 2

(m+1)’(m+2) 1 ll L O 1{3Q§71_Qz,2}+m
2 p
=1+ ra, (39)

where 19 = r,(,29>(Zl,Zz, Zs, Wi, W, W3, Wy) is a remainder term with the same

property as ri7.
From (21) and (39), it can be described that

Vix+ U —a \/52+U—a+\/1
Vv vV v

- 1 = 1 -
=X+—R +;R2+}’30,

VP

where R; is given by R; by replacing x with X for j = 1,2, r3 = r(30)(Zl,Zz, Zs,
Wy, W, W3, Wy) is a remainder term consisting of p~3/* times a homogeneous
polynomial of degree 3 in Zy, Z,, Z3, Wi, W, W3, and W, of which the
coefficients are O(1) as p — oo under Al, plus p~3/? times a homogeneous
polynomial of degree 1, plus p~2 times a homogeneous polynomial of degree 4,
plus p~? times a homogeneous polynomial of degree 2, plus p~2 times a con-
stant that is O(1) as p — oo under Al, plus a remainder term that is O(p—>/?)
under Al for fixed Z], Zz, Z3, W], Wz, W3, and Wy.
Using the same derivation from (13) to (23), we have
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W4+a Vox+ U — i
(<o) - ofof B0 5)

= 0(3) + 1 4(5) (ER] - S EIRS ) + Op

erI)E

S

=®(x) +0(p?).

PROPOSITION 2. Assume that A*> converges to a positive constant as
p — oo. Set the cut-off point ¢, as

e =V {z“ - % {E[Rz] - —E[R2] H — 4, (40)

where z, is the o percentile point of the standard normal distribution. Here,
@ and ¥ are defined in Proposition 1, and E[Rz] and E[R2] are obtained from
E[R;] and_E[R7|, respectively, which are given in Proposition 1, by replacing
A% with A* given as (2). Then

e(21) =a+ 0(p~2).

as p — oo under the high-dimensional asymptotic framework Al.

4. Limiting value of ¢(1|2) when the cut-off point ¢, is used

We consider the probability e(1]2) for the case in which the cut-off point
¢p, which is defined as (40), is used.
Following Lachenbruch [9], we have

e(112) = P(W > ¢, | x € IT») _E[qﬁ(_ch\/—;Hﬂ,

where

el = 1
H = 7(21 — fz) S l(xz 7,[[2) 7§D2.

In the above evaluation, we use
-w=v'"2z, - H,
where
Z, =V V2% — %) ST (x — my).

When x € IT,, Z, is distributed as N (0, 1) under the condition that {¥;,%,, S} is
given. Since the conditional distribution does not depend on {X;, ¥,,S}, Z is
independent from {H,V, c;}.
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The expectation of H is given as

Suppose that h is the unbiased estimator of E [H] obtained by replacing 4°
with 42, Note that Var(H) can be obtained as Var(U) by interchanging N,
and N,. The analytic expression of Var(U) given by Fujikoshi [4] enables
us to show that Var(U) converges to 0 under Al and the assumption that 42
converges to a positive constant as p — co. Hence Var(H) converges to 0.
From Chebyshev’s inequality, we have

H—E[H] % o0.
Since 21\2 — A% converges to 0 in probability,
h—E[H] 2 o0.
Using Slutsky’s theorem, we have

H-h2o0. (41)

In addition, the following probability convergences hold:

i+h+a2 2o, (42)
m
%LL (43)
3 Np P
S Y R p—" . 44
vV m< +MM>HO (44)

From (41), (42), (43), and (44), for the cut-off point ¢,

w|erH ) R o
Al VvV * L(A2+Np) ’

NN,

where lima; represents the limit as p — oo under Al. From the continuity
and the uniform boundedness of &(.), we have

lix“l“E[ ( %Hﬂ i l‘m\[ﬁ

Summarizing the result, we have the following proposition.
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PROPOSITION 3.  For the cut-off point ¢, defined in (40),

AZ
lim e(12) = @ | z1_, — lim \/@ —= | (45)
Al Al n AZ T N]IVZ7

under the condition that A* converges to a positive constant as p — oo.

The limiting result (45) indicates that the misclassification probability
decreases for 4, increases for p, and decreases for each sample size.
From (45), e(1]2) can be estimated as

22
oz | (46)
n A2+ Np

NN,

The precision of this estimation is evaluated numerically in Section 5.

5. Numerical comparison

We examined the accuracy of the misclassification probability e(2|1) by
using the cut-off point ¢, given as (40) through simulation. We also calculated
the misclassification probability by using the cut-off point ca obtained by
Anderson [2] (which is cited in Ch. 6 of their book [3]). The cut-off point c4 is
as follows.

1
CA = EDZ + Dty

t L(N=1 1 .1 N, L1
=zy——|——=z — ——lzy+-2z ¢
AT\ "D T2 T \\P T a) g

Without loss of generality we generate samples from I7; : N,(de;,I,) and
IT> : Ny(0,1,), where e; = (1,0,...,0)". The reason is that the statistics W
and D? are invariant with the following transformations:

where

x; =T'Z'P(xj — my) ~ Ny(Ouder,I,)  (i=1,2,j=1,....Ny),
x* =T'E7'2(x — ) ~ Ny(dey, 1),

where I' is an orthogonal matrix of which the first column is proportional
to 6 =X V%(u, — m,), and 0; denotes the Kronecker delta. We carried out a
simulation for the case in which N = N,. The parameters were set to p = 20,
30, 40, 50, 60, 70, 80, 90, 100, and 4 = 1.05. The sample sizes of Ny and N,
were set such that p/n=1/6, 3/6, and 5/6. As the presetting value, we set
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[fe} [t} 0
S il ©
<] 020900600 < ] < |
o o o
™ e} 3]
= 2 = 21 = 21
s = <
T o T o T o
° °SlPoooooooo °
S Iy S S
o | o | o |
o T T T T © T T T T © 4 T T T T
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
P p P
Fig. 1. p/n=5/6 Fig. 2. p/n=3/6 Fig. 3. p/n=1/6

o =0.05. The procedure involving the classification of 10,000 testing obser-
vations per training data set of N = N; + N, observations constitutes one
iterative cycle of the basic Monte Carlo simulation. We calculated the value
of the misclassification probability by

number of misclassification
10,000

(47)

We used 100 iterative cycles. The average of these values is presented in Fig.
1, 2, and 3. The symbols “o” and “x” represent the values for ¢y and ¢y,
respectively. The solid line represents the value of o (= 0.05). We observe
from Fig. 1 and Fig. 2 that, although the accuracy for ca is not acceptable,
that for ¢, is good. In Fig. 3, there is little difference between ¢, and ca.

We also carried out a simulation to assess the precision of estimation for
e(1|2) for the case in which ¢, is used as the cut-off. We set to 4=5.
We performed 100 iterations. For each iterative cycle, we generated a train-
ing data set, and calculated ¢, and (46). The average of the 100 values
obtained from (46) is listed in the column “estimation” in Table 1. We also

Table 1. Values of ¢(1|2)

p/N=5/6 p/N =3/6 p/N=1/6
4 simulation estimation simulation estimation simulation estimation
20 0.590 0.730 0.066 0.091 0.002 0.004
30 0.563 0.600 0.057 0.072 0.002 0.003
40 0.532 0.544 0.055 0.064 0.002 0.003
50 0.503 0.510 0.049 0.059 0.002 0.003
60 0.436 0.438 0.049 0.055 0.002 0.003
70 0.469 0.473 0.047 0.054 0.002 0.003
80 0.472 0.462 0.048 0.051 0.002 0.003
90 0.465 0.454 0.045 0.050 0.002 0.003
100 0.454 0.445 0.044 0.049 0.002 0.002
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generated 10,000 testing observations in each iterative cycle to calculate (47).
The average of 100 values of (47) is provided in the column “simulation” in
Table 1. We can confirm that the precision of the approximation improves
significantly as p and N become large.

6. Conclusion

This paper is concerned with a problem determining the cut-off point in
linear discriminant analysis, i.e., the point at which one of the two misclassi-
fication probabilities takes the presetting value. Our approach was to use an
asymptotic expansion of the distribution for a Studentized linear discriminant
function under the high-dimensional asymptotic framework Al. The precision
of the approximation was demonstrated by carrying out a simulation. The
proposed cut-off point was shown to have good accuracy for the case in which
p is relatively large compared to the sample sizes.

Appendix A. Proof of Lemma 1
This section provides the proof of Lemma 1.

Proor. Let I be an orthogonal matrix of order p of which the first row
is proportional to ¢’, and let 4 = AL’ and w; =Tv;, i=1,2. Then 4 ~
W,(n,1,), wi ~ Ny(dey,1,), wa ~ N,(0,1,) and w;, w, and A4 are independent;

o' Av; = ([8) (TAT") "\ (Tv;) Z del A 'w,

where ¢; denotes a fundamental vector with 1 in the i-th position, Z ~ N(0, 1),
and Z and {4,w;} are independent. By using reflection matrix (Householder
matrix) H between e; and (1//wiwi)wi,

6" Av; Z Ay /wiw (He)) (HAH') " "{H(1/\/wiw))w} = Aw! (HAH') e,
In addition,
/A—l g/AN—l ! / S 1
A v = W] wi =wiw -e;(HAH") ey,

I R =
v A 2y = wiA 2w, = wiw; -e](HAH') 2e,.
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Given w;, C = HAH' ~ W,(n,1,); thus, C and w; are independent. Partition
P P p

¢ c w
Cz(“ 21) and wlz( 11).
o Cn wal
It can be expressed that

/ 9 1 -1 4 1 -1
JAU] ZAWIC el ZE(WH — W21C22 (,‘21),

where ¢j12 = c11 — célCz’zlczl. In addition,
!
wWiwi

42 _

VA o Zwiw el C ey =
1 1 1 )
112

!/
_ 9 _ wWiw _
v A7) = wiw - e]C %e; = C;—I(l + ¢}, Colenn).
112
It is noted that x = C;zl/zczl ~ N,_1(0,1,), D=Cxy ~ W,_1(n,I,_1), and x
and D are independent; thus, wy;, wo, X, D and ¢, are independent. Using
these results, we have

!
o' Av, Zz A(W” — wélD’I/zx) and v{A_zvl Z wzéwﬂ (1+ x'D’lx).
€112 12
Let G be an orthogonal matrix of order p—1 of which the first row is
proportional to x'D7V2. Given x and D, y=Gwy ~N,_1(0,1,,), and it is
found that wyy, ¢112, x, D, and y are independent. Partitioning y = (y1y})’,
we have

g 4 g 4
o' Av, Z c—{W” — (Gwzl)/(GDfl/zx)} z C—(w“ —Vx'D7xy)),
112 112
9 2 G ! G 9
oAty 2GR (O) 2 L 2y 2y,
C112 C112
g w? G "G
vj A% 2 Wit ( 2}21) (Grwn) (1+x'D7'x)
‘12
gL(1+x’D’1x)(w2 + 2+ yiy,)
6121_2 11TV T V)
The assertion of the lemma is followed from this result. O
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