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Abstract. In this paper we give a new Koksma-Hlawka type inequality for Quasi-

Monte Carlo (QMC) integration. QMC integration of a function f : ½0; 1Þ s ! R by a

finite point set P � ½0; 1Þ s is the approximation of the integral Ið f Þ :¼
Ð
½0; 1Þ s f ðxÞdx by

the average IPð f Þ :¼ 1
jPj
P

x AP f ðxÞ. We treat a certain class of point sets P called

digital nets. A Koksma-Hlawka type inequality is an inequality providing an upper

bound on the integration error Errð f ;PÞ :¼ Ið f Þ � IPð f Þ of the form jErrð f ;PÞja
C � k f k �DðPÞ. We can obtain a Koksma-Hlawka type inequality by estimating bounds

on j f̂f ðkÞj, where f̂f ðkÞ is a generalized Fourier coe‰cient with respect to the Walsh

system. In this paper we prove bounds on the Walsh coe‰cients f̂f ðkÞ by introducing

an operator called ‘dyadic di¤erence’ qi; n. By converting dyadic di¤erences qi; n to

derivatives q
qxi

, we get a new bound on j f̂f ðkÞj for a function f whose mixed partial

derivatives up to order a in each variable are continuous. This new bound is smaller

than the known bound on j f̂f ðkÞj under some instances. The new Koksma-Hlawka type

inequality is derived using this new bound on the Walsh coe‰cients.

1. Introduction and the main results

Quasi-Monte Carlo (QMC) integration of a function f : ½0; 1Þs ! R by

a finite point set P � ½0; 1Þs is the approximation of the integral Ið f Þ :¼Ð
½0;1Þ s f ðxÞdx by the average IPð f Þ :¼ 1

jPj
P

x AP f ðxÞ (see [10, 20, 24] for

details). We want to find a quadrature point set P making the absolute

value of the integration error jErrð f ;PÞj :¼ jIð f Þ � IPð f Þj small for a set of

functions f . This problem is formulated as follows: We consider a function

space H with norm k f kH and the worst case error supk f kHa1jErrð f ;PÞj by a

QMC rule using a point set P (for example, see [10, 17] for details). Then,
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it holds that, for any f A H,

jErrð f ;PÞja k f kH � sup
k f kHa1

jErrð f ;PÞj: ð1Þ

Thus in order to make the integration error jErrð f ;PÞj small, it su‰ces

to obtain quadrature point sets P making the worst case error

supk f kHa1jErrð f ;PÞj small. Since dealing with the worst case error directly

is not easy, we often consider a manageable upper bound WHðPÞ on it;

jErrð f ;PÞja k f kH �WHðPÞ: ð2Þ

Here we call WHðPÞ a figure of merit of P and these types of inequalities

(2) are called Koksma-Hlawka type inequalities (for example, see [18] for

details).

We often treat a point set P called ‘digital net’ (for example, see [10, 20]).

A digital net P is defined as follows. Let n;mb 1 and bb 2 be integers with

nbm. Let 0a h < bm be an integer and C1; . . . ;Cs be n�m matrices over

the finite group Zb ¼ Z=bZ. We write the b-adic expansion h ¼
Pm

j¼1 hjb
j�1

and take a vector h ¼ ðh1; . . . ; hmÞ A ðZm
b Þ

>, where hj is considered to be an

element in Zb. For 1a ia s, we define a vector ðyh; i;1; . . . ; yh; i;nÞ ¼ h � ðCiÞ>
and a real number xiðhÞ ¼

P
1a jan yh; i; jb

�j A ½0; 1Þ, where yh; i; j is considered

to be an element of f0; . . . ; b� 1g � Z. Then we define a digital net P by

fx0; . . . ; xbm�1g where xh ¼ ðxiðhÞÞ1aias. In order to analyze QMC rules by

digital nets, we use a dual net P? [9, 21]:

P? :¼ fk ¼ ðk1; . . . ; ksÞ A ðN [ f0gÞs jC>
1
~kk1 þ � � � þ C>

s
~kks ¼ 0 A Zm

b g;

where ~kki ¼ ðki;1; . . . ; ki;nÞ> for ki with b-adic expansion ki ¼
P

jb1 ki; jb
j�1.

Here ki; j is considered to be an element of Zb. Throughout this paper, when

we take a point set P, we assume that P is a digital net with b ¼ 2.

In the classical theory, many researchers studied the integration error of

a function f with bounded variation (or function with square integrable partial

derivatives up to first order in each variable) (for example, see [10, 18]). In

particular, they constructed many types of digital nets which achieve the

optimal rate of convergence utilizing the theory of dual nets and Koksma-

Hlawka type inequalities.

An extension to smooth periodic functions was established in [3], while

a further extension to smooth (non-periodic) functions was shown in [4]. The

QMC rules constructed in these papers, called higher order QMC rules, achieve

the optimal rate of convergence. These rules are also constructed by obtaining

a Koksma-Hlawka type inequality and analyzing properties of digital nets and

their dual nets for higher order QMC rules. See also [5] for more background

on higher order QMC rules.
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Our main result in this paper is obtaining new Koksma-Hlawka type

inequalities of digital nets for smooth function spaces, which leads to making

practical optimal higher order QMC rules. One concrete application of this

improvement is to substantially improve the constants in the bounds on

integration error in [4], which is crucial in problems in uncertainty quantifi-

cation [8, 12]. In particular, Gantner and Schwab [12] point out that the

large constants from [4] cause problems in the CBC construction of interlaced

polynomial lattice rules, which are construction methods to obtain a point set

whose worst case error achieves the optimal order [7, 13]. To avoid this

problem, it is suggested to use much smaller constants which are more realistic

in [12]. This paper provides the theoretical justification for doing so.

We explain the details of our main result by comparing our result to the

one in [8]. Dick et al. [8] introduced a smooth function space whose functions

f satisfy that their norms (5) (see below) are finite. If f is a function whose

mixed partial derivatives up to order a in each variable are continuous, then f

is contained in this space. This space has some parameters called weights

fgvgv�S � R>0 ¼ fx A R : x > 0g, where S :¼ f1; . . . ; sg, which model the im-

portance of di¤erent coordinate projections [25].

To state the results in [8], we introduce projected dual spaces and weight

functions which correspond to the subsets v � S as follows. For kv A Njvj,

let ðkv; 0Þ A ðN [ f0gÞs denote the vector whose jth component is kj if j A v and

0 otherwise. The dual space which corresponds to the subset q0 v � S is

defined by P?
v :¼ fkv A Njvj j k ¼ ðkv; 0Þ A P?g (note that none of the compo-

nents in v is 0). The weight on a projected dual space is defined in the

following way.

maðl1; . . . ; ljvjÞ ¼
Xjvj
i¼1

X
jaa

ðai; j þ 1Þ

for li with dyadic expansion li ¼
PNi

j¼1 2
ai; j , with ai;1 > � � � > ai;Ni

. Let 1a r;

r 0; qay with 1=rþ 1=r 0 ¼ 1. Dick et al. [8] showed the following bound on

the worst case error (they also showed the results for a digital net with bb 2):

sup
k f ks; a; g; q; ra1

jErrð f ;PÞja es;a; g; r 0 ðPÞ;

with

es;a; g; r 0 ðPÞ ¼
X

q0v�S

Cjvj
a gv

X
kv AP

?
v

2�maðkvÞ

0@ 1Ar 0
0B@

1CA
1=r 0

: ð3Þ

This implies the following inequality of the form (2):

jErrð f ;PÞja k f ks;a; g;q; r � es;a; g; r 0 ðPÞ; ð4Þ
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where

k f ks;a; g;q; r :¼

0B@X
u�S

0@g�q
u

X
v�u

X
tunv A f1;...;a�1gjunvj

ð
½0;1�jvj

ð
½0;1� s�jvj

f ðav; tunv;0ÞðxÞdxSnv

�����
�����
q

dxv

1Ar=q
1CA
1=r

; ð5Þ

with the obvious modifications if q or r is infinite.1 Here ðav; tunv; 0Þ denotes

a vector ðnjÞsj¼1 with nj ¼ a for j A v, nj ¼ tj for j A unv, and nj ¼ 0 for j B u.

And we write f ðn1;...;nsÞ ¼ qn1þ���þns f

qx
n1
1
...qxns

s

.

Based on these bounds on the integration error, Dick constructed ‘inter-

laced digital nets’ to obtain a point set with small integration error [3, 4].

He showed that the worst case error of this type of point sets achieves the

order OðN�aðlog NÞsaÞ in terms of the cardinality N of a point set [4]. This

is known to be optimal up to log terms [23]. In [1, 2, 7, 8, 12, 13], there are

component-by-component (CBC) algorithms to obtain point sets which achieve

the same order. This construction is also based on the bounds of the form (4).

This paper gives a new Koksma-Hlawka type inequality of digital nets to

bound the integration error of smooth functions which improves upon (4) in

some instances. Here we use the following notation:

m 0
aðl1; . . . ; ljvjÞ ¼

Xjvj
i¼1

X
jaa

ðai; j þ 2Þ

for li ¼
PNi

j¼1 2
ai; j instead of Dick’s weight function ma.

Theorem 1. Let a A N [ fyg such that ab 2. Assume that the function

f has continuous mixed partial derivatives up to order a in each variable xi on

½0; 1�s, and 1a p; q; q 0 ay such that 1=qþ 1=q 0 ¼ 1. Then we have

jErrð f ;PÞja k f kBa; g;p;q 0 �Wa; g;qðPÞ;
where

Wa; g;qðPÞ ¼
X

q0v�S

gv
X

kv AP
?
v

2�m 0
aðkvÞ

0@ 1Aq0@ 1A1=q;
k f kBa; g;p;q 0 ¼

X
q0v�S

g�1
v 2jvj=p sup

a 0
v A f1;...;ag

jvj
k f ða 0

vÞkp

 !q 00@ 1A1=q 0

; ð6Þ

1The norm in [8, Definition 3.3] has been corrected in arXiv:1309.4624v3. The correct version is

restated here in Eq. (5).
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and where

k f ða 0
vÞkp ¼

ð
½0;1Þjvj

ð
½0;1Þ s�jvj

f ða 0
v;0ÞðxÞdxSnv

�����
�����
p

dxv

 !1=p
;

with the obvious modifications if either p, q or q 0 is infinite. Here ða 0
v; 0Þ denotes

a sequence ðnjÞj with nj A f1; . . . ; ag for j A v and nj ¼ 0 for j B v and f ðn1;...;nsÞ ¼
qn1þ���þns f

qx
n1
1
...qxns

s

.

This result yields a significant improvement of (4). In particular, this is

crucial when using the bound in a CBC algorithm, since a large constant (as it

appears in [8, Theorem 3.5]) may make it impractical to perform the CBC

construction. For instance, [12, Section 4.1] write that ‘‘The resulting large

values of the worst-case error bounds [referring to the large constants in

[8, Theorem 3.5]] have been found to lead to generating vectors with bad

projections.’’ Additionally, we also include the case a ¼ y which has not been

studied before in the context of digital nets. In [8, Theorem 3.5], the case

a ¼ y is not included since in this case the constant Ca appearing in (4) is

infinite. Furthermore, we can define a modified version of Walsh Figure of

Merit (WAFOM) [19] when we consider this new bound (see [15] for details).

WAFOM is a computable figure of merit to find good quadrature point sets

for QMC rules for integrands with large enough smoothness a (see [15, 16, 19]

for details).

Theorem 1 is based on the estimation of Errð f ;PÞ by ‘(dyadic) Walsh

coe‰cients’. In this paper, we make elaborate works for obtaining bounds

on them. Dyadic Walsh coe‰cients are defined as follows (see [11, 22] for

details).

Definition 1 (Walsh functions and Walsh coe‰cients). Let f : ½0; 1Þs !
R and k ¼ ðk1; . . . ; ksÞ A ðN [ f0gÞs. We define the k-th dyadic Walsh func-

tion walk by

walkðxÞ :¼
Ys
i¼1

ð�1ÞðT jb1 ai; jbi; jÞ;

where for 1a ia s, we write the dyadic expansion of ki by ki ¼
P

jb1 ai; j2
j�1

and xi by xi ¼
P

jb1 bi; j2
�j, where for each i, infinitely many digits bi; j

are 0.

Using Walsh functions, we also define the k-th dyadic Walsh coe‰cient

f̂f ðkÞ as follows:

f̂f ðkÞ :¼
ð
½0;1Þ s

f ðxÞ � walkðxÞdx:
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Using the Walsh coe‰cients f̂f ðkÞ, the integration error Errð f ;PÞ by a

digital net P can be represented as follows [10, Chapter 15]:

Errð f ;PÞ ¼
X

k AP?nf0g
f̂f ðkÞ ¼

X
q0v�S

X
kv AP

?
v

f̂f ðkv; 0Þ:

The proof of Theorem 1 is facilitated by the following improved bound on the

Walsh coe‰cients of smooth functions.

Theorem 2. We assume the same assumptions as in Theorem 1. Let

q0 v � f1; . . . ; sg ¼ S. For kv A Njvj, we have

j f̂f ðkv; 0Þja 2jvj=p � 2�m 0
aðkvÞ � k f ðminða;Nkv ÞÞkp; ð7Þ

where 1a pay and k � kp is the norm defined in Theorem 1. Here we define

the symbol minða;NlÞ ¼ ðminða;N1Þ; . . . ;minða;NjvjÞÞ for l ¼ ðl1; . . . ; ljvjÞ with

dyadic expansion li ¼
PNi

j¼1 2
ai; j .

This inequality follows from the formula for the Walsh coe‰cients by

dyadic di¤erences, which are defined in Section 3.

Now we compare Theorem 2 with [6, Theorem 14] and its higher

dimensional analogue in [8] (both of two papers also showed the results for

b-adic Walsh coe‰cients with bb 2). Our bound (7) includes the case a ¼ y
for the case b ¼ 2 (they treat only the case a is finite). Further (7) is better

than [6, Theorem 14] in some instances. For example, assume that s ¼ 1.

Then for N1 b a, if we multiply our bound by ð5=3Þa�2 our bound is still

smaller than the bound by Dick for any k1 ¼
PN1

j¼1 2
a1; j (see [10, chapter 14]).

If N1 < a it is in general not clear which bound is better. In higher dimen-

sions s > 1, we can also compare our result with the bound in [8, In the proof

of Theorem 3.5]. As in the univariate case, if we multiply our result by cajvj

for some instant c > 1, it is still smaller than the bound in [8, In the proof of

Theorem 3.5].

The remainder of this paper is organized as follows. In Section 2 we

give necessary definitions and their properties. We give the proof of

Theorem 2 in Section 3 using two lemmas, which allows readers to under-

stand the outline of this proof. In Section 4 we show the proofs of lemmas

to complete the proof of Theorem 2. In Section 5, we give the proof of

Theorem 1.

In the following, we denote N [ f0g by N0 and continue to use the

symbol f ðn1;...;nsÞ instead of q n1þ���þns f

qx
n1
1
...qxns

s

for ðniÞsi¼1 A Ns
0. Further we assume that

k A N0 has dyadic expansion with k ¼
PN

j¼1 2
aj where N is some integer and

a1; . . . ; aN A N0 satisfying a1 > � � � > aN . Here we set N ¼ 0, fajg ¼ q for

k ¼ 0.
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2. Preliminaries

In this section, we introduce some operators and functions, and give their

properties.

2.1. Definitions of dyadic di¤erences and important functions. We begin

with the introduction of the dyadic di¤erence qi;n and the weight function

m 0
u.

Definition 2 (dyadic di¤erence). Let s; n; i A N with ia s. For a func-

tion g : ½0; 1Þs ! R, we define the operator ‘dyadic di¤erence’ qi;n by

qi;nðgÞðx1; . . . ; xsÞ :¼
gðx1; . . . ; xi l 2�n; . . . ; xsÞ � gðx1; . . . ; xi; . . . ; xsÞ

2�n
;

where ðx1; . . . ; xsÞ A ½0; 1Þs and we write zl 2�n :¼ zþ 2�nð�1Þzn for z having

dyadic expansion z ¼
Py

j¼1 zj2
�j, where infinitely many digits zj are 0.

Let S ¼ f1; . . . ; sg. Let k ¼ ðk1; . . . ; ksÞ A Ns
0, u ¼ ðu1; . . . ; usÞ A ðN0 [

fygÞs with ki ¼
PNi

j¼1 2
ai; j . For any vector k we define the subset v ¼

fi A S j ki 0 0g. In this paper we use the symbol dk;u to denote the compo-

sition of the operators fqi;ai; jþ1gi A v;1a jaminðNi ;uiÞ.

Remark 1. Since any two dyadic di¤erences commute, dk;u is defined

independent of the order of a composition.

Definition 3 (the new weight function m 0
uðkÞ). We use the same symbols

as in Definition 2. The weight function m 0
uðkÞ of k is defined by

m 0
uðkÞ :¼

X
i A v;1a jaminðNi ;uiÞ

ðai; j þ 2Þ;

and we define m 0
uð0Þ ¼ 0.

For any vector k ¼ ðkiÞsi¼1 we write kv ¼ ðkiÞi A v, where the subset v

appeared in Definition 2. Further, we write k ¼ ðkv; 0Þ. When ui ¼ a A
N [ fyg for every i, m 0

uðkv; 0Þ corresponds with m 0
aðkvÞ, which already appeared

in Theorem 1.

We also need the following two functions wn and WðkÞ. These functions

have important roles in order to prove the main results.

Definition 4. For n A N, we define the function wn : ½0; 1Þ
2 ! R by

wnðx; yÞ :¼
2n if y A ½minðx; xl 2�nÞ;maxðx; xl 2�nÞ�;
0 otherwise;

�
where x; y A ½0; 1Þ.
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Using this, we define the 1-dimensional function WðkÞ : ½0; 1Þ ! R induc-

tively by

Wð0ÞðyÞ :¼ 1;

Wð2n1ÞðyÞ :¼
ð1
0

wn1þ1ðx; yÞdx;

Wð2n1 þ � � � þ 2nNþ1ÞðyÞ :¼
ð1
0

wnNþ1þ1ðx; yÞWð2n1 þ � � � þ 2nN ÞðxÞdx;

where y A ½0; 1Þ and n1; . . . nNþ1 A N0 satisfies n1 > � � � > nNþ1.

The s-dimensional function WðkÞ : ½0; 1Þs ! R for a vector k ¼
ðk1; . . . ; ksÞ A Ns

0 is defined as follows:

WðkÞðyÞ :¼
Ys
i¼1

WðkiÞðyiÞ; y ¼ ðyiÞsi¼1 A ½0; 1Þs:

Remark 2. By this definition, WðkÞ is continuous on ½0; 1Þ for any

k A N0.

2.2. Evaluation of the Lp-norm of WðkÞ. In Section 3, the bounds on the

Walsh coe‰cients in Theorem 2 are deduced by using Hölder’s inequality for

derivatives of f and the function WðkÞ, where we need the Lp-norm of WðkÞ.
In this subsection we give a bound on this value.

2.2.1. Important properties of wn and WðkÞ. We show the important proper-

ties of wn and WðkÞ necessary to calculate kWðkÞkL p .

We first show the following technical lemma in terms of wn.

Lemma 1. Let n A N and c; ĉc A N0 satisfy c; ĉc < 2n�1:

(1) Let x; y A ½0; 2�nþ1Þ, then we have

wnðxþ c2�nþ1; yþ c2�nþ1Þ ¼ wnðx; yÞ:

(2) Let x A ½c2�nþ1; ðcþ 1Þ2�nþ1Þ and y A ½ĉc2�nþ1; ðĉcþ 1Þ2�nþ1Þ with

c0 ĉc. Then we have wnðx; yÞ ¼ 0.

Proof.

(1) We have ðxþ c2�nþ1Þl 2�n ¼ ðxl 2�nÞ þ c2�nþ1: Thus the result

follows from the fact that y A ½minðx; xl 2�nÞ;maxðx; xl 2�nÞ� is

equivalent to

yþ c2�nþ1 A ½minðxþ c2�nþ1; ðxþ c2�nþ1Þl 2�nÞ;

maxðxþ c2�nþ1; ðxþ c2�nþ1Þl 2�nÞ�:
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(2) Let x A ½d2�n; ðd þ 1Þ2�nÞ for d A N0 where d ¼ 2c or 2cþ 1. When

d ¼ 2c, it holds that c2�nþ1 a x < xl 2�n ¼ xþ 2�n < ðcþ 1Þ2�nþ1.

In the case d ¼ 2cþ 1, it holds that c2�nþ1 a xl 2�n ¼ x� 2�n <

x < ðcþ 1Þ2�nþ1: Thus, in both cases, we have

½minðx; xl 2�nÞ;maxðx; xl 2�nÞ� � ½c2�nþ1; ðcþ 1Þ2�nþ1Þ:

Then if y A ½ĉc2�nþ1; ðĉcþ 1Þ2�nþ1Þ with ĉc0 c, we have

y B ½minðx; xl 2�nÞ;maxðx; xl 2�nÞ�;

which implies wnðx; yÞ ¼ 0. r

In the next Lemma, we rewrite wnðx; yÞ using a characteristic function of x

for a fixed y.

Lemma 2. Let y A ½0; 1Þ, n A N and c A N0 satisfy y A ½2�nc; 2�nðcþ 1ÞÞ.
If c ¼ 2c 0 for some integer c 0, we have

wnðx; yÞ ¼
2n if x A ½2�nc; y� [ ½2�nðcþ 1Þ; yþ 2�n�;
0 otherwise:

�
And if c ¼ 2c 0 þ 1 for some integer c 0, we have

wnðx; yÞ ¼
2n if x A ½y� 2�n; 2�ncÞ [ ½y; 2�nðcþ 1ÞÞ;
0 otherwise:

�
Proof. We only prove the case c ¼ 2c 0 here since the case c ¼ 2c 0 þ 1

follows from the same argument. In this case, by Item 2 of Lemma 1, we

have that for all y A ½2�nþ1c 0; 2�nþ1ðc 0 þ 1ÞÞ,

wnðx; yÞ ¼ 0; x B ½2�nþ1c 0; 2�nþ1ðc 0 þ 1ÞÞ: ð8Þ

Let x A ½0; 1Þ and d A N0 satisfy x A ½2�nd; 2�nðd þ 1ÞÞ. We calculate wnðx; yÞ
in the three cases: d B f2c 0; 2c 0 þ 1g, d ¼ 2c 0 and d ¼ 2c 0 þ 1.

We consider the case d B f2c 0; 2c 0 þ 1g. By Condition (8), we have

wnðx; yÞ ¼ 0; x A ½2�nd; 2�nðd þ 1ÞÞ:

In the case d ¼ 2c 0, that is, x A ½2�nþ1c 0; 2�nð2c 0 þ 1ÞÞ, since xl 2�n ¼
xþ 2�n, the fact that wnðx; yÞ ¼ 2n is equivalent to

xa ya xþ 2�n; 2�nþ1c 0 a y < 2�nð2c 0 þ 1Þ:

So we have

wnðx; yÞ ¼
2n if x A ½2�nþ1c 0; y�;
0 if x A ðy; 2�nð2c 0 þ 1ÞÞ:

�
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When d ¼ 2c 0 þ 1, by a similar argument to the case d ¼ 2c 0, we have

wnðx; yÞ ¼
2n if x A ½2�nð2c 0 þ 1Þ; yþ 2�n�;
0 if x A ðyþ 2�n; 2�nð2c 0 þ 2ÞÞ:

�
By combining these cases, we have the result. r

In the last lemma, we show that the function WðkÞ is periodic.

Lemma 3. We have that WðkÞ is a periodic function with period 2�aN for a

positive integer k ¼
PN

i¼1 2
ai :

Proof. We proceed by induction on N. We prove the result for k ¼ 2a1 .

Let c A N0 satisfy c < 2a1 : We have that for y A ½0; 2�a1Þ,

Wð2a1Þðyþ c2�a1Þ ¼
ð1
0

wa1þ1ðx; yþ c2�a1Þdx

¼
ð ðcþ1Þ2�a1

c2�a1

wa1þ1ðx; yþ c2�a1Þdx

¼
ð2�a1

0

wa1þ1ðzþ c2�a1 ; yþ c2�a1Þdz

¼
ð2�a1

0

wa1þ1ðz; yÞdz ¼
ð1
0

wa1þ1ðz; yÞdz ¼ Wð2a1ÞðyÞ:

The second and fifth equalities follow from Item 2 of Lemma 1, the forth

equality follows from Item 1 of Lemma 1, and we use the change of variables

x ¼ zþ c2�a1 in the third equality.

Now we assume that the lemma holds for any kN ¼
PN

i¼1 2
ai . Then we

prove the result for the case k ¼ kN þ 2aNþ1 satisfying aNþ1 < aN . Let c A N0

satisfy c < 2aNþ1 . Then we have that for y A ½0; 2�aNþ1Þ,

WðkN þ 2aNþ1Þðyþ c2�aNþ1Þ

¼
ð1
0

waNþ1þ1ðx; yþ c2�aNþ1Þ �WðkNÞðxÞdx

¼
ð ðcþ1Þ2�aNþ1

c2�aNþ1

waNþ1þ1ðx; yþ c2�aNþ1Þ �WðkNÞðxÞdx

¼
ð2�aNþ1

0

waNþ1þ1ðzþ c2�aNþ1 ; yþ c2�aNþ1Þ �WðkNÞðzþ c2�aNþ1Þdz:

The second equality follows from Item 2 of Lemma 1, and we use the change

of variables x ¼ zþ c2�aNþ1 in the last equality. By the induction assumption
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and the fact aNþ1 < aN , we have that WðkNÞðzþ d2�aNþ1Þ ¼ WðkNÞðzÞ for

z A ½0; 2�aNþ1Þ and an integer d satisfying 0a d < 2aNþ1 . Thus we obtain

WðkN þ 2aNþ1Þðyþ c2�aNþ1Þ

¼
ð2�aNþ1

0

waNþ1þ1ðzþ c2�aNþ1 ; yþ c2�aNþ1Þ �WðkNÞðzÞdz:

Then we continue the computation as follows:

WðkN þ 2aNþ1Þðyþ c2�aNþ1Þ ¼
ð2�aNþ1

0

waNþ1þ1ðz; yÞ �WðkNÞðzÞdz

¼
ð1
0

waNþ1þ1ðz; yÞ �WðkNÞðzÞdz

¼ WðkN þ 2aNþ1ÞðyÞ:

The first equality follows from Item 1 of Lemma 1 and the second equality

follows from Item 2 of Lemma 1. r

2.2.2. Bound on the Lp norm of the function WðkÞ. Now we prove the

following bound on kWðkÞkL p using the properties of WðkÞ we proved

above.

Lemma 4. Let k A N. We have that WðkÞðxÞb 0 for any x A ½0; 1Þ and,

for 1a pay, we have

kWðkÞkL p a 21�1=p:

Proof. By the definition of wn, it holds that

wnðx; yÞb 0; x; y A ½0; 1Þ: ð9Þ

By using this, we can show that

WðkÞðxÞb 0; x A ½0; 1Þ; k A N ð10Þ

by induction, which is easy. We omit the proof here. We use this result to

prove the second statement.

Using Hölder’s inequality, we have for 1a p < y,

kWðkÞkp
L p ¼

ð1
0

jWðkÞðxÞj � jWðkÞðxÞp�1jdxa kWðkÞkL1kWðkÞkp�1
Ly :

Thus we have

kWðkÞkL p a kWðkÞk1=p
L1 kWðkÞk1�1=p

Ly :
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Then if we have kWðkÞkL1 ¼ 1 and kWðkÞkLy ¼ 2, we have

kWðkÞkL p a kWðkÞk1=p
L1 kWðkÞk1�1=p

Ly ¼ 2ð1�1=pÞ:

Therefore we need to prove that kWðkÞkL1 ¼ 1 and kWðkÞkLy ¼ 2 for any

k A N to complete the proof.

We prove the case k ¼
PN

i¼1 2
ai by induction on N. In the case k ¼ 2a1 ,

we have

kWð2a1ÞkL1 ¼
ð1
0

ð1
0

wa1þ1ðx; yÞdydx

¼
ð1
0

ðmaxðx;xl2�a1�1Þ

minðx;xl2�a1�1Þ
2a1þ1 dydx ¼ 1:

The first equality follows from Condition (9). We prove kWð2a1ÞkLy ¼ 2 to

complete the case k ¼ 2a1 . By Lemma 3, we have

kWð2a1ÞkLy ¼ sup
y A ½0;1Þ

jWð2a1ÞðyÞj ¼ sup
y A ½0;2�a1 Þ

jWð2a1ÞðyÞj:

By Condition (9), we have

kWð2a1ÞkLy ¼ sup
y A ½0;2�a1 Þ

ð1
0

wa1þ1ðx; yÞdx

¼ max sup
y A ½0;2�a1�1Þ

ð1
0

wa1þ1ðx; yÞdx; sup
y A ½2�a1�1;2�a1 Þ

ð 1
0

wa1þ1ðx; yÞdx
 !

:

We calculate the supremum on ½0; 2�a1�1Þ and ½2�a1�1; 2�a1Þ separately. We

assume that y A ½0; 2�a1�1Þ. By Lemma 2, we haveð1
0

wa1þ1ðx; yÞdx ¼
ð y
0

2a1þ1 dxþ
ð2�a1�1þy

2�a1�1

2a1þ1 dx:

If we choose y ¼ 2�a1�1, we can maximize the right hand side. Hence we

obtain

sup
y A ½0;2�a1�1Þ

ð1
0

wa1þ1ðx; yÞdx ¼
ð2�a1

0

2a1þ1 dx1 ¼ 2:

By the same argument we get the same result in the case y A ½2�a1�1; 2�a1Þ.
We omit the details. Therefore we have kWð2a1ÞkLy ¼ 2.

Here we assume that kWðkNÞkL1 ¼ 1 and kWðkNÞkLy ¼ 2 for kN ¼PN
i¼1 2

ai . Then we prove that for the case k ¼ kN þ 2aNþ1 with aN > aNþ1:
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kWðkN þ 2aNþ1ÞkL1 ¼ 1 and kWðkN þ 2aNþ1ÞkLy ¼ 2. By Condition (10) and

Fubini’s Theorem, we have

kWðkN þ 2aNþ1ÞkL1 ¼
ð1
0

ð 1
0

waNþ1þ1ðx; yÞWðkNÞðxÞdxdy ¼
ð1
0

WðkNÞðxÞdx:

By Condition (10) and the assumption on kN , we obtain

kWðkN þ 2aNþ1ÞkL1 ¼
ð 1
0

WðkNÞðxÞdx ¼ kWðkNÞkL1 ¼ 1:

We also prove kWðkN þ 2aNþ1ÞkLy ¼ 2 as follows. By Condition (10) and

Lemma 3, we have

kWðkN þ 2aNþ1ÞkLy ¼ sup
y A ½0;2�aNþ1 Þ

WðkN þ 2aNþ1ÞðyÞ

¼ max

 
sup

y A ½0;2�aNþ1�1Þ

ð1
0

waNþ1þ1ðx; yÞWðkNÞðxÞdx;

sup
y A ½2�aNþ1�1;2�aNþ1 Þ

ð1
0

waNþ1þ1ðx; yÞWðkNÞðxÞdx
!
:

By Lemma 2 and Condition (10), we can calculate the supremum as in the case

k ¼ 2a1 :

supy A ½0;2�aNþ1�1Þ
Ð 1
0 waNþ1þ1ðx; yÞWðkNÞðxÞdx

supy A ½2�aNþ1�1;2�aNþ1 Þ
Ð 1
0 waNþ1þ1ðx; yÞWðkNÞðxÞdx

)
¼
ð 2�aNþ1

0

2aNþ1þ1WðkNÞðxÞdx:

Then we obtain

kWðkN þ 2aNþ1ÞkLy ¼
ð2�aNþ1

0

2aNþ1þ1WðkNÞðxÞdx

¼ 2aNþ1þ1
X2aN�aNþ1�1

i¼0

ð ðiþ1Þ2�aN

i2�aN

WðkNÞðxÞdx

¼ 2aNþ1þ1
X2aN�aNþ1�1

i¼0

ð2�aN

0

WðkNÞðxÞdx

¼ 2aNþ1 �
ð 2�aN

0

WðkNÞðxÞdx:

The third equality follows from Lemma 3. Thus we have
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kWðkN þ 2aNþ1ÞkLy ¼ 2aNþ1 �
ð2�aN

0

WðkNÞðxÞdx

¼ 2
X2 aN�1

i¼0

ð ðiþ1Þ2�aN

i2�aN

WðkNÞðxÞdx

¼ 2 �
ð1
0

WðkNÞðxÞdx;

where the second equality follows from Lemma 3. By the assumption on kN
and Condition (10), it follows thatð1

0

WðkNÞðxÞdx ¼ kWðkNÞkL1 ¼ 1

and hence we obtain

kWðkN þ 2aNþ1ÞkLy ¼ 2 � kWðkNÞkL1 ¼ 2: r

3. Bounds on the Walsh coe‰cients by derivatives

In this section, we show the bounds on the Walsh coe‰cients f̂f ðkÞ in

Theorem 2 using the following Lemmas 5 and 6, which we prove in the next

section. Lemma 5 gives the formula relating f̂f ðkÞ to dyadic di¤erences qi;n f .

Via this lemma, we can obtain the formula relating f̂f ðkÞ to derivatives qf
qxi

in Lemma 6. The bounds on the Walsh coe‰cients f̂f ðkÞ in Theorem 2 are

deduced by this formula.

We define the symbols used in the statements.

Definition 5. We use the same symbols as in Definition 2. For k and u,

we define

kui
i;> :¼

P
j>ui

2ai; j if i A v;

0 if i A Snv;

�
kui
i;a :¼

P
jaui

2ai; j if i A v;

0 if i A Snv;

�
and

ku
> :¼ ðkui

i;>Þi AS; ku
a :¼ ðkui

i;aÞi AS;

ku
v> :¼ ðkui

i;>Þi A v; ku
va :¼ ðkui

i;aÞi A v;

minðu;NkÞ :¼ ðminðui;NiÞÞi AS; minðu;NkvÞ :¼ ðminðui;NiÞÞi A v;

jminðu;NkÞjl 1 :¼
X
i AS

minðui;NiÞ:
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When we analyze Walsh coe‰cients, it is suitable to use dyadic di¤erences.

In fact, the k-th Walsh coe‰cient f̂f ðkÞ can be represented by qi;n f as follows:

Lemma 5. Let f A L1ð½0; 1ÞsÞ, k A Ns
0 and u A ðN0 [ fygÞs. Then we

have dk;u f A L1ð½0; 1ÞsÞ and the formula:

f̂f ðkÞ ¼ ð�1Þjminðu;NkÞjl 1 2�m 0
uðkÞ ddk;u fdk;u f ðkÞ: ð11Þ

Notice that dk;u is the symbol introduced in Definition 2.

Formula (11) means that dyadic di¤erences connect the k-th Walsh

coe‰cient f̂f ðkÞ to the weight function m 0
uðkÞ for f A L1ð½0; 1ÞsÞ.

Dyadic di¤erences qi;n f are similar to derivatives qf
qxi

. Using the assump-

tion that f has continuous partial mixed derivatives, we can continue to

compute the right hand side in this formula to change qi;n f into qf
qxi

.

Lemma 6. We write u ¼ ðu1; . . . ; usÞ A ðN0 [ fygÞs. We assume that a

function f satisfies that its mixed partial derivatives up to order ui in each

variable xi are continuous on ½0; 1�s: Then for any vector k A Ns
0, we have

f̂f ðkÞ ¼ ð�1Þjminðu;NkÞjl 1 2�m 0
uðkÞ
ð
½0;1Þ s

f ðminðu;NkÞÞðxÞ �Wðku
aÞðxÞ � walku

>
ðxÞdx:

Then we can get the following bound on j f̂f ðkÞj which is a little more

general than Theorem 2:

Lemma 7. We assume the same assumptions as in Lemma 6. Then we

have

j f̂f ðkÞja 2jvj=p � 2�m 0
uðkÞ � k f ðminðu;Nkv ÞÞkp < y;

where 1a pay and k � kp is the norm defined in Theorem 1.

Proof. For k A N s
0, the i-th component of ku

a equals 0 for i B v. Since

Wð0ÞðxÞ ¼ 1 and wal0ðxÞ ¼ 1 for any x A ½0; 1Þ, we have for x ¼ ðxiÞsi¼1 A
½0; 1Þs,

Wðku
aÞðxÞ ¼

Ys
i¼1

Wðkui
i;aÞðxiÞ ¼

Y
i A v

Wðkui
i;aÞðxiÞ ¼ Wðku

vaÞðxvÞ

and

walku
a
ðxÞ ¼

Ys
i¼1

walk ui
i;a
ðxiÞ ¼

Y
i A v

walk ui
i;a
ðxiÞ ¼ walku

va
ðxvÞ;

where we write xv ¼ ðxiÞi A v. Combining those facts with Lemma 6, we have
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j f̂f ðkÞja 2�m 0
uðkÞ

ð
½0;1Þ s

f ðminðu;NkÞÞðxÞ �Wðku
aÞðxÞ � walku

>
ðxÞdx

�����
�����

¼ 2�m 0
uðkÞ

�����
ð
½0;1Þjvj

ð
½0;1ÞjSnvj

f ðminðu;NkÞÞðxÞdxSnv

 !

�Wðku
vaÞðxvÞ � walku

v>
ðxvÞdxv

�����:
By the definition of the Walsh functions, it holds that jwalku

v>
ðxvÞj ¼ 1 for any

xv A ½0; 1Þjvj. Then we have

j f̂f ðkÞja 2�m 0
uðkÞ
ð
½0;1Þjvj

ð
½0;1ÞjSnvj

f ðminðu;NkÞÞðxÞdxSnv

�����
����� � jWðku

vaÞðxvÞjdxv

a 2�m 0
uðkÞk f ðminðu;Nkv ÞÞkp � kWðku

vaÞkL p=ð p�1Þ ;

where we used Hölder’s inequality in the second inequality. By Lemma 4, we

have

kWðku
vaÞkL p=ð p�1Þ ¼

Y
i A v

kWðkui
iaÞkL p=ð p�1Þ a 2jvj=p:

Thus we obtain the result. r

As we mention in Definition 3, when ui ¼ a A N [ fyg for every i,

m 0
uðkÞ ¼ m 0

uðkv; 0Þ ¼ m 0
aðkvÞ. Then Theorem 2 follows from this lemma as a

corollary.

In the following section, we will prove Lemma 5 and 6. From now, we

denote by
Qn

i¼1 ji the composition of operators j1 � � � � � jn.

4. Formulas on the Walsh coe‰cients

Here we prove the formulas on the Walsh coe‰cients f̂f ðkÞ in Lemmas

5 and 6. In order to proceed with the proof, we introduce the following

symbols:

Definition 6. We use the same notation as in Definition 2. Let

p ¼ ðpiÞi A v, q ¼ ðqiÞi A v A Njvj with 1a pi a qi aNi. For given k A N s
0, we

use the following symbols in the proofs below

dq
p :¼

Y
i A v;pia jaqi

qi;ai; jþ1;
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where the product means the composition of operators. Notice that, for

a function f , dk;u f is written as dq
p f where p ¼ ð1; . . . ; 1Þ and q ¼

ðminðNi; uiÞÞi A v.

4.1. Formula relating the Walsh coe‰cients to the dyadic di¤erences. We

prove the formula in Lemma 5, which represents the relationship between the

Walsh coe‰cients f̂f ðkÞ and the dyadic di¤erences qi;n f .

Proof. We prove only the case s ¼ 1 here. In the case s > 1, we obtain

the result by applying the same method in a component-wise fashion.

We easily obtain the first statement as follows. Let k1 ¼
PN1

j¼1 2
aj . Since

q1;ajþ1 f is the sum of f ð�l 2�aj�1Þ A L1ð½0; 1ÞÞ and f A L1ð½0; 1ÞÞ, we have

q1;ajþ1 f A L1ð½0; 1ÞÞ. By repeating this argument, we have dk1;u1 f A L1ð½0; 1ÞÞ.
We show the second statement inductively. We omit the case k1 ¼ 0 or

u1 ¼ 0 since the proof is easy. We show the case u1 ¼ 1:

f̂f ðk1Þ ¼ ð�1Þ � 2�aj�2 � dq1;ajþ1 fq1;ajþ1 f ðk1Þ; ð12Þ

where k1 ¼
PN1

j¼1 2
aj . By changing variables x1 7! x1 l 2�aj�1, we haveð1

0

f ðx1 l 2�aj�1Þ � walk1ðx1Þdx1

¼
X2 aj�1

c¼0

 ð2�aj�1�ð2cþ1Þ

2�aj�1�2c
f ðx1 þ 2�aj�1Þ � walk1ðx1Þdx1

þ
ð2�aj�1�ð2cþ2Þ

2�aj�1�ð2cþ1Þ
f ðx1 � 2�aj�1Þ � walk1ðx1Þdx1

!

¼
X2 aj�1

c¼0

 ð2�aj�1�ð2cþ2Þ

2�aj�1�ð2cþ1Þ
f ðx1Þ � walk1ðx1 � 2�aj�1Þdx1

þ
ð2�aj�1�ð2cþ1Þ

2�aj�1�2c
f ðx1Þ � walk1ðx1 þ 2�aj�1Þdx1

!

¼
ð1
0

f ðx1Þ � walk1ðx1 l 2�aj�1Þdx1

¼
ð1
0

f ðx1Þ � walk1ðx1Þ � walk1ð2�aj�1Þdx1

¼ �
ð1
0

f ðx1Þ � walk1ðx1Þdx1;
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where the last three identities follow from the definition of the Walsh functions.

Using this calculation, we obtain

dq1;ajþ1 fq1;ajþ1 f ðk1Þ ¼ �2 � 2ajþ1 �
ð1
0

f ðx1Þ � walk1ðx1Þdx1 ¼ ð�1Þ � 2ajþ2 � f̂f ðk1Þ:

We write U ¼ minðu1;N1Þ. Using (12) inductively, we obtain

ddk1;u1 fdk1;u1 f ðk1Þ ¼ ddU
1 fdU
1 f ðk1Þ ¼ ð�1Þ � 2a1þ2 � ddU

2 fdU
2 f ðk1Þ

¼ ð�1Þ2 � 2T
2
j¼1ðajþ2Þ � ddU

3 fdU
3 f ðk1Þ ¼ � � � ¼ ð�1ÞU � 2m 0

u1
ðk1Þ � f̂f ðk1Þ;

which is the result. Notice that dq
p for 1a pa q is one dimensional version

introduced in Definition 6. r

4.2. Formula relating the Walsh coe‰cients to derivatives. In this subsection

we prove the formula in Lemma 6, which represents the relationship between

the Walsh coe‰cients f̂f ðkÞ and the derivatives qf
qxi

. This is done by unveiling

the relationship between derivatives and dyadic di¤erences.

To proceed with the following proofs, we define some symbols.

Definition 7. We use the same symbols as in Definition 2 and 6. We

define the following functions

wi;nðx1; . . . ; xsÞ :¼ wal2 n�1ðxiÞ; ðx1; . . . ; xsÞ A ½0; 1Þs;

wq
p ðx1; . . . ; xsÞ :¼

Y
i A v;pia jaqi

wi;ai; jþ1ðx1; . . . ; xsÞ; ðx1; . . . ; xsÞ A ½0; 1Þs;

where the product means the multiplication of function values. Notice that,

using this notation, we can rewrite the k-th Walsh function as follows:

walk ¼ w
ðNiÞi A v
ð1;...;1Þ.

Further we define the following operators

wqi;nðgÞ :¼ wi;n � qi;nðgÞ for g : ½0; 1Þ s ! R;

wdq
p :¼

Y
i A v;pia jaqi

wqi;ai; jþ1;

where wi;n � qi;nðgÞ means the product as a function and the product symbol in

the second line means the composition of operators.

4.2.1. Important properties of dyadic di¤erences. In order to prove Lemma 6,

we show some properties of dyadic di¤erences qi;n. We first show that the

function wj;m and the operator qi;n commute.
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Lemma 8. When ði; nÞ0 ð j;mÞ A N2, for a function g : ½0; 1Þs ! R, we

have the following identity as a function on ½0; 1Þs:

wj;m � qi;nðgÞ ¼ qi;nðg � wj;mÞ:

Proof. We omit the proof here since it is easy. r

Next we prove that wdq
p is an operator on L1ð½0; 1ÞsÞ.

Lemma 9. We use the same symbols as in the above definition. For a

function g A L1ð½0; 1ÞsÞ, we have wdq
pg A L1ð½0; 1ÞsÞ.

Proof. By the above lemma, we have that wdq
pg equals wq

p � dq
pg as

a function on ½0; 1Þs. By the definition of the Walsh functions, we see

jwq
p ðxÞj ¼ 1 for x A ½0; 1Þs. Since dq

pg is the sum of the functions in

L1ð½0; 1ÞsÞ as in the proof of Lemma 5, we have dq
pg A L1ð½0; 1ÞsÞ. Thus

the product wdq
pgð¼ wq

p � dq
pgÞ is in L1ð½0; 1ÞsÞ. r

The following Lemma is the key to proving Lemma 6, which replaces

wqi;nðgÞ with the derivative qg
qxi

.

Lemma 10. Let n; s; i A N satisfy sb i. Let g : ½0; 1�s ! R, as a function

of the ith component xi, satisfy

g A C1ð½2�nþ1c; 2�nþ1ðcþ 1ÞÞÞ; c ¼ 0; . . . ; 2n�1 � 1: ð13Þ

Then for any z ¼ ðz1; . . . ; zsÞ A ½0; 1Þs, we have

ðwqi;nðgÞÞðzÞ ¼
ð1
0

qg

qxi
ðz1; . . . ; zi�1; y; ziþ1; . . . ; zsÞ � wnðzi; yÞdy:

Notice that, since
qg
qxi

is defined on the support of wnðzi; yÞ, this integrand is

defined for y A ½0; 1Þ.

Proof. Let c 0 A N0 satisfy zi A ½2�nc 0; 2�nðc 0 þ 1ÞÞ. We consider the two

cases: c 0 ¼ 2c and c 0 ¼ 2cþ 1 for some integer c. We only calculate the case

c 0 ¼ 2c since the other case can be calculated in the same way. In this case, by

the fact wi;nðzÞ ¼ 1 for zi A ½2�nc 0; 2�nðc 0 þ 1ÞÞ and Assumption (13), we have

ðwqi;nðgÞÞðzÞ ¼ wi;nðzÞ � ðqi;nðgÞÞðzÞ

¼ 1 � 2n � ðgðz1; . . . ; zi þ 2�n; . . . ; zsÞ � gðz1; . . . ; zsÞÞ

¼
ð ziþ2�n

zi

2n � qg
qxi

ðz1; . . . ; zi�1; y; ziþ1; . . . ; zsÞdy

¼
ð1
0

qg

qxi
ðz1; . . . ; zi�1; y; ziþ1; . . . ; zsÞ � wnðzi; yÞdy:
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The last equality follows from ½zi; zi þ 2�n� ¼ ½minðzi; zi l 2�nÞ;maxðzi; zi l
2�nÞ� and the definition of wn. r

4.2.2. Proof of Lemma 6. Now we prove Lemma 6 using the lemmas above

and Lemma 5.

Proof. We prove the case s ¼ 1. We omit the case k1 ¼ 0 or u1 ¼ 0

since the proof is easy. We write k1 ¼
PN

j¼1 2
aj and U ¼ minðu1;NÞ here.

We assume that u1 b 1, then we calculate ddk1;u1 fdk1;u1 f ðk1Þ as follows:

ddk1;u1 fdk1;u1 f ðk1Þ ¼ ddU
1 fdU
1 f ðk1Þ ¼

ð1
0

ðdU
1 f Þðx1Þ � wN

1 ðx1Þdx1

¼
ð1
0

wdU
1 ð f � wN

Uþ1Þðx1Þdx1;

where we used Lemma 8 in the third equality. Notice that dq
p is one dimen-

sional version defined in Definition 6 and wq
p , wd

q
p are one dimensional versions

introduced in Definition 7, where 1a pa q. Using the assumption on f and

the definition of the Walsh functions, we have that

f � wN
Uþ1 A Cu1ð½2�aUþ1�1c; 2�aUþ1�1ðcþ 1ÞÞÞ;

and we have

d

dx1
ð f � wN

Uþ1Þ ¼
df

dx1
� wN

Uþ1

� �
on ½2�aUþ1�1c; 2�aUþ1�1ðcþ 1ÞÞ;

with 0a ca 2aUþ1þ1 � 1.

Let nb 1 and 0a c 0 < 2n be integers. By the definition of wq1;n, we

have that, if g A C1ð½c 02�n; ðc 0 þ 1Þ2�nÞÞ, it holds that wq1;ng A C1ð½c 02�n;

ðc 0 þ 1Þ2�nÞÞ and d
dx1

ðwq1;ngÞ ¼ wq1;n
dg
dx1

� �
on ½c 02�n; ðc 0 þ 1Þ2�nÞ.

Since 2�aUþ1 > 2�aU , if we take g ¼ f � wN
Uþ1 and n ¼ aU þ 1 here, we have

d

dx1
ðwq1;aUþ1ð f � wN

Uþ1ÞÞ ¼ wq1;aUþ1
df

dx1
� wN

Uþ1

� �
on ½c2�aU�1; ðcþ 1Þ2�aU�1Þ;

where 0a ca 2aUþ1 � 1. Applying this argument inductively, we have

d

dx1
ðwdU

2 ð f � wN
Uþ1ÞÞ ¼ wdU

2

df

dx1
� wN

Uþ1

� �
on ½c2�a2�1; ðcþ 1Þ2�a2�1Þ;

where 0a ca 2a2þ1 � 1. Since 2�a2�1 b 2�a1 , we can take n ¼ a1 þ 1 and

g ¼ wdU
2 ð f � wN

Uþ1Þ in Lemma 10. Then we continue the computation of
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ddk1;u1 fdk1;u1 f ðk1Þ as follows:

ddk1;u1 fdk1;u1 f ðk1Þ ¼
ð1
0

wq1;a1þ1ðwdU
2 ð f � wN

Uþ1ÞÞðx1Þdx1

¼
ð1
0

ð1
0

wa1þ1ðx1; yÞ � wdU
2

df

dy
� wN

Uþ1

� �
ðyÞdy

� �
dx1:

By the definition of the Walsh functions, we have that wN
Uþ1 A L1ð½0; 1ÞÞ.

Using this fact and the assumption on f , we have df
dx1

� wN
Uþ1 A L1ð½0; 1ÞÞ.

Therefore if we take g ¼ df
dx1

� wN
Uþ1 in Lemma 9 and consider the fact that

jwa1þ1ðx1; yÞja 2a1þ1 for any x1; y A ½0; 1Þ, we see that the integrand wa1þ1 �
wdU

2
df

dx1
� wN

Uþ1

� �
in the last line is in L1ð½0; 1Þ2Þ. Thus we can use Fubini’s

Theorem as follows:

ddk1;u1 fdk1;u1 f ðk1Þ ¼
ð1
0

ð1
0

wa1þ1ðx1; yÞdx1
� �

� wdU
2

df

dy
� wN

Uþ1

� �
ðyÞdy

¼
ð1
0

wdU
2

df

dy
� wN

Uþ1

� �
ðyÞ �Wð2a1ÞðyÞdy

¼
ð1
0

wdU
2

df

dx1
� wN

Uþ1

� �
ðx1Þ �Wð2a1Þðx1Þdx1:

By repeating the argument we have

ddk1;u1 fdk1;u1 f ðk1Þ ¼
ð1
0

wq1;a2þ1 wdU
3

df

dx1
� wN

Uþ1

� �� �
ðx1Þ �Wð2a1Þðx1Þdx1

¼
ð1
0

ð 1
0

wa2þ1ðx1; yÞ � wdU
3

d 2f

d 2y
� wN

Uþ1

� �
ðyÞdy

� �
�Wð2a1Þðx1Þdx1

¼
ð1
0

ð 1
0

wa2þ1ðx1; yÞ �Wð2a1Þðx1Þdx1
� �

� wdU
3

d 2f

dy2
� wN

Uþ1

� �
ðyÞdy

¼
ð1
0

wdU
3

d 2f

dy2
� wN

Uþ1

� �
ðyÞ �Wð2a1 þ 2a2ÞðyÞdy

¼
ð1
0

wdU
3

d 2f

dx2
1

� wN
Uþ1

� �
ðx1Þ �Wð2a1 þ 2a2Þðx1Þdx1

¼ � � �

¼
ð1
0

dUf

dxU
1

� wN
Uþ1

� �
ðx1Þ �Wðku1

1;aÞðx1Þdx1:
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Combining Lemma 5 we have the result for s ¼ 1. By calculating in a

component-wise manner, we have the result for the case sb 1. We omit

that case here. r

In fact, we can determine the sign of f̂f ðkÞ for a special case.

Corollary 1. Let f A Cyð½0; 1�sÞ and k A Ns
0. We use the symbol Ni

appearing in Definition 2. Then if f ðN1;...;NsÞðxÞb 0 for every x A ½0; 1Þs, we

have f̂f ðkÞ � ð�1ÞT
s

i¼1 Ni b 0.

Proof. By Lemma 4 and the fact Wð0ÞðxÞ ¼ 1 for any x A ½0; 1Þ, we have

that WðkÞðxÞ ¼
Qs

i¼1 WðkiÞðxiÞb 0 for any x ¼ ðxiÞsi¼1 A ½0; 1Þs. By combin-

ing this fact and the assumption on f ðN1;...;NsÞ, we have that the product

f ðN1;...;NsÞ �WðkÞ is positive over ½0; 1Þs. Thus, by Lemma 6 with ui ¼ y we

have

f̂f ðkÞ � ð�1ÞT
s

i¼1 Ni ¼ 2�m 0
yðkÞ �

ð
½0;1Þ s

f ðN1;...;NsÞðxÞ �WðkÞðxÞdxb 0;

which is the result. r

5. Koksma-Hlawka inequality for smooth functions

In this section, we prove the Koksma-Hlawka type inequalities for smooth

functions in Theorem 1, which show the bounds on the QMC integration error.

We first show that under the assumptions in Theorem 1 we have f ðxÞ ¼P
k AN s

0
f̂f ðkÞ walkðxÞ for every x A ½0; 1Þs. To do so, we use [14, Lemma 18].

This lemma states that if f is continuous on ½0; 1�s and
P

k AN s
0
j f̂f ðkÞj < y

then

f ðxÞ ¼
X
k AN s

0

f̂f ðkÞ walkðxÞ ð14Þ

for every x A ½0; 1Þs. We now show that f is continuous on ½0; 1�s andP
k AN s

0
j f̂f ðkÞj < y.

The condition that f is continuous on ½0; 1�s follows from the assumption

on f . We confirm that
P

k AN s
0
j f̂f ðkÞj < y in the following way. If we apply

Theorem 2 for a ¼ 2, we haveX
k AN s

0nf0g
j f̂f ðkÞj ¼

X
q0v�S

X
kv ANjvj

j f̂f ðkv; 0Þj

a
X

q0v�S

X
kv ANjvj

2jvj=p2�m 0
2
ðkvÞk f ðminð2;Nkv ÞÞkp
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a
X

q0v�S

X
kv ANjvj

2jvj=p2�m 0
2
ðkvÞ max

n A f1;2gjvj
k f ðnÞkp

a 2s=p max
n 0 A f0;1;2g s

k f ðn 0ÞkL p

X
q0v�S

X
kv ANjvj

2�m 0
2
ðkvÞ:

Note that the Lp-norm k f kL p :¼ ð
Ð
½0;1Þ s j f ðxÞj

p
dxÞ1=p is di¤erent from the norm

k f kp defined in Section 1. Thus we haveX
k AN s

0

j f̂f ðkÞj ¼ j f̂f ð0Þj þ
X

k AN s
0nf0g

j f̂f ðkÞj

a 2s=p max
n 0 A f0;1;2g s

k f ðn 0ÞkL p 1þ
X

q0v�S

X
kv ANjvj

2�m 0
2
ðkvÞ

0@ 1A:

Since maxn 0 A f0;1;2g sk f ðn 0ÞkL p < y holds by the assumption on f , we have

only to show the last summation is finite. We prove this in the following

way:

1þ
X

q0v�S

X
kv ANjvj

2�m 0
2
ðkvÞ ¼ 1þ

X
k AN

2�m 0
2
ðkÞ

 !s

¼ 1þ
X
l AN0

2�l�2 þ
X

l1; l2 AN0; l1<l2

X
k AN0;k<2 l1

2�l1�l2�4

0@ 1As

¼ 3

2
þ
X
l2 AN0

l22
�l2�4

 !s

a
3

2
þ 2�4 �

X
l2 AN0

3

4

� �l2 !s
< y:

Thus we apply Formula (14) to f to get

jErrð f ;PÞj ¼
ð
½0;1Þ s

f ðxÞdx� 1

jPj
X
x AP

f ðxÞ
�����

�����¼ f̂f ð0Þ � 1

jPj
X
x AP

X
k AN s

0

f̂f ðkÞ walkðxÞ

������
������:

Now we introduce the character property of the Walsh functions. Let P be

a digital net in ½0; 1Þs where jPj ¼ 2m. Then we have (see [10, Lemma 4.75])X
x AP

walkðxÞ ¼ 2m if k A P?;

0 otherwise:

�
Using this fact, we have

jErrð f ;PÞj ¼ f̂f ð0Þ �
X
x AP?

f̂f ðkÞ
�����

�����a X
x AP?nf0g

j f̂f ðkÞj ¼
X

q0v�S

X
kv AP

?
v

j f̂f ðkv; 0Þj:
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Let a A N [ fyg with ab 2 and 1a p; q; q 0 ay such that 1=qþ 1=q 0 ¼ 1.

Applying Theorem 2 to f , we have

jErrð f ;PÞja
X
v

X
kv AP

?
v

2jvj=p2�m 0
aðkvÞk f ðminða;Nkv ÞÞkp

a
X
v

g�1
v 2jvj=p sup

av A f1;...;agjvj
k f ðavÞkp

 !
� gv

X
kv AP

?
v

2�m 0
aðkvÞ

0@ 1A
a k f kBa; g;p;q 0 �Wa; g;qðPÞ;

where we used Hölder’s inequality in the last inequality.
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