Products of parts in class regular partitions

Masanori Ando and Hiro-Fumi Yamada
(Received May 8, 2015)
(Revised October 12, 2016)

Abstract. A q-analogue of a partition identity is presented.

1. Introduction

Let $\lambda=\left(1^{m_{1}} 2^{m_{2}} \ldots\right)$ be a partition. Define

$$
a_{\lambda}:=\prod_{i \geq 1} i^{m_{i}}, \quad b_{\lambda}:=\prod_{i \geq 1} m_{i}!.
$$

It is well known that the product of a_{λ} over all partitions λ of n is equal to that of b_{λ}. In 2003 Olsson [3] found a "regular version" of this remarkable fact. Let $r \geq 2$ be an integer. A partition $\lambda=\left(1^{m_{1}} 2^{m_{2}} \ldots\right)$ is said to be r-class regular if $m_{r i}=0$ for all i. Denote by $P^{r}(n)$ the set of all r-class regular partitions of n. Define

$$
a_{r, n}:=\prod_{\lambda \in P^{r}(n)} a_{\lambda}, \quad b_{r, n}:=\prod_{\lambda \in P^{r}(n)} b_{\lambda} .
$$

Then one has $b_{r, n}=r^{c_{r, n}} a_{r, n}$, where $c_{r, n}$ is defined by the following generating function:

$$
\sum_{n \geq 0} c_{r, n} q^{n}=\Phi_{r}(q) \sum_{m \geq 1} \frac{q^{r m}}{1-q^{r m}}
$$

with

$$
\Phi_{r}(q)=\prod_{k \geq 1} \frac{1-q^{r k}}{1-q^{k}}=\sum_{n \geq 0}\left|P^{r}(n)\right| q^{n} .
$$

When r is prime, $a_{r, n}$ equals the determinant of the irreducible Brauer character table $\Psi_{n}^{(r)}$, and $r^{c_{r, n}}$ equals the r-part of $b_{r, n}$ and hence is equal to the determinant of the Cartan matrix for r-modular representations of the symmetric group $\mathfrak{\Im}_{n}$ ([3], see also [2]).

[^0]In this short note we present a q-analogue of Olsson's formula in a natural combinatorial way.

2. Result

For an r-class regular partion $\lambda=\left(1^{m_{1}} 2^{m_{2}} \ldots\right)$, a non-negative integer ℓ and a positive integer i which is not a multiple of r, put

$$
D_{\ell}(i, \lambda):=\left\{(j, k) \in \mathbf{Z}^{2}\left|j \geq \ell, 1 \leq k \leq m_{i}, r^{j}\right| k\right\} .
$$

Here is an example. If $r=2$ and λ be such that $m_{i}=10$ for some odd i, then $D_{0}(i, \lambda)$ looks

The k-axis is horizontal from left to right, and the j-axis is vertical from top to bottom. Define also the set of "cells" for λ by

$$
\mathscr{D}_{t}(\lambda):=\left\{c=(\lambda ; i, j, k) \in\{\lambda\} \times \mathbf{Z}^{3} \mid i \geq 1, r \nmid i,(j, k) \in D_{\ell}(i, \lambda)\right\}
$$

and the disjoint union

$$
\mathscr{D}_{\ell}(r, n):=\bigsqcup_{\lambda \in P^{r}(n)} \mathscr{D}_{\ell}(\lambda) .
$$

For each cell $c=(\lambda ; i, j, k) \in \mathscr{D}_{0}(\lambda)$, attach the A-weight $A(c)$ and the B-weight $B(c)$, respectively, by $A(c):=i r^{j}$ and $B(c):=k / r^{j}$. In the example above with odd i, the A-weights and the B-weights are tabulated as follows.

i	i	i	i		i	i	i	i	i	i		1	2	3	4		5	6	7	8		9	
		$2 i$			$2 i$		$2 i$		2	i			1		2			3		4			5
		$4 i$					$4 i$				and									2			
							$8 i$													1			

Let $Q_{k}(k \geq 1)$ be a family of indeterminates. Define the A-monomial and B-monomial, respectively, for $\lambda \in P^{r}(n)$ and $\ell \geq 0$ by

$$
w_{A}^{\ell}(\lambda):=\prod_{c \in \mathscr{O}_{\ell}(\lambda)} Q_{A(c)}, \quad w_{B}^{\ell}(\lambda):=\prod_{c \in \mathscr{Q}_{\ell}(\lambda)} Q_{B(c)}
$$

In the example, we see that

$$
w_{A}^{0}(\lambda)=Q_{i}^{10} Q_{2 i}^{5} Q_{4 i}^{2} Q_{8 i}, \quad w_{B}^{0}(\lambda)=Q_{1}^{4} Q_{2}^{3} Q_{3}^{2} Q_{4}^{2} Q_{5}^{2} Q_{6} Q_{7} Q_{8} Q_{9} Q_{10}
$$

and

$$
w_{A}^{1}(\lambda)=Q_{2 i}^{5} Q_{4 i}^{2} Q_{8 i}, \quad w_{B}^{1}(\lambda)=Q_{1}^{3} Q_{2}^{2} Q_{3} Q_{4} Q_{5} .
$$

Theorem. For a non-negative integer ℓ,

$$
\prod_{\lambda \in P^{r}(n)} w_{A}^{\ell}(\lambda)=\left.\prod_{\lambda \in P^{r}(n)} w_{B}^{\ell}(\lambda)\right|_{Q_{k} \mapsto Q_{r^{\prime} k}} .
$$

Proof. Let $\ell \geq 0$ be fixed. One can construct an involution

$$
\theta_{\ell}: \mathscr{D}_{\ell}(r, n) \rightarrow \mathscr{D}_{\ell}(r, n)
$$

as follows. Take $c=(\lambda ; i, j, k) \in \mathscr{D}_{t}(\lambda)$. Since $k \leq m_{i}$ and $r^{j} \mid k$, we can write $k=i^{*} r^{j+j^{*}}$ with some i^{*} with $r \nmid i^{*}$, and $j^{*} \geq 0$. Put $k^{*}=i r^{j+j^{*}}$ so that $i k=i^{*} k^{*}$. There exists an r-class regular partition $\mu \in P^{r}(n-i k)$ such that λ is the Young diagrammatic union of μ and $\left(i^{k}\right)$. Let λ^{*} be the union of partitions μ and $\left(\left(i^{*}\right)^{k^{*}}\right)$, which is in $P^{r}(n)$. Let $\theta_{\ell}(c):=\left(\lambda^{*} ; i^{*}, j^{*}+\ell, k^{*}\right) \in$ $\mathscr{D}_{\ell}\left(\lambda^{*}\right)$. It is easy to verify that $\left(\theta_{\ell}\right)^{2}=i d$. We also have

$$
A\left(\theta_{\ell}(c)\right)=i^{*} r^{j^{*}+\ell}=\frac{i k}{k^{*}} r^{j^{*}+\ell}=\frac{i k r^{j^{*}+\ell}}{i r^{j+j^{*}}}=r^{\ell} \frac{k}{r^{j}}=r^{\ell} B(c)
$$

as desired.
Here is an example. Let $r=2, \ell=0$ and $\lambda=\left(13^{2}\right) \in P^{2}(7)$. If $c=$ $(\lambda ; 3,1,2) \in \mathscr{D}_{0}(\lambda)$, then one sees that $i^{*}=1, j^{*}=0, k^{*}=6$, and $\mu=(1)$. Hence one has $\lambda^{*}=\left(1^{7}\right)$ and $\theta_{0}(c)=\left(\lambda^{*} ; 1,0,6\right)$. Therefore $A\left(\theta_{0}(c)\right)=$ $B(c)=1$.

Let us introduce another family of indeterminates $R_{k}(k \geq 1)$, subject to the relations $Q_{r k}=R_{k} Q_{k}$ for $k \geq 1$. Then the formula in Theorem in case $\ell=1$ reads

$$
\prod_{\lambda \in P^{r}(n)} w_{A}^{1}(\lambda)(Q)=\prod_{\lambda \in P^{r}(n)} w_{B}^{1}(\lambda)(R) \prod_{\lambda \in P^{r}(n)} w_{B}^{1}(\lambda)(Q) .
$$

Remark that, for $\lambda=\left(1^{m_{1}} 2^{m_{2}} \ldots\right) \in P^{r}(n)$,

$$
\frac{w_{A}^{0}(\lambda)(Q)}{w_{A}^{1}(\lambda)(Q)}=\prod_{i \geq 1} Q_{i}^{m_{i}}, \quad \frac{w_{B}^{0}(\lambda)(Q)}{w_{B}^{1}(\lambda)(Q)}=\prod_{i \geq 1} Q_{m_{i}} Q_{m_{i}-1} \ldots Q_{1} .
$$

These give a Q-analogue of a_{λ} and b_{λ}, respectively.
In order to relate our result with Olsson's formula, we specialize the indeterminates as

$$
Q_{k}=\frac{1-q^{k}}{1-q}, \quad R_{k}=\frac{1-q^{r k}}{1-q^{k}}
$$

with another indeterminate q. We regard

$$
a_{r, n}(q):=\prod_{\lambda \in P r(n)} \frac{w_{A}^{0}(\lambda)(Q)}{w_{A}^{1}(\lambda)(Q)} \quad \text { and } \quad b_{r, n}(q):=\prod_{\lambda \in P r(n)} \frac{w_{B}^{0}(\lambda)(Q)}{w_{B}^{1}(\lambda)(Q)}
$$

as polynomials in q.
We also denote

$$
c_{r, n}(q):=\prod_{\lambda \in P^{r}(n)} w_{B}^{1}(R)
$$

with the specialization above. This is a q-analogue of $r^{c_{r, n}}$, and is known to equal the determinant of the "graded" Cartan matrix for the Iwahori Hecke algebra $H_{n}(\zeta)$ with ζ a primitive r-th root of unity ([1]).

Consequenty Olsson's formula is q-deformed as

$$
b_{r, n}(q)=c_{r, n}(q) a_{r, n}(q) .
$$

The authors thank Shun-ichi Kimura for his interest in this work and for providing an opportunity for their discussions at Hiroshima University. This paper is dedicated to Kiyosato Okamoto on his eightieth birthday.

References

[1] M. Ando, T. Suzuki and H.-F. Yamada, Combinatorics for graded Cartan matrices of the Iwahori-Hecke algebra of type A, Ann. Comb. 17 (2013), 427-442.
[2] H. Mizukawa and H.-F. Yamada, Arithmetic identities for class regular partitions, Hokkaido Math. J. (to appear).
[3] J. B. Olsson, Regular character tables of symmetric groups, Electron. J. Combin. 10 (2003) N3. MR1975776.

Masanori Ando
Depertment of Mathematics
Wakhok University
Wakkanai Hokkaido 097-0013, Japan
E-mail: m-ando@wakhok.ac.jp
Hiro-Fumi Yamada
Department of Mathematics
kumamoto University
Kumamoto, Japan
E-mail: yamada@sci.kumamoto-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 05E10; Secondary 05E05.
 Key words and phrases. r-class regular partition, Glaisher correspondence.

