Products of parts in class regular partitions

Masanori ANDO and Hiro-Fumi YAMADA (Received May 8, 2015) (Revised October 12, 2016)

ABSTRACT. A q-analogue of a partition identity is presented.

1. Introduction

Let $\lambda = (1^{m_1} 2^{m_2} \dots)$ be a partition. Define

$$a_{\lambda} := \prod_{i \ge 1} i^{m_i}, \qquad b_{\lambda} := \prod_{i \ge 1} m_i!.$$

It is well known that the product of a_{λ} over all partitions λ of n is equal to that of b_{λ} . In 2003 Olsson [3] found a "regular version" of this remarkable fact. Let $r \ge 2$ be an integer. A partition $\lambda = (1^{m_1} 2^{m_2} \dots)$ is said to be r-class regular if $m_{ri} = 0$ for all i. Denote by $P^r(n)$ the set of all r-class regular partitions of n. Define

$$a_{r,n} := \prod_{\lambda \in P^r(n)} a_{\lambda}, \qquad b_{r,n} := \prod_{\lambda \in P^r(n)} b_{\lambda}.$$

Then one has $b_{r,n} = r^{c_{r,n}} a_{r,n}$, where $c_{r,n}$ is defined by the following generating function:

$$\sum_{n\geq 0}c_{r,n}q^n=\varPhi_r(q)\sum_{m\geq 1}\frac{q^{rm}}{1-q^{rm}},$$

with

$$\Phi_r(q) = \prod_{k \ge 1} \frac{1 - q^{rk}}{1 - q^k} = \sum_{n \ge 0} |P^r(n)| q^n.$$

When *r* is prime, $a_{r,n}$ equals the determinant of the irreducible Brauer character table $\Psi_n^{(r)}$, and $r^{c_{r,n}}$ equals the *r*-part of $b_{r,n}$ and hence is equal to the determinant of the Cartan matrix for *r*-modular representations of the symmetric group \mathfrak{S}_n ([3], see also [2]).

²⁰¹⁰ Mathematics Subject Classification. Primary 05E10; Secondary 05E05.

Key words and phrases. r-class regular partition, Glaisher correspondence.

In this short note we present a q-analogue of Olsson's formula in a natural combinatorial way.

2. Result

For an *r*-class regular partion $\lambda = (1^{m_1} 2^{m_2} ...)$, a non-negative integer ℓ and a positive integer *i* which is not a multiple of *r*, put

$$D_{\ell}(i,\lambda) := \{ (j,k) \in \mathbf{Z}^2 \mid j \ge \ell, 1 \le k \le m_i, r^j \mid k \}.$$

Here is an example. If r = 2 and λ be such that $m_i = 10$ for some odd *i*, then $D_0(i, \lambda)$ looks

\bigcirc	0	0	0	0	0	0	0	0	Ο
	0		\bigcirc		0		0		0
			0				0		
							0		

The k-axis is horizontal from left to right, and the *j*-axis is vertical from top to bottom. Define also the set of "cells" for λ by

$$\mathscr{D}_{\ell}(\lambda) := \{ c = (\lambda; i, j, k) \in \{\lambda\} \times \mathbb{Z}^3 \mid i \ge 1, r \not\mid i, (j, k) \in D_{\ell}(i, \lambda) \}$$

and the disjoint union

$$\mathscr{D}_\ell(r,n):=igsqcup_{\lambda\,\in\,P^r(n)}\mathscr{D}_\ell(\lambda).$$

For each cell $c = (\lambda; i, j, k) \in \mathcal{D}_0(\lambda)$, attach the *A*-weight A(c) and the *B*-weight B(c), respectively, by $A(c) := ir^j$ and $B(c) := k/r^j$. In the example above with odd *i*, the *A*-weights and the *B*-weights are tabulated as follows.

i	i	i	i	i	i	i	i	i	i		1	2	3	4	5	6	7	8	9	10
	2i		2i		2 <i>i</i>		2 <i>i</i>		2i	أمعده		1		2		3		4		5
			4i				4 <i>i</i>			and				1				2		
							8 <i>i</i>											1		

Let Q_k $(k \ge 1)$ be a family of indeterminates. Define the A-monomial and B-monomial, respectively, for $\lambda \in P^r(n)$ and $\ell \ge 0$ by

$$w_A^\ell(\lambda) := \prod_{c \in \mathscr{D}_\ell(\lambda)} \mathcal{Q}_{A(c)}, \qquad w_B^\ell(\lambda) := \prod_{c \in \mathscr{D}_\ell(\lambda)} \mathcal{Q}_{B(c)}$$

In the example, we see that

$$w_A^0(\lambda) = Q_i^{10} Q_{2i}^5 Q_{4i}^2 Q_{8i}, \qquad w_B^0(\lambda) = Q_1^4 Q_2^3 Q_3^2 Q_4^2 Q_5^2 Q_6 Q_7 Q_8 Q_9 Q_{10}.$$

and

$$w_A^1(\lambda) = Q_{2i}^5 Q_{4i}^2 Q_{8i}, \qquad w_B^1(\lambda) = Q_1^3 Q_2^2 Q_3 Q_4 Q_5.$$

THEOREM. For a non-negative integer ℓ ,

$$\prod_{\lambda \in P^{r}(n)} w_{A}^{\ell}(\lambda) = \prod_{\lambda \in P^{r}(n)} w_{B}^{\ell}(\lambda)|_{Q_{k} \mapsto Q_{r^{\ell}k}}.$$

PROOF. Let $\ell \ge 0$ be fixed. One can construct an involution

 $\theta_{\ell}: \mathscr{D}_{\ell}(r,n) \to \mathscr{D}_{\ell}(r,n)$

as follows. Take $c = (\lambda; i, j, k) \in \mathcal{D}_{\ell}(\lambda)$. Since $k \leq m_i$ and $r^j | k$, we can write $k = i^* r^{j+j^*}$ with some i^* with $r \not\downarrow i^*$, and $j^* \geq 0$. Put $k^* = i r^{j+j^*}$ so that $ik = i^*k^*$. There exists an *r*-class regular partition $\mu \in P^r(n - ik)$ such that λ is the Young diagrammatic union of μ and (i^k) . Let λ^* be the union of partitions μ and $((i^*)^{k^*})$, which is in $P^r(n)$. Let $\theta_{\ell}(c) := (\lambda^*; i^*, j^* + \ell, k^*) \in \mathcal{D}_{\ell}(\lambda^*)$. It is easy to verify that $(\theta_{\ell})^2 = id$. We also have

$$A(\theta_{\ell}(c)) = i^* r^{j^* + \ell} = \frac{ik}{k^*} r^{j^* + \ell} = \frac{ikr^{j^* + \ell}}{ir^{j + j^*}} = r^{\ell} \frac{k}{r^j} = r^{\ell} B(c)$$

as desired.

Here is an example. Let r = 2, $\ell = 0$ and $\lambda = (13^2) \in P^2(7)$. If $c = (\lambda; 3, 1, 2) \in \mathcal{D}_0(\lambda)$, then one sees that $i^* = 1$, $j^* = 0$, $k^* = 6$, and $\mu = (1)$. Hence one has $\lambda^* = (1^7)$ and $\theta_0(c) = (\lambda^*; 1, 0, 6)$. Therefore $A(\theta_0(c)) = B(c) = 1$.

Let us introduce another family of indeterminates R_k $(k \ge 1)$, subject to the relations $Q_{rk} = R_k Q_k$ for $k \ge 1$. Then the formula in Theorem in case $\ell = 1$ reads

$$\prod_{\lambda \in P^{r}(n)} w_{A}^{1}(\lambda)(Q) = \prod_{\lambda \in P^{r}(n)} w_{B}^{1}(\lambda)(R) \prod_{\lambda \in P^{r}(n)} w_{B}^{1}(\lambda)(Q).$$

Remark that, for $\lambda = (1^{m_1} 2^{m_2} \dots) \in P^r(n)$,

$$\frac{w_A^0(\lambda)(Q)}{w_A^1(\lambda)(Q)} = \prod_{i\geq 1} Q_i^{m_i}, \qquad \frac{w_B^0(\lambda)(Q)}{w_B^1(\lambda)(Q)} = \prod_{i\geq 1} Q_{m_i} Q_{m_i-1} \dots Q_1.$$

These give a *Q*-analogue of a_{λ} and b_{λ} , respectively.

In order to relate our result with Olsson's formula, we specialize the indeterminates as

$$Q_k = \frac{1-q^k}{1-q}, \qquad R_k = \frac{1-q^{rk}}{1-q^k}$$

with another indeterminate q. We regard

$$a_{r,n}(q) := \prod_{\lambda \in P^r(n)} \frac{w_A^0(\lambda)(Q)}{w_A^1(\lambda)(Q)} \quad \text{and} \quad b_{r,n}(q) := \prod_{\lambda \in P^r(n)} \frac{w_B^0(\lambda)(Q)}{w_B^1(\lambda)(Q)}$$

as polynomials in q.

We also denote

$$c_{r,n}(q) := \prod_{\lambda \in P^r(n)} w_B^1(R)$$

with the specialization above. This is a *q*-analogue of $r^{c_{r,n}}$, and is known to equal the determinant of the "graded" Cartan matrix for the Iwahori Hecke algebra $H_n(\zeta)$ with ζ a primitive *r*-th root of unity ([1]).

Consequenty Olsson's formula is q-deformed as

$$b_{r,n}(q) = c_{r,n}(q)a_{r,n}(q).$$

The authors thank Shun-ichi Kimura for his interest in this work and for providing an opportunity for their discussions at Hiroshima University. This paper is dedicated to Kiyosato Okamoto on his eightieth birthday.

References

- M. Ando, T. Suzuki and H.-F. Yamada, Combinatorics for graded Cartan matrices of the Iwahori-Hecke algebra of type A, Ann. Comb. 17 (2013), 427–442.
- [2] H. Mizukawa and H.-F. Yamada, Arithmetic identities for class regular partitions, Hokkaido Math. J. (to appear).
- J. B. Olsson, Regular character tables of symmetric groups, Electron. J. Combin. 10 (2003) N3. MR1975776.

Masanori Ando Depertment of Mathematics Wakhok University Wakkanai Hokkaido 097-0013, Japan E-mail: m-ando@wakhok.ac.jp

Hiro-Fumi Yamada Department of Mathematics kumamoto University Kumamoto, Japan E-mail: yamada@sci.kumamoto-u.ac.jp