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ABSTRACT. The moduli space of left-invariant pseudo-Riemannian metrics on a given
Lie group is defined as the orbit space of a certain isometric action on some pseudo-
Riemannian symmetric space. In terms of the moduli space, we formulate a procedure
to obtain a generalization of Milnor frames for left-invariant pseudo-Riemannian
metrics on a given Lie group. This procedure is an analogue of the recent studies
on left-invariant Riemannian metrics. In this paper, we describe the orbit space of the
action of a particular parabolic subgroup, and then apply it to obtain a generalization
of Milnor frames for so-called the Lie groups of real hyperbolic spaces, and also for the
three-dimensional Heisenberg group. As a corollary we show that all left-invariant
pseudo-Riemannian metrics of arbitrary signature on the Lie groups of real hyperbolic
spaces have constant sectional curvatures.

1. Introduction

Left-invariant Riemannian and pseudo-Riemannian metrics on Lie groups
have been studied actively. In particular, they provide a lot of interesting
examples of distinguished metrics, for examples, Einstein and Ricci soliton
metrics. It is a natural and important problem to determine whether a given
Lie group G admits some distinguished left-invariant (pseudo-)Riemannian
metrics or not. Both of the Riemannian and pseudo-Riemannian cases are
interesting, but sometimes the properties and methodologies are different.
Recently many results on the Riemannian case have been obtained (just as
examples, see [6, 7, 8, 18] and references therein). However, the studies on the
pseudo-Riemannian case seem to be still developing.

In the studies on left-invariant metrics on Lie groups, particularly on the
existence and nonexistence of some distinguished metrics, one of the difficulties
may come from the fact that the space of left-invariant metrics has a large
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dimension. Since left-invariant metrics on G and inner products on its Lie
algebra g are corresponding, the following kind of theorem would be helpful:

For every inner product <, ) of signature (p, g) on g, there exists a basis of
g, which is pseudo-orthonormal with respect to <, > up to scalar, and the
bracket relations among the elements of the basis can be written with
relatively small number of parameters.

This kind of theorem is called a Milnor-type theorem in [7]. The name comes
from the famous result by Milnor ([12]), who obtained this kind of theorems
for left-invariant Riemannian metrics on all three-dimensional unimodular Lie
groups (the obtained bases are called the Milnor frames). Milnor-type the-
orems have also been known for left-invariant Riemannian metrics on Lie
groups with dim <4 ([2, 5, 9, 10]), and for left-invariant pseudo-Riemannian
(Lorentzian) metrics on Lie groups with dim =3 ([3, 16, 17]). Recently, for
left-invariant Riemannian metrics, a general procedure to obtain Milnor-type
theorems has been formulated in [7]. It is based on the moduli space of left-
invariant Riemannian metrics on G, where the moduli space is defined as the
orbit space of the action of R* Aut(g) on the space I of left-invariant
Riemannian metrics on G. In fact, an expression of the moduli space derives a
Milnor-type theorem for G. We note that relevant studies can be found in [4,
19], in which they deal with the Heisenberg groups.

In this paper, we formulate a general procedure to obtain Milnor-type
theorems for left-invariant pseudo-Riemannian metrics on G. It is also based
on the moduli space, that is, the orbit space of the action of R* Aut(g) on the
space M, 4 of left-invariant pseudo-Riemannian metrics of signature (p,q) on
G. In fact, the procedure itself is a straightforward analogue to the Rieman-
nian case. However, by applying this procedure to two particular Lie groups,
one can observe a different phenomena between Riemannian and pseudo-
Riemannian cases. The reason may be that

Mp,q) = GLy14(R)/O(p, q) (1.1)

is a pseudo-Riemannian symmetric space if p,q > 1, although I =M, o) is a
Riemannian symmetric space, where n = p + ¢ = dim G. These general theory
will be mentioned in Sections 2 and 3.

In Section 4, we consider a particular maximal parabolic subgroup Q; of
GL,.4(R). Then, for p,q > 1, we show that the orbit space of the action of
Qp on M, , consists of three points. This result will be applied in the latter
sections, since Q; is related to R* Aut(g) for the Lie algebras g we study. The
result of this section may also have an independent interest, since it could be a
prototype for the study of isometric actions on pseudo-Riemannian symmetric
spaces.
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In Section 5, we study Ggry», the Lie group of real hyperbolic space
RH". Recall that Gry~ is the connected and simply-connected Lie group with
Lie algebra ggpyn, where

Oy = span{er,...,e,} with [e1,¢]] =¢; (je{2,...,n}). (1.2)

Note that Gry» coincides with the solvable part of the Iwasawa decomposi-
tion of SO°(n, 1), and hence acts simply-transitively on RH”. We apply our
procedure to gppys, and then see that the result of Section 4 derives the
following Milnor-type theorem for Ggry-.

THEOREM 1. Let p,q>1, and {,> be an arbitrary inner product of
signature (p,q) on Qgur+. Then, there exist k >0, 2 € {0,1,2}, and a pseudo-
orthonormal basis {xi,...,X,q} Wwith respect to k<, whose bracket relations
are given by

(1) [X17X,']=Xi (ie{zv"'7p+q_l}):

(i) [x1,Xp4q] = =AX1 + Xpiyg,

(i) [xi, Xpiql = —Ax; ((€{2,...,p+qg—1}).

Note that the bracket relations with respect to the basis {xi,...,X,4}
contain only one discrete parameter 1 € {0, 1,2} (which corresponds to the orbit
space studied in Section 4). This enables us to calculate the curvature of an
arbitrary pseudo-Riemannian metric on Gggr+.

COROLLARY 2. Let p,q=1. Then, every left-invariant pseudo-
Riemannian metric of signature (p,q) on Ggryra has constant sectional curvature.
Furthermore, any real number can be realized as the constant sectional curvature
of a left-invariant pseudo-Riemannian metric of signature (p,q) on Ggpr+.

Note that a left-invariant Riemannian (that is, ¢ = 0) metric on Ggyr+s
is unique up to isometry and scaling, and has constant negative curvature
([12], see also [8, 11]). We also note that the Lorentzian (that is, ¢ = 1) case
of this result has been known by Nomizu ([13]). Hence, our argument gives
an alternative proof of his result in terms of a Milnor-type theorem, and
generalizes it to the case of arbitrary signature. Finally, in Section 6, we
consider the three-dimensional Heisenberg group H;. Our procedure and the
result of Section 4 again derive the following Milnor-type theorem for left-
invariant Lorentzian metrics on H;. Denote by b; the Lie algebra of Hj, the
three-dimensional Heisenberg Lie algebra.

THEOREM 3. Let <,> be an arbitrary inner product of signature (2,1)
on bs.  Then, there exist k >0, 1€{0,1,2}, and a pseudo-orthonormal basis
{x1,%2,x3} with respect to k<{,> such that

[xl,xz] = /1()(?1 +}vX3), [XQ,X_J,] = X1 + },X3, [X3,X1] =0. (13)
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Note that the bracket relations with respect to the basis {x;,x,,x3} again
contain only one discrete parameter A€ {0,1,2}. This gives an alternative
proof of the classification of left-invariant Lorentzian metrics on Hj; by
Rahmani ([16], see also [19]). We will also review the curvature properties
of these metrics. In fact, the metric corresponding to A =1 is flat, and other
two are Lorentzian Ricci soliton metrics.

The authors would like to thank Yoshio Agaoka, Takayuki Okuda, and
Takahiro Hashinaga, for valuable comments and suggestions.

2. The moduli space of left-invariant metrics

In [8], the notion of the space of left-invariant Riemannian metrics on
a Lie group up to isometry and scaling has been introduced. In this section,
we define the analogous notion for left-invariant pseudo-Riemannian metrics.
Throughout this section, let G be a Lie group of dimension n, and g be the Lie
algebra of G. We fix a basis {e,...,e,} of g, and identify g =~ R" as vector
spaces.

First of all, we recall the signature of an inner product. Let {,) be an
inner product, not necessarily positive definite, on g. Then there exists a
symmetric matrix 4 such that

xpy='xdy  (¥x,yeg). 2.1
Denote by I; the unit matrix of order k, and put
1
Lg,=(" ) 2.2
= (® 2

Then, Sylvester’s law of inertia yields that there exist g € GL,(R) and a unique
pair (p,q) with p,q € Zso such that

lgAg = Ip#q- (23)

This unique pair (p,q) is called the signature of {,)». Note that p+ q =n.
We here define the space of left-invariant metrics. We define it in the Lie

algebra level, since there is a one-to-one correspondence between left-invariant

(pseudo-Riemannian) metrics on G and (indefinite) inner products on g.

DeriniTiON 4. The following set is called the space of left-invariant
pseudo-Riemannian metrics of signature (p,q) on G:

M, = {<{, ) :an inner product of signature (p,q) on g}. (2.4)

We next see an expression of 9, ,) as a homogeneous space. According
to the identification g =~ R”, we also identify GL(g) = GL,(R). Then GL,(R)
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acts on M, , by
RODE R ORI O) (2.3)

This action is transitive, because of Sylvester’s law of inertia. Hence, M, ,
can be expressed as a homogeneous space of GL,(R). One needs the follow-
ing inner product, which we call the canonical inner product of signature (p,q)
on g =~R"™

X, 900 = IXIp‘qy (x,y€q). (2.6)
PROPOSITION 5. One has a canonical identification

PrOOF. One can easily see that the isotropy subgroup of GL,(R) at <, >
coincides with

O(p,q) :== {9 € GL,(R) | 'gl, 49 = I, 4} (2.8)

Hence, by virtue of a standard theory of homogeneous spaces, one obtains an
expression as a homogeneous space. O

We now define the moduli space of left-invariant pseudo-Riemannian
metrics, as the orbit space of a certain group action on 9, ,). Let us consider
the automorphism group of g,

Aut(g) := {9 € GL,(R) | ([, ]) = [0(-), o(-)]}- (2.9)

Denote by R* := R\{0} the multiplicative group of R. The group we consider
in this paper is

R* Aut(g) := {cp e GL,(R) | c e R*, ¢ € Aut(g)}. (2.10)

Since this group is a subgroup of GL,(R), it naturally acts on M, ,. We
denote the orbit through <,) by R* Aut(g).{, ).

DerFINITION 6. The orbit space of the action of R Aut(g) on M, , is
called the moduli space of left-invariant pseudo-Riemannian metrics of signature
(p,q) on G, and denoted by

‘Bim(p_’q)(G) = R™ Aut(g)\M(,, o = {R* Aut(g).{, >, >e M, 0t (2.11)

Note that the action of R* Aut(g) on 9, , gives rise to isometry up to
scaling of left-invariant pseudo-Riemannian metrics. This follows from a
similar argument for the Riemannian case (for example, see [8, Remark 2.3]).
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3. Milnor-type theorems for left-invariant metrics

In this section, we show that an expression of the moduli space BN, ,(G)
derives a Milnor-type theorem for left-invariant pseudo-Riemannian metrics
on G. The story is analogous to the arguments of [7], in which Milnor-type
theorems for left-invariant Riemannian metrics have been studied.

When we express the moduli space ‘B‘IR(p_q)(G), we use the following
notion of a set of representatives. Recall that <, ), denotes the canonical
inner product of signature (p,q) on g =~ R”*?. We define a set of representa-
tives for a group action on M, ,) = GL,,(R)/O(p,q).

DErINITION 7. Let H be a subgroup of GL,,,(R), and consider the action
of H on M, .. Then, a subset U C GL,,,(R) is called a set of representatives
of this action if the orbit space satisfies

H\M,,g) = {H.(90-<; Do) | go € U}. (3.1)

Note that, by a set of representatives, we do not mean that it is a set of
complete representatives. For example, U := GL,,(R) is a set of representa-
tives for any action.

In order to formulate a key theorem to obtain Milnor-type theorems, we
need a pseudo-orthonormal basis. Let {,> be an inner product of signature
(p,q) on g. For the later convenience, we put

1 iedl,...
T R el 52
-1 (ie{p+1,....p+4q})
Then, a basis {xi,...,x,.,} of g is said to be pseudo-orthonormal with respect
to {, ) if it satisfies
iyxpy =0y (Vi je{l,....p+q}). (33)

Here, J; denotes the Kronecker delta.

THEOREM 8. Let U be a set of representatives of the action of R* Aut(g)
on M, . Then, for every inner product {,) of signature (p,q) on g, there
exist k>0, ¢ e Aut(g), and go € W such that {pgoei,...,pg0ep+q} is pseudo-
orthonormal with respect to k<, .

Proor. Take an arbitrary inner product <,)» on g of signature (p,q).
Since U is a set of representatives, there exists go € U such that

<a> e R” Aut(g)(go<7>0) (34)

Hence, there exist ¢ € R* and ¢ € Aut(g) such that
<7> = (CQ)(90<,>0) = (C¢go)'<a>0' (35)
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Let us put k:=c¢?>>0. Then we have

k<> = k<(epgo) ™ (), (cog0) " () >0 = <(990) " (), (9g0) " (VDo (3.6)

Since {ei,...,ep14} is pseudo-orthonormal with respect to <, »,, one has
k{pgoei, pgoe;» = <ei,e;>g = &y, (3.7)
which completes the proof. O

When we apply this theorem to a given g, we put x; := @goe;, and study
the bracket relations among them. Note that ¢ does not give any effects on
the bracket relations, since it is an automorphism. Hence we have only to
consider go € . In particular, if U contains only / parameters, then so do the
bracket relations among {xi,...,x,.,}. This is a procedure to obtain Milnor-
type theorems. We emphasize that this procedure can be applied to any Lie
algebra g.

4. Sets of representatives of some actions

In order to obtain a Milnor-type theorem, it is a key step to give a set
of representatives . In this section, we give sets of representatives of some
actions, which are given by some maximal parabolic subgroups. The result of
this section is used essentially in the latter sections.

In order to study our actions, we state two lemmas. The first one is a
simple criteria for a subset 2l C GL,,(R) to be a set of representatives. Let
H be a subgroup of GL,,,(R), and consider the action of H on I, , =
GL,,(R)/O(p,q). We denote the double coset of g e GL,4(R) by

[lg]] :== HgO(p,q)- (4.1)

LemMmA 9.  Consider an action of H C GL,.4(R) on M, . Then, a
subset 2 C GL,,4(R) is a set of representatives of this action if and only if
for any g e GL,4(R), there exists go €2 such that gy € [[g]].

Proor. This follows from a standard argument of double cosets. In fact,
the proof for the Riemannian case can be found in [7, Lemma 2.3], and the
proof for this lemma is exactly the same. O

The second lemma is a general property of the natural action of
O(1,1).

LemMA 10. Let (x,y) # (0,0). Then there exist a >0, A€ {0,1,2}, and
g€ O(1,1) such that (x,y)g = (a,a) holds.
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Proor. We divide the proof into three cases. The first case is when
x2 — y>>0. In this case, let us take

1 _
a:=(x*— )" >0, g::—( o y)eO(l,l). (4.2)
—y X
Then one has (x,y)g = (a,0). Hence, by putting 1:=0, we complete the
proof for this case.
The second case is when x?> — y> =0. In this case, one can choose

ge{(iol i?l>}co(1,1) (4.3)

such that (x, y)g = (|x|,|y]). Hence, by putting a := |x| =|y| >0 and 4:=1,
we complete the proof for this case.
The last case is when x> — »?> < 0. In this case, let us take

1

2y —x —2x
= (=0 g (V0

:3a

o 2y_x> cO(1,1). (4.4)

Then one has (x,y)g = (a,2a). Hence, by putting 1:=2, we complete the
proof for this case. ]

We now study actions on 9, ,. One action we consider in this section is
given by the following group:

Q1 := : € GL,+4(R) ¢, (45)

where the size of the block decomposition is (1,p +¢ —1). This Q; is known
to be a maximal parabolic subgroup of GL,.,(R). The following gives a set
of representatives of the action of Q.

ProrosiTioN 11. Let p,q =1, and consider the action of Oy on M, ,.
Then, the following W is a set of representatives:

We={lpyg+ 2E1 pig| 4 =0,1,2}, (4.6)
where E\ p.q is the matrix unit whose (1, p+ q)-entry is 1 and zero elsewhere.

Proor. Take any g = (g;) € GL,+4(R). According to Lemma 9, we have
only to prove that there exists gy € U such that gy € [[g]]. Recall that

[l9]] = 0190(p. q).
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First of all, one knows that there exist /#; € O(p) and h; € O(g) such that

(gllv"'vglp)hl = (X,O,...70)7

Since O(p) x O(gq) is naturally a subgroup of O(p,q), we have

(91(p+1)7~~~;91(p+q))h2 = (0,...,0, y). (47)
x| 0 - 0 y
k *k e e k
=:d1. (48)
ES * e e ES

One has (x, y) # (0,0), since det(g;) # 0. Furthermore, O(1,1) is naturally a

subgroup of O(p,q), since p,g > 1.

Hence, Lemma 10 yields that there exist

a>0, 1€{0,1,2}, and k€ O(p,q) such that

a |0 -~ 0 ai
a2 * e e *
91l = g1k = =: 92, (4.9)
ap+q *k .o e %k
where ay,...,a,., € R. It then follows from the definition of Q; that
1/a ‘ 0 --- 0
—day a 0
[lg]] g = + A1 pig = g3 (4.10)
—piq | O a
Since 0 # det(gs;) = det(A), we conclude that
g3 = lpiq + ;”E1~,P+f] =:go. (411)
One can see that go € U, which completes the proof. O

Another action we study is given by the transpose of Q.

Note that, if H

is a subgroup of GL,,(R), then so is

H':={'h|heH}.

(4.12)
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By the following proposition and Proposition 11, one can obtain a set of
representatives of the action of Q.

ProPOSITION 12. Let H be a subgroup of GL,.4(R), and W be a set of
representatives of the action of H on M, ,. Then, the following " is a set
of representative of the action of H' on M, ,:

W= {uueul. (4.13)

Proor. Take any ge GL,;,(R). In this proof, we write the double
cosets by HgO(p,q) and H’'gO(p,q), in order to distinguish them. Then,
according to Lemma 9, we have only to prove that there exists gy € 2" such
that go € H'gO(p,q). Since ‘g~! € GL,.4(R) and U is a set of representatives
of the action of H, there exists u € 2l such that ue H('g~")O(p,q). That is,
one can write

u=h-'g' k  (heH, keO(p,q)). (4.14)
We put go := ‘u”' €U*. One thus has
go="ut="h"1.g.- ke Hg4O(p,q), (4.15)

since 47! e H and 'k~' € O(p,q). This completes the proof. O

5. On the Lie groups of real hyperbolic spaces

In this section, we study Ggry-, the Lie group of real hyperbolic space, and
prove Theorem 1 and Corollary 2.

First of all, we show that R* Aut(ggy») coincides with Q;, studied in the
previous section. We use the canonical basis {ej,...,e,} of ggyn, Which
satisfies

le1,ei] = e; (Vie{2,...,n}). (5.1

PROPOSITION 13.  The matrix expression of R* Aut(gpy») with respect to
the canonical basis {ey,...,e,} coincides with Q.

PrOOF. We put g := ggy» for simplicity. It is sufficient to show

Aut(g) =
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In order to show this, we claim that

[ge1, gej] — gler, ej] = (911 — l)ge; (Vg = (g95) € Q1, Vj€{2,...,n}). (53)

In fact, for such ¢g and j, one has ge; € span{es,...,e,}, and hence

n
[ge1, 9¢] = {21:1 gllehgej] = [gner, gejl = gnge;. (54)

This proves the above claim.
We show Aut(g) C Hyp. Take any g = (g;) € Aut(g). We need to show
ge Q) and g;; = 1. One has g e Q), since Aut(g) preserves

(9, 9] = span{es, ..., en}. (5.5)
Furthermore, since g € Aut(g), one has from (5.3) that
0 = (911 — 1)gen. (5.6)

Note that ge, # 0. We thus have g;; = 1, which shows g € H,.
It remains to show H, C Aut(g). Take any ¢ = (g;) € Ho. Since g¢
preserves span{ey,...,e,}, one has

glejer] =0 =lgej gex] (Y, ke{2,....n}). (5.7)

Furthermore, since g € Hy C Q) and g¢;; = 1, one can see from (5.3) that
lge1, g¢j] —gler,e] =0 (V€{2,...,n}). (5-8)
This concludes g € Aut(g), which completes the proof. O

By Proposition 11, one has a set of representatives of the action of Q; on
M ,,4), consisting of three points. We here prove Theorem 1 in terms of this
set of representatives.

ProoF (of Theorem 1). Put n:= p+ ¢ with p,g > 1, and take an inner
product {,> of signature (p,gq) on ggy». By Propositions 11 and 13, one
knows that

We={I, + AE1,| 2= 0,1,2} (5.9)

is a set of representatives of the action of R* Aut(ggy») with respect to the
basis {ej,...,e,}. Hence, it follows from Theorem 8 that there exist k > 0,
¢ € Aut(ggy»), and go € U such that {pgoer,...,pgoe,} is pseudo-orthonormal
with respect to k¢, >. By the definition of U, there exists 4 € {0, 1,2} such that
go=1,+AE;,. We here put

Xi 1= @goe; (ie{l,...,n}). (5.10)
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Since {xi,...,x,} is pseudo-orthonormal with respect to k{,», we have only
to show that the bracket relations among them are given by (i)—(iii) of
Theorem 1. We use

goei=¢ (Vie{l,....n—1}), goe, = ey + e,. (5.11)

First of all, we prove that the relation (i) holds. Take any i€ {2,...,
n—2}. Then it follows from (5.11) that

[g0e1, goei] = [er, ei] = e; = goei. (5.12)
Since ¢ is an automorphism, one obtains (i) by
[x1, x:] = ¢lgoer, goei] = pgoe; = x;. (5.13)
We next show that the relation (ii) holds. It follows from (5.11) that
[goer, goen] = [e1, der + eq] = en = —2er + goen = —Agoer + goen.  (5.14)

By applying ¢ to the both sides, one obtains (ii).
We prove that the relation (iii) holds. Take any ie {2,...,n—1}. Then,
(5.11) yields that

[goei,goé’n] = [eh}vel + €n] = —le; = —goe;. (5-15)

By applying ¢ to the both sides, one obtains (iii).
It remains to verify that other bracket relations precisely vanish. Take
any i,j€{2,...,n—1}. Then it follows from (5.11) that

[xi, 5] = ¢lgoei, goe)] = plei, ¢] = 0. (5.16)
This completes the proof of the theorem. O

We next study the curvature properties of an arbitrary left-invariant metric
{,» of signature (p,q) on Ggyrw, in terms of the basis {xi,...,x,,,} given
in Theorem 1. We put n:= p+¢, and calculate the curvatures under the
normalization k = 1. Recall that

& = <X,’,X,’> € {il} (517)

First of all, we calculate the symmetric operator U : ggy» X Gryr — Ory»
defined by, for any X, Y, Z € ggpyn,

2UX,Y),Z) =L[Z,X], Y) + (X, [Z,Y]). (5.18)

Throughout the following calculations, let i, j € {2,...,n— 1}. Then, one can
see from the bracket relations given in Theorem 1 that
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U(Xl,xl) - ;”Slgnxna U(x17xi) = —(1/2))(3,',
U(x1,x4) = —(4/2)x1 — (1/2)xy,

(5.19)
U(x;, x;7) = 0jei(e1x1 + Aenxn),
(

U(xi,xn) = —(1/2)Ax;, U(xn, Xn) = €184X1.
Recall that the Levi-Civita connection V of (ggyn, <, ) is defined by
VyY:=(1/2)[X, Y]+ UX,Y) (X, Y € gpygr)- (5.20)

Thus, one can directly calculate that

Vxlxl = /lelsnxnv Vxlxi = 07 Vx]xn = 7/1)(?1,
VX1 = —Xi, VX = oyei(e1x1 + Aenxn), ViXy = —AX;, (5.21)
VX1 = —Xp, Vyxi =0, Vi Xn = €184X1.

We next calculate the curvature tensor R, taken with the sign convention
R(X,Y)=[Vx,Vy| =Vix v (5.22)

In order to express R, we use the linear map X A Y : ggy» — Oryyr, Where
X, Y € ggyn, defined by

(XAY)Z=(Y,Z0X —(X,Z)Y. (5.23)

ProposITION 14, We keep the above notations. Then, for every
X,Y € gppr, the curvature tensor R satisfies

R(X,Y)=—(e,+e)X A Y. (5.24)

Proor. First of all, we calculate R(xj,x;). By using (5.21), one can
directly see that

R(x1,x:)x1 = (}vzen + &1)er1x;,

R(x1,x;:)x; = —(Sij(izsn + &1)&iX1, (5.25)
R(xy,x;)x, = 0.

This yields that
R(x1,x;) = —(2%e, + &1)x1 AX;. (5.26)

Similarly, one can directly calculate that
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R(x1,%)x1 = (Aen + 1)e1Xn,
R(x1,x,)x; = 0, (5.27)
R(x1, x,)x, = 7(/128,, + &1)enX1.

This shows that R(xp,x,) agrees with (5.24). One can also show the case for
R(X[, x/) by

R(X,‘, xj)xl - Oa
R(x;, x7)xi = (228w + &1) (Oierx; — Oieixy), (5.28)
R(x;,xj)x, = 0.

Finally, the case of R(x;,x,) can be checked by
R(x;,x,)x1 =0,
R(x, Xn)x; = 02260 + &1)eiXa, (5.29)
R(x;j, Xp)Xy = —(izﬁn + &1)énX;.

Since R is skew-symmetric and bilinear, this completes the proof. O

This proposition shows that the curvature tensor of ggy« has a simple
form. We are now in position to complete the proof of Corollary 2.

Proor (of Corollary 2). Let P be a nondegenerate tangent plane in
orye With a basis {X, Y}. Recall that the sectional curvature K of P is
defined by

. (RX, V)Y, X
X XOY, YD) — XYY

(5.30)

Then it follows from (5.24) that (ggy~, <, ) has constant sectional curvature
—(A%, +&1). This proves the first assertion.

Since p,q > 1 by assumption, we have ¢ =1 and & = —1. Hence, if
A=0,1, or 2, then we obtain the constant sectional curvature —1, 0, or 3,
respectively. Note that they are the sectional curvatures under the normal-
ization kK =1. If k varies over all positive real numbers, then the constant
sectional curvature can take any real number. This proves the second
assertion. O

RemARK 15. The above arguments show that there are exactly three left-
invariant pseudo-Riemannian metrics of signature (p,q) on Gggr« up to
isometry and scaling, if p,g > 1. In fact, Theorem 1 yields that there are



The moduli spaces of left-invariant pseudo-Riemannian metrics 371

at most three, and Corollary 2 shows that they cannot be isometric up to
scaling, since the sign of the constant sectional curvatures are different.

6. On the three-dimensional Heisenberg group

In this section, we apply our procedure to the three-dimensional Heisen-
berg group H; with Lie algebra [);. Recall that Rahmani ([16]) proved that
any left-invariant Lorentzian metric on Hj can be classified into three types.
Our argument gives an alternative proof of this fact.

Throughout this section, we fix the canonical basis {e},es,e3} of g =Dy,
whose bracket relations are given by

[82,63] =e]. (61)

First of all, we describe R* Aut(h;) in terms of this basis. Note that the
transpose of Q) in GL3(R) is given by

% ok %
0 = 0 = x| eGL3R),. (6.2)
0 x =x

LemMA 16. The matrix expression of R* Aut(h;) with respect to the
canonical basis {e,e;,e3} coincides with Q.

PrOOF. One can directly show that the matrix expression of Aut(h;) with
respect to {ej, ez, e3} is

ad —bc * x
Aut(h;) = 0 a b ||lad —bc#0 ;. (6.3)
0 c d
The lemma is an easy consequence of it. O

Recall that W = {3 + 1E; 3|4 =0,1,2} is a set of representatives of the
action of Q) C GL3(R). Thus, by Proposition 12,

W= {u " ueWy ={h—AE;,|/.=0,1,2} (6.4)

is a set of representatives of the action of Qf = R* Aut(h;). In terms of this
set of representatives, we can prove Theorem 3.

ProoF (of Theorem 3). Take an arbitrary inner product <, ) of signature
(2,1) on bh;. Since U given in (6.4) is a set of representatives, Theorem 8
yields that there exist k£ > 0, ¢ € Aut(h;), and gy € U™ such that {pgoer, pgoez,
@goes} is pseudo-orthonormal with respect to k<{,». Let us put

X; = @goe; (ie{l,2,3}), (6.5)
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and study their bracket relations. One knows that there exists A€ {0, 1,2}
such that go =I5 — AE3 ;. We thus have

goey = e] — Aes, goer = ez, goes = e3. (6.6)

This yields that
[x1,x2] = pler — Aes, ea] = pler = pA(goer + Agoes) = A(x1 + Ax3).  (6.7)
Other bracket products can be calculated similarly. O

We here recall the classification of left-invariant Lorentzian metrics on
H; by Rahmani ([16]). In fact, Propositions 2.4 and 2.5 in [16] can be
summarized as follows.

THEOREM 17 ([16]). Let {,) be an arbitrary inner product on by; of
signature (2,1). Then, there exists a pseudo-orthonormal basis {fi, f2, f3}
with respect to {,) such that one of the following bracket relations holds:

(1) [ fi = afis [fs fi] = 0, [fo, fi] = 0, where o> 0,

2) [~ f61=0, [/34] =0, [f2, il =2f3, where y >0,

@) 26l =0, sl == f [ fil = o= 1

He denotes by g;, g2, and g3 the left-invariant Lorentzian metrics corre-
sponding to (1), (2), and (3), respectively. Finally in this section, we compare
the above result to our Theorem 3, and review some known curvature
properties.

Remark 18. Let {,) be an arbitrary inner product on h; of signature
(2,1). Then, according to Theorem 3, we have three cases, namely 1 =0, 1,2.
(1) The case of 2 =0. Then, under a certain scaling (k = 1), there exists

a pseudo-orthonormal basis {xj, x»,x3} with respect to ¢, ) such that

[x1,x2] =0, [x2,x3] = x1, [x3,x1] = 0.

Therefore, this pseudo-orthonormal basis satisfies the same bracket
relations as in Theorem 17 (1) with & =1, and hence the metric
coincides with ¢; in the above notation. It has been known that g; is
not Einstein, but algebraic Ricci soliton ([15], see also [14]).

(2) The case of A=1. Then, there exists a pseudo-orthonormal basis
{x1,x2,x3} with respect to {,), up to scaling, such that

[x1,X2] = x1 + X3, [x2,x3] = X1 + X3, [x3,x1] = 0.

Put f] :=x, fo:= —x;, and f3 := x3. Then one can directly check
that {11, f2, f3} is pseudo-orthonormal and satisfies the same bracket
relations as in Theorem 17 (3). Then the metric coincides with g3,
which is known to be flat ([13], see also [17]).
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(3) The case of A =2. Then, there exists a pseudo-orthonormal basis
{x1,x2,x3} with respect to {, >, up to scaling, such that
[x1,x2] = 2(x1 + 2x3), [x2, x3] = x1 + 2x3, [x3,x1] = 0.
We define a pseudo-orthonormal basis {fi, f3, f3} by
fir=x2,  f=3"02x4x),  fi=37 (4 2x).

One can directly show that it satisfies the same bracket relations as
in Theorem 17 (2) with y =3. Then the metric corresponds to g,
which is not Einstein, but algebraic Ricci soliton ([15], see also [14]).

For the notation of algebraic Ricci soliton metrics in the pseudo-

Riemannian case, we refer to [15] and [1]. Note that algebraic Ricci soliton
metrics give rise to left-invariant Ricci soliton metrics.
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