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Abstract. Hensel-Przytycki-Webb proved that the curve graphs of all orientable

surfaces are 17-hyperbolic. In this paper, we show that the curve graphs of non-

orientable surfaces are 17-hyperbolic by applying Hensel-Przytycki-Webb’s argument.

We also show that the arc graphs of non-orientable surfaces are 7-hyperbolic, and arc-

curve graphs of (non-)orientable surfaces are 9-hyperbolic.

1. Introduction

For gb 1 and nb 0, let N ¼ Ng;n be a compact, connected, non-

orientable surface of genus g with n boundary components. The curve graph

CðNÞ of N is the graph whose vertex set is the set of homotopy classes of

essential simple closed curves (or curves) and whose edges correspond to two

disjoint curves. Curve graphs are often used to study mapping class groups of

surfaces, geometric group theory, and hyperbolic geometry. In this paper, we

consider a graph as a geodesic space. A triangle formed by geodesic edge-

paths in the graph (we call such a triangle a geodesic triangle) has a k-center

(kb 0) if there exists a vertex such that the distance from it to each side of T is

not more than k. A connected graph is k-hyperbolic if every geodesic triangle

in the graph has a k-center. We say that a graph is (Gromov) hyperbolic if

it is k-hyperbolic for some kb 0, and we refer to such a constant k as a

hyperbolicity constant for the graph. Bestvina-Fujiwara [2] first proved that

CðNÞ is Gromov hyperbolic, and Masur-Schleimer [8] gave another proof.

However, the uniform hyperbolicity for curve graphs of non-orientable surfaces

was not known. The main result of this paper is to prove the following:

Theorem 1. If CðNÞ is connected, then it is 17-hyperbolic.

Let S ¼ Sg;n be an orientable surface of genus gb 0 with nb 0 boundary

components. First, Masur-Minsky [7] proved that each curve graph CðSÞ of

S is hyperbolic in 1999. After their original proof, various other proofs of
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hyperbolicity for curve graphs of orientable surfaces were given by several

authors. Recently, Aougab [1], Bowditch [3], Clay-Rafi-Schleimer [4], and

Hensel-Przytycki-Webb [5] independently proved that one can choose hyper-

bolicity constants which do not depend on the topological types of orientable

surfaces. In particular, Hensel-Przytycki-Webb [5] showed that CðSÞ is

17-hyperbolic by a combinatorial argument, and their argument seems to

give an optimum constant. We prove Theorem 1 by applying Hensel-

Przytycki-Webb’s argument to the case of non-orientable surfaces. They also

showed that arc graphs of orientable surfaces are 7-hyperbolic. We prove a

similar result for non-orientable surfaces:

Theorem 2. The arc graph AðNÞ of N is 7-hyperbolic.

We also consider arc-curve graphs. The hyperbolicity for arc-curve

graphs of orientable surfaces was proved by Korkmaz-Papadopoulos [6, Cor-

ollary 1.4]. The uniform hyperbolicity, however, was not known. We also

prove:

Theorem 3. Set F ¼ S or N. If the arc-curve graph ACðF Þ of F is

connected, then it is 9-hyperbolic.

For the cases where a, b, d are arcs or where a, b, d are curves, Hensel-

Przytycki-Webb proved a geodesic triangle T ¼ abd has a 7-center and a

9-center in ACðSÞ respectively. We show that a geodesic triangle T ¼ abd has

an 8-center for the cases where a is a curve and b, d are arcs, or where a, b are

curves and d is an arc to prove Theorem 3.

2. Preliminaries

A compact, connected, non-orientable surface of genus gb 1 with nb 0

boundary components is the connected sum of g projective planes which is

removed n open disks. We denote it by N ¼ Ng;n. Note that N is homeo-

morphic to the surface obtained from a sphere by removing gþ n open disks

and attaching g Möbius bands along their boundaries, and we call each of the

Möbius bands the crosscap. An arc a on N is properly embedded if qa � qN

and a is transverse to qN. A properly embedded arc a on N is called essential

if it is not homotopic into qN. A curve on N is called essential if it does

not bound a disk or a Möbius band, and it is not homotopic to a boundary

component of N. We remark that a homotopy fixes each boundary compo-

nent of N setwise. From now on, we consider arcs and curves which are

properly embedded and essential. The arc-curve graph ACðNÞ of N is the

graph whose vertex set ACð0ÞðNÞ is the set of homotopy classes of arcs and
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curves on N. Two vertices form an edge if they can be represented by disjoint

arcs or curves. The arc graph AðNÞ of N is the subgraph of the arc-curve

graph induced by the vertex set Að0ÞðNÞ which consists of homotopy classes

of arcs on N. The curve graph CðNÞ of N is the subgraph of the arc-curve

graph induced by the vertex set Cð0ÞðNÞ which consists of homotopy classes of

curves on N. We deem that each edge of ACðNÞ, AðNÞ, and CðNÞ has unit

length. We define the distances dACð� ; �Þ, dAð� ; �Þ and dCð� ; �Þ in ACðNÞ,
AðNÞ, and CðNÞ, respectively, by the minimal length of edge-paths connecting

the two vertices. Now, we consider ACðNÞ, AðNÞ, and CðNÞ, as geodesic

spaces.

Two arcs a, b (or two curves a, b) on N are in minimal position if the

number of intersections between a and b is minimal in the homotopy classes of

a and b.

Proposition 1. Two arcs a, b on N are in minimal position if and only if a

and b intersect transversely and they do not form any bigons (i.e. an embedded

disk on N bounded by a subarc of a and a subarc of b) or any half-bigons (i.e. an

embedded disk on N bounded by a subarc of a, a subarc of b, and a part of a

boundary component of N).

We use the following proposition to prove Proposition 1.

Proposition 2 ([9, Proposition 2.1]). Let N be a compact, non-orientable

surface, and a and b essential curves on N. Then a and b are in minimal

position if and only if a and b do not form a bigon.

Proof (Proof of Proposition 1). If a and b bound bigons or half-bigons,

then we can reduce intersection points by a homotopy through bigons or

half-bigons.

Conversely, suppose that two arcs a and b on N are not in minimal

position. We collect the boundary components which have endpoints of a and

b in one side by a homeomorphism preserving intersections between a and b.

We make a mirror reflective surface N 0 of N, and assume that a 0 and b 0 are

arcs on N 0 corresponding to a and b on N respectively. Note that a 0 and b 0

are not in minimal position since a and b are not in minimal position. We

attach each boundary component of N 0 which has the endpoints of a 0 and b 0 to

the reflective part of N, and let M be the resulting surface. Then a [ a 0 and

b [ b 0 are essential curves and not in minimal position on M. By Proposition

9, a [ a 0 and b [ b 0 form bigons. From the assumption that N and N 0 are

mirror reflective surfaces each other, we have the following two cases. One is

that a and b form bigons on N and a 0 and b 0 also form bigons on N 0 at the

reflective parts. The other is that a [ a 0 and b [ b 0 form bigons on M which
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are mirror reflective for attached parts. The former implies that a and b form

bigons on N, and the latter implies that a and b form half-bigons on N, as

desired. r

3. Unicorn paths

In this section, all lemmas come from Section 3 in [5] by changing the

assumption of orientable surfaces to non-orientable surfaces, and so please see

the proofs of [5] for the proofs of these lemmas.

Definition 1. Let a and b be two arcs on N which are in minimal

position, and let a and b be one of the endpoints of a and b, respectively.

Choose p A a \ b. Let a 0 be a subarc of a whose endpoints are a and p, and b 0

a subarc of b whose endpoints are b and p. If a 0 [ b 0 is an embedded arc on

N, we say that a 0 [ b 0 is a unicorn arc obtained from aa, bb and p.

A unicorn arc is uniquely determined by p, although not all intersection

points between a and b determine unicorn arcs since the resulting arcs may

not be embedded on N. Note that a unicorn arc a 0 [ b 0 is an essential arc.

Indeed, if a 0 [ b 0 is not essential, that is, if a 0 [ b 0 is homotopic into a boundary

component of N, then a and b form a half-bigon, and this contradicts the

assumption that a and b are in minimal position.

We define a total order among unicorn arcs obtained from aa, bb as

follows.

Definition 2. Let a 0 [ b 0, a 00 [ b 00 be two unicorn arcs obtained from

aa and bb, where a 0; a 00 � a and b 0; b 00 � b. We define a 0 [ b 0 a a 00 [ b 00 by

a 00 � a 0 and b 0 � b 00.

Definition 3. Let ðc1; c2; . . . ; cn�1Þ be the ordered set of all unicorn arcs

obtained from aa and bb. We call the sequence Pðaa; bbÞ ¼ ða ¼ c0; c1; . . . ;

cn�1; cn ¼ bÞ the unicorn path between aa and bb.

Then, we have a natural question similar to that of the case of orientable

surfaces whether a unicorn path Pðaa; bbÞ becomes a path in AðNÞ. We gain

the following:

Proposition 3. Consecutive arcs in a unicorn path represent adjacent

vertices of AðNÞ.

Proof. Let ci ¼ a 0 [ b 0 (2a ia n� 1) and p A a 0 \ b 0. Let p 0 be the

point in ða� a 0Þ \ b which is nearest to a along a of the points determining a

unicorn arc. Then, the intersection point p 0 determines the unicorn arc ci�1.
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The unicorn arc ci does not pass any common points of a and b between p and

p 0, otherwise the point becomes the next point determining the unicorn arc next

to ci and this contradicts the choice of p 0. Thus, ci and ci�1 do not intersect

between p and p 0. Furthermore, there exists an arc homotopic to ci which is

disjoint from ci�1. Indeed, it is su‰cient to choose a neighborhood of a 0 not

intersecting ci�1 when ci turns at p, and a neighborhood of b 0 not intersecting

ci�1 at p 0. For i ¼ 1; n, the fact that ci�1 and ci form an edge follows

similarly. r

We deduce that all arc graphs are connected by the existence of unicorn

paths.

Corollary 1. AðNÞ is connected.

Lemma 1 (cf. [5, Lemma 3.3]). Let a, b, and d be three arcs on N which

are mutually in minimal position, and let a, b and d be one of the endpoints of

a, b and d, respectively. For each c A Pðaa; bbÞ, there exists c� A Pðaa; d dÞ [
Pðbb; d dÞ, such that c and c� represent adjacent vertices of AðNÞ.

Note that c and d may not be in minimal position.

Lemma 2 (cf. [5, Lemma 3.4]). Let a, b and d be three arcs on N which

are mutually in minimal position, and let a, b and d be one of the endpoints of

a, b and d, respectively. Then there exist c1 A Pðaa; bbÞ, c2 A Pðbb; d dÞ and

c3 A Pðd d; aaÞ such that ci and c j (i0 j and i; j ¼ 1; 2; 3) represent adjacent

vertices of AðNÞ.

4. Arc graphs are uniformly hyperbolic

In this section, all the proofs are the same as those of [5, Section 4].

Slightly abusing the notation, we consider vertices a, b of AðNÞ, CðNÞ and

ACðNÞ as arcs or curves on N which are in minimal position from now on.

Definition 4. We define the following family Pða; bÞ of unicorn paths

to a pair of vertices a, b in AðNÞ. Let ða; bÞ be an edge in AðNÞ connecting

a and b. Let aþ and a� be the endpoints of a, and bþ and b� the endpoints

of b. Then, we define

Pða; bÞ ¼ fða; bÞg if a \ b ¼ q;

fPðaaþ ; bbþÞ;Pðaaþ ; bb�Þ;Pðaa� ; bbþÞ;Pðaa� ; bb�Þg if a \ b0q:

�

Proposition 4 (cf. [5, Proposition 4.2]). Let G be a geodesic in

AðNÞ between vertices a and b. Then any unicorn arc c A P A Pða; bÞ is at

distancea 6 from G.
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Proof (Proof of Theorem 2). Let T ¼ abd be any geodesic triangle in

AðNÞ, where a, b and d are three vertices of AðNÞ. By Lemma 2, for a, b

and d, there exist cab A Pðaa; bbÞ, cbd A Pðbb; d dÞ and cda A Pðd d; aaÞ such that

each pair represents adjacent vertices of AðNÞ. Let ab, bd, and da be the

sides of T connecting a and b, b and d, and d and a, respectively in AðNÞ.
By Proposition 4, cab is at distancea 6 from ab, and a 7 from both bd and

da. Hence, cab is a 7-center of T . r

5. Curve graphs are uniformly hyperbolic

By [10, Theorem 6.1], we obtain the following:

Proposition 5. If g ¼ 1; 2 and gþ nb 5, or gb 3, then the curve graph

CðNÞ of N is connected.

We define a retraction r : ACð0ÞðNÞ ! Cð0ÞðNÞ as follows. If a A Cð0ÞðNÞ,
then rðaÞ ¼ a. If a A Að0ÞðNÞ, then we assign a boundary component of a

regular neighborhood of its union with qN to rðaÞ (see Figure 1). If there are

two boundary components of the regular neighborhood, we choose essential

one (c.f. r 0 : ACð0ÞðSÞ ! Cð0ÞðSÞ in [5]). The di¤erence from r 0 in [5] is as

follows: if a is an arc on N which goes through crosscaps odd number of times,

then rðaÞ is ‘‘twisted’’ (see the left-hand side in Figure 2).

Lemma 3. The retraction r is 2-Lipschitz, namely, for any a; b A ACðNÞ
dCðrðaÞ; rðbÞÞa 2dACða; bÞ.

Proof. It is enough to prove that dCðrðaÞ; rðbÞÞa 2 for a; b A ACðNÞ
with dACða; bÞ ¼ 1. If a; b A Cð0ÞðNÞ, then dCðrðaÞ; rðbÞÞ ¼ dCða; bÞ ¼ dACða; bÞ
¼ 1 < 2. If a A Cð0ÞðNÞ and b A Að0ÞðNÞ, then we can take a regular neigh-

borhood of the union of b and the boundary components which have end-

points of b without intersecting a. Note that rðbÞ may coincide with a. Thus

dCðrðaÞ; rðbÞÞ ¼ dCða; rðbÞÞa 1 < 2. From now, we assume a; b A Að0ÞðNÞ.
Then there are eight types of pairs of a, b which satisfy dACða; bÞ ¼ 1

Fig. 1. Examples of the retraction r.

Fig. 2. Examples that rðaÞ is twisted
(left) and untwisted (right).
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(see Figure 3, where each circle represents a boundary component of N). Note

that there are two cases where a (resp. b) passes through crosscaps odd number

of times, and where it passes through crosscaps even number of times. In the

former case, we say that rðaÞ (resp. rðbÞ) is twisted (see the left-hand side

in Figure 2), and in the latter case, we say that rðaÞ (resp. rðbÞ) is untwisted

(see the right-hand side in Figure 2). First we assume ðg; nÞ0 ð3; 1Þ.
In the cases of (a), (c) and (d) in Figure 3, rðaÞ and rðbÞ are essential and

disjoint curves. Note that rðaÞ and rðbÞ may coincide in (c) and (d). Hence,

dCðrðaÞ; rðbÞÞa 1 < 2.

In the case of (b) in Figure 3, there are three cases where both rðaÞ and

rðbÞ are untwisted, rðaÞ is untwisted and rðbÞ is twisted, and both rðaÞ and rðbÞ
are twisted. In all the three cases, we take a boundary component a of a

regular neighborhood of the union of a and b with qN large enough to intersect

neither rðaÞ nor rðbÞ. Then it is su‰cient to prove that a is essential. It is

clear that a bounds three-punctured disk on one side. We show that a does

not bound a disk, an annulus, or a Möbius band on the other side. By the

calculation of the Euler characteristics, we see that a separates N into S0;4

and Ng;n�2. If gb 2, then Ng;n�2 is not a disk, an annulus, or a Möbius

band. If g ¼ 1, then Ng;n�2 is also not a disk, an annulus, or a Möbius band,

since gþ nb 5. Therefore, a is essential and dCðrðaÞ; rðbÞÞa dCðrðaÞ; aÞ þ
dCða; rðbÞÞa 2.

In the case of (e) in Figure 3, there are four cases where both rðaÞ and rðbÞ
are untwisted, rðaÞ is untwisted and rðbÞ is twisted, rðaÞ is twisted and rðbÞ is

untwisted, and both rðaÞ and rðbÞ are twisted. Let g1 and g2 be the boundary

components of N which have endpoints of a and b. In the first case, i.e. both

rðaÞ and rðbÞ are untwisted, there are two boundary components of a regular

neighborhood of a [ g1 [ g2 [ b. We denote by a the outer part of the regular

Fig. 3. Eight cases of a; b A Að0ÞðNÞ which satisfy dACða; bÞ ¼ 1.
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neighborhood, and by a 0 the other (see Figure 4). Note that a and a 0 intersect

neither rðaÞ nor rðbÞ. It is su‰cient to show that at least one of a and a 0 is

essential. If a bounds a disk, an annulus, or a Möbius band, then we take

a 0. The curve a 0 separates N into S0;3 and Ng;n�1, S0;4 and Ng;n�2, N1;3 and

Ng�1;n�1, or N1;3 and Sðg�1Þ=2;n�1. We can show that a 0 is essential by a

similar argument in (b). If a does not bound a disk, an annulus, or a Möbius

band, then we take a, and so a is essential. In the second case, i.e. rðaÞ is

untwisted and rðbÞ is twisted, there is one boundary component of a regular

neighborhood of a [ g1 [ g2 [ b, and we denote it by a. It is su‰cient to

show that a is essential. The curve a separates N into N1;3 and Ng�1;n�1,

or N1;3 and Sðg�1Þ=2;n�1, and we can see a is essential since gþ nb 5. In

the third case, i.e. rðaÞ is twisted and rðbÞ is untwisted, it is enough to follow

a similar argument in the first case of (e). In the last case, i.e. both rðaÞ and

rðbÞ are twisted, we can show it by a similar argument to that of the third

case in (e).

In the case of (f ) in Figure 3, there are three cases where both rðaÞ
and rðbÞ are untwisted, rðaÞ is untwisted and rðbÞ is twisted, and both rðaÞ
and rðbÞ are twisted. Let g1 and g2 be the boundary components of N which

have endpoints of a and b. In the first case, i.e. both rðaÞ and rðbÞ are

untwisted, there are two boundary components of a regular neighborhood of

a [ g1 [ g2 [ b. We denote by a the outer part of the regular neighborhood,

and by a 0 the other (see Figure 4). If a bounds a disk, an annulus, or a

Möbius band, we take a 0. The curve a 0 separates N into S0;3 and Ng;n�1, S0;4

and Ng;n�2, N1;3 and Ng�1;n�1, or N1;3 and Sðg�1Þ=2;n�1, and so a 0 is essential.

If a does not bound a disk, an annulus, or a Möbius band, then we take a,

which is essential. In the second case, i.e. rðaÞ is untwisted and rðbÞ is twisted,
there is one boundary component of a regular neighborhood of a [ g1 [ g2 [ b,

and we denote it by a. The curve a separates N into N1;3 and Ng�1;n�1, or

N1;3 and Sðg�1Þ=2;n�1, and so a is essential. In the last case, i.e. both rðaÞ and

rðbÞ are twisted, there are two boundary components of a regular neighborhood

Fig. 4. The case where both rðaÞ and rðbÞ are untwisted in (e), (f ), and (g) respectively.
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of a [ g1 [ g2 [ b. We take one of them and denote it by a. Then a is a non-

separating curve on N. Therefore, a is essential.

In the case of (g) in Figure 3, there are three cases where both rðaÞ and

rðbÞ are untwisted, rðaÞ is untwisted and rðbÞ is twisted, and both rðaÞ and rðbÞ
are twisted. Let g be a boundary component of N which has endpoints of a

and b. In the first case, i.e. both rðaÞ and rðbÞ are untwisted, there are three

boundary components of a regular neighborhood of a [ g [ b. We denote

by a1 the component which encloses a, g, and b, and by a2 (resp. a3) the

component which lies in the inner part of a (resp. b) in Figure 4. Suppose that

a1 bounds a disk. It is su‰cient to show that a3 is essential if a2 is not

essential. (If a2 is essential, then we take a2.) When we assume that a2 is not

essential, a2 bounds either an annulus or a Möbius band. Then, the curve

a3 separates N into S0;3 and Ng;n�1, N1;2 and Ng�1;n, or N1;2 and Sðg�1Þ=2;n.

Hence a3 is essential. When a1 bounds an annulus and a2 is not essential, we

can also take an essential curve a3 which is disjoint from both rðaÞ and rðbÞ.
Suppose that a1 bounds a Möbius band and a2 is not essential. Then, a2
bounds either an annulus or a Möbius band, and so the curve a3 separates

N into N1;3 and Ng�1;n�1, N1;3 and Sðg�1Þ=2;n�1, N2;2 and Ng�2;n, or N2;2 and

Sðg�2Þ=2;n. By a similar argument to that of the third case in (e), Ng�1;n�1 is

not a disk, an annulus, or a Möbius band. We consider Ng�2;n. If g� 2b 2,

then Ng�2;n is not a disk, an annulus, or a Möbius band. If g� 2 ¼ 1, then

Ng�2;n is not a disk, an annulus, or a Möbius band because we assume

ðg; nÞ0 ð3; 1Þ. If g� 2 ¼ 0, then Ng�2;n is not a disk, an annulus, or a Möbius

band, since gþ nb 5. When a1 does not bound a disk, an annulus, or a

Möbius band, we take a1. In the second case, i.e. rðaÞ is untwisted and rðbÞ is

twisted, there are two boundary components of a regular neighborhood of

a [ g [ b, and the regular neighborhood of a [ g [ b is a non-orientable surface

of genus 1 with 3 boundary components. We denote by a1 and a2 the

boundaries of this surface which are not g. It is su‰cient to show that, if a1
is not essential, then a2 is essential. If a1 bounds a disk, an annulus, or a

Möbius band, then a2 separates N into N1;2 and Ng�1;n, N1;2 and Sðg�1Þ=2;n,

N1;3 and Ng�1;n�1, N1;3 and Sðg�1Þ=2;n�1, N2;2 and Ng�2;n, or N2;2 and Sðg�2Þ=2;n.

Hence a2 is essential. In the third case, i.e. both rðaÞ and rðbÞ are twisted,

there is one boundary component of a regular neighborhood of a [ g [ b (we

denote it by a), and the regular neighborhood of a [ g [ b is a non-orientable

surface of genus 2 with 2 boundary components. Then a separates N into N2;2

and Ng�2;n, or N2;2 and Sðg�2Þ=2;n, and so a is essential.

In the case of (h) in Figure 3, there are three cases where both rðaÞ and

rðbÞ are untwisted, rðaÞ is untwisted and rðbÞ is twisted, and both rðaÞ and rðbÞ
are twisted. Let g be a boundary component of N which has endpoints of

a and b. In the first case, i.e. both rðaÞ and rðbÞ are untwisted, a regular
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neighborhood of a [ g [ b is twice holed torus, and rðaÞ and rðbÞ intersect

once. Hence, the complement of rðaÞ and rðbÞ is a twice holed disk, and then

we can take an essential curve which goes around the twice holed disk. In the

second case, i.e. rðaÞ is untwisted and rðbÞ is twisted, it is enough to give the

same argument as we gave in the third case of (g). In the third case, i.e. both

rðaÞ and rðbÞ are twisted, it is enough to give the same argument as we gave in

the second case of (g). In the cases of (e), (f ), (g), and (h), there is an essential

curve a which intersects neither rðaÞ nor rðbÞ. Therefore, dCðrðaÞ; rðbÞÞa
dCðrðaÞ; aÞ þ dCða; rðbÞÞa 2.

Next we assume ðg; nÞ ¼ ð3; 1Þ. By the argument mentioned above, it is

enough to discuss only the case of (g). In all cases where rðaÞ and rðbÞ are

untwisted or twisted, we can take a curve which passes through a Möbius band

which intersects neither rðaÞ nor rðbÞ. Therefore, dCðrðaÞ; rðbÞÞa dCðrðaÞ; aÞ þ
dCða; rðbÞÞa 2, and we complete the proof of Lemma 3. r

Before proving Theorem 1, we need to show the following proposition.

Proposition 6. If g ¼ 1; 2 and gþ nb 5, or gb 3, then ACðNÞ is

connected.

Proof. If a; b A Að0ÞðNÞ or a; b A Cð0ÞðNÞ, then there exists an edge-path

connecting a and b in AðNÞ or CðNÞ, respectively, by Corollaries 1 and 5.

We consider it as an edge-path in ACðNÞ. Therefore, we may assume

a A Cð0ÞðNÞ and b A Að0ÞðNÞ. Fix any a A Cð0ÞðNÞ. We take an appropriate

boundary component a 0 of a regular neighborhood of a, and we connect a 0 and

a boundary component of N by an arc h which does not intersect a. Then the

products h � a 0 � h�1 is a properly embedded arc which is disjoint from a.

Hence, we can connect the vertices a and h � a 0 � h�1 by an edge in ACðNÞ.
On the other hand, for any b A Að0ÞðNÞ, we connect it to h � a 0 � h�1 in AðNÞ
by a unicorn path in Pðh � a 0 � h�1; bÞ. Therefore, we can connect an arbitrary

a A Cð0ÞðNÞ and an arbitrary b A Að0ÞðNÞ by an edge-path in ACðNÞ. r

We also need the following proposition to prove Theorem 1. The proof is

the same as the second paragraph of the proof of [5, Theorem 1].

Proposition 7. Let a, b be vertices of CðNÞ, and a, b vertices of AðNÞ
which are adjacent to a, b, respectively. Let G ¼ ab be a geodesic connecting a

and b in CðNÞ. Then any unicorn arc c A P A Pða; bÞ is at distancea 8 from G.

Now, we give a proof of Theorem 1.

Proof (Proof of Theorem 1). First we assume that qN0q. We take

any geodesic triangle T ¼ abd in CðNÞ, where a; b; d A Cð0ÞðNÞ. Let a, b,
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and d be three vertices of AðNÞ which are adjacent to a, b and d in ACðNÞ
respectively. We choose one of the endpoints a, b and d of a, b and d,

respectively. Let ab be the side of T connecting a and b in CðNÞ. From

Lemma 2, there exist c
ab

A Pðaa; bbÞ, c
bd

A Pðbb; d dÞ, and c
da

A Pðd d; aaÞ such

that each pair represents adjacent vertices of AðNÞ. By Proposition 7, the

vertex c
ab

of ACðNÞ is a 9-center of T . In particular, c
ab

is at distancea 8

from a vertex of G ¼ ab, which is a curve. We connect this vertex with c
ab

by

a geodesic in ACðNÞ. By Lemma 3, the vertex rðc
ab
Þ A Cð0ÞðNÞ is a 17-center

of the triangle T in CðNÞ.
Secondly, we assume that qN ¼ q. Note that N has a negative Euler

characteristic, since the genus of N is at least 3. Let N be a surface obtained

from N by removing an open disk. In this proof, we denote by dCðNÞð� ; �Þ and
dCðNÞð� ; �Þ the distances in CðNÞ and CðNÞ, respectively. We define a retrac-

tion Ret : CðNÞ ! CðNÞ as follows: for any a A CðNÞ, RetðaÞ is a homotopy

class of a in CðNÞ. Then Ret is 1-Lipschitz. We also define a section

Sec : CðNÞ ! CðNÞ by choosing a hyperbolic metric on N, realizing curves as

geodesics, and adding a puncture outside the union of the curves. Note that

the composition Ret � Sec is identity on CðNÞ. Let T ¼ abd be any geodesic

triangle in CðNÞ, where a, b, and d are vertices of CðNÞ. Since Sec is an

embedding, SecðTÞ ¼ T has a 17-center q A Cð0ÞðNÞ in CðNÞ. Let ab, bd and

da be the sides of T connecting a and b, b and d, and d and a in CðNÞ. Then,

for ab, we obtain

dCðNÞðRetðqÞ; abÞ ¼ dCðNÞðRetðqÞ; ðRet � SecðaÞÞðRet � SecðbÞÞÞ

a dCðNÞðq; SecðaÞ SecðbÞÞ

a 17:

Here ðRet � SecðaÞÞðRet � SecðbÞÞ is a geodesic in CðNÞ connecting Ret � SecðaÞ
and Ret � SecðbÞ, and SecðaÞ SecðbÞ is a geodesic in CðNÞ connecting SecðaÞ
and SecðbÞ. For bd and da, we can show the same results that we showed for

ab. Hence, RetðqÞ is a 17-center of T in CðNÞ. r

6. Arc-curve graphs are uniformly hyperbolic

Similarly to Propositions 4 and 7, we can prove the following.

Proposition 8. Let a be a vertex of CðNÞ, b a vertex of AðNÞ, and a

a vertex of AðNÞ which is adjacent to a in ACðNÞ. Let G ¼ ab be a geodesic

connecting a and b in ACðNÞ. Then any unicorn arc c A P A Pða; bÞ is at

distancea 7 from G.
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Proof (Proof of Theorem 3). First we assume F ¼ N. Fix any geodesic

triangle T ¼ abd in ACðNÞ, where a, b and d are vertices of ACðNÞ. If

a; b; d A Að0ÞðNÞ, then T has a 7-center in AðNÞ by Theorem 1. Hence T has

a 7-center in ACðNÞ. If a; b; d A Cð0ÞðNÞ, then T has a 9-center in ACðNÞ by
the proof of Theorem 1. If a A Cð0ÞðNÞ and b; d A Að0ÞðNÞ, then we take

a A Að0ÞðNÞ which is adjacent to a in ACðNÞ. By Lemma 2, for a; b; d A
Að0ÞðNÞ, there exist cab A Pðaa; bbÞ, cbd A Pðbb; d dÞ, and cda A Pðd d; aaÞ such

that each pair represents adjacent vertices of AðNÞ. Then cab is an 8-center

of T in ACðNÞ by Proposition 6. If a; b A Cð0ÞðNÞ and d A Að0ÞðNÞ, then

T also has an 8-center in ACðNÞ. From the above four cases, ACðNÞ is

9-hyperbolic. Second we assume that F ¼ S. Fix any geodesic triangle

T ¼ abd in ACðSÞ, where a, b and d are vertices of ACðSÞ. If a; b; d A
Að0ÞðSÞ or a; b; d A Cð0ÞðSÞ, then T has a 7-center or a 9-center in ACðSÞ,
respectively, by the proofs of [5, Theorems 1.1 and 1.2]. If a A Cð0ÞðSÞ and

b; d A Að0ÞðSÞ, or a; b A Cð0ÞðSÞ and d A Að0ÞðSÞ, then we can show that T has

an 8-center in ACðSÞ by the same argument that we gave in the proof of

Theorem 3 (see the same cases in the proof of Theorem 3). Therefore ACðSÞ
is 9-hyperbolic. r
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