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ABSTRACT. Let ¢ > 2 be an integer and S,(n) denote the sum of the digits in base ¢ of
the positive integer n. We look for an estimate of the average of some multiplicative
arithmetical functions defined by sums over divisors d of n satisfying S,(d?) = r mod m
for some integers r and m.

1. Introduction

Throughout this paper, we denote by N, Ny, Z, R and C the sets of
positive integers, non negative integers, integers, real and complex numbers
respectively. Given a real number x, |x| denotes the greatest integer < x and
e(x) = ¥, The greatest common divisor of two integers @ and b will be
denoted by (a,b) and if a <b we denote by [a,b] the set {a,a+1,...,b}.
The number of distinct prime factors of a positive integer n will be denoted
o(n).

First, we shall introduce the following definition: let n € Ny and ¢ be
an integer > 2. The sequence (q;(n));.n, €{0,1,...,¢ — 13N is defined to be
the unique sequence satisfying

n:iak(n)qk. (L.1)
k=0

The right hand side of the expression (1.1) shall be called the expansion of n
to the base q. We shall set
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A function f:No— C is called completely gq-additive if f(0)=0 and
flag® +b) = f(a)+ f(b) for any integers a>1, k>1 and 0<b < g*.
Such functions were introduced by Gelfond [7] and further studied by Delange
[5], Bésineau [3], Coquet [4], Katai [9] and others. Using the base ¢ expan-
sion (1.1), we find that the function f is completely g-additive if and only if
f(0) =0 and

%
Sy =" fla(n)).
k=0
It follows that a completely g-additive function is completely determined by
its values on the set {0,1,...,94—1}. A typical example of a completely
g-additive function is the sum of digits function S.

Another kind of arithmetic functions is the multiplicative ones, i.e. that
satisfy f(1) =1 and whenever ¢ and b are coprime integers, then f(ab) =
f(a)f(b) (see [2, chapter 2] for further informations).

In this paper, we shall focus on the following functions depending on a
positive integer n:

* the number of positive divisors function, t:n+— > 1.
d|n
e The sum of the s-th powers of all the positive divisors function (for

S
seR), o,:n— Z(g) . In particular, gy = 7.

d|n
e The number of positive integers < n and coprime to n, ¢ : n +— 1.
* The Mébius function, Ef,]f)i?
1, if n=1,
pin— 9 (=1)", if n=p;...p, a product of distinct primes,
0, otherwise.

e The non principal Dirichlet character modulo 4,
0, if 2|n,
N
x (=1)"=D72 " otherwise.

e The number of representations of n as the sum of two integral squares
denoted by r(n).
Except the last one, all these functions are multiplicative and it can be shown
(see [8, chapter 16] for instance) that

oln) = > u(d)%,

dn

r(n) =43 x(d).

dn
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r(n)

In fact, this implies that e is multiplicative and thus r(n) is “almost
multiplicative™.

For every reZ, ¢ and m >2 such that (m,q— 1) =1, we define the
following functions that depend on #n, ¢, r and m (but we will omit the latter
ones for briefness)

S(d*)=r mod m
_ n
dn
S(d*)=r mod m
=4 Y zd)
dn
S(d?)=r mod m

Note that the assumption (m,q — 1) = 1 is crucial since it implies that (¢ — 1);’1
e R\Z for all je[l,m— 1], a result that allows to use the Theoerem A which
will be stated later.

Our target, in this paper, is to estimate . 7(n), Y. @5(n), >, @(n) and

n<x n<x n<x

>~ F(n) (representing the averages of the functions 7, @;, @ and 7 respectively,
n<x

in accordance to the study made in [8, chapter 18]).
In order to detect the congruences, we shall use the classic orthogonality
relation

l”zle(j(a—b)):{l, if @ =b mod m, (meN.abez) (12)

i
m 4 m 0, else.
J=0

Finally, Gelfond [7] alluded the problem of giving an estimate for the number
of values of a polynomial P (P takes only integer values on the set N) satisfying
the condition S(P(n)) = r mod m.

Basically, we shall need the following result proved by Mauduit and Rivat
[10], answering the question of Gelfond in the case P(n) = n’.

THEOREM A [Mauduit-Rivat, 2007]. Let ¢ >2 be an integer and o € R
such that (q —1)o e R\Z then there exists o,(o) >0 and xo:= xo(q,a) =2
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such that for every real number x > xi, we have

> e(aS(n?)

n<x

log x

x1=04(®)
log ¢

)(I/Z)w(q)+4

< 49" (log q)**1(q)""? <1 +

In particular, this means that for x sufficiently large

Ze(ocS(nz)) « (log x) (/2e@+4 1-0y(z)

n<x

Recently, Mkaouar and Wannés [11] used an improved result of Drmota,
Mauduit and Rivat [6], in addition to the classic Abel’s summation formula, to
prove interesting results about the average of some additive functions (namely,
the number of distinct prime factors w and the total number of prime factors
Q of a positive integer n) under digital constraints.

Using the same ideas, we will follow a similar path, in this article, in order
to study the multiplicative functions under constraints on the sum of the digits
of squares. Indeed, this is our second approach concerning this topic after the
first study done in [1].

2. A lemma on power sums

We need a classical lemma estimating some expressions that will be needed
later. In part a), the constant y is Euler-Mascheroni’s constant defined by the
equation

. 1
y = YETW (ZZ — log x> .

n<x

In part b), {(s) denotes the Riemann zeta function defined by the equations

. 1 x!=s .
Jim ;;_l—s , if0<s<l,
a proof can be found in [2, chapter 3].

LEMMA 2.1. As x — +o0, we have

1 1
a) ZlongrerO().
n<x X

xlfs

b ¥ L=

nexh® 11—

+Ls)+O(x7%), if >0, s # L
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c) Z%: o(x'™), if s> 1.

n>x
xs+l
d S=""—40(x*), if s=0.
) nzs:xn S+1+ (X),lfs_

3. Average of 7

THEOREM 3.1. Let g > 2 and m > 2 be integers such that (q— 1,m) =1,
let reZ. Then we have

1 2y —1
Z T(n) = X log x + ey ni) x + O((log x)(1/2)“](")+4x1‘”%m/2),

n<x

as X — +oo, where 7y stands for Euler-Mascheroni’s constant, o4, =

min _ g, (i> (g, being the constant stated in Theorem A) and
jell,m—1] m
m—1 . +o0 .
B rj Jj ) du
J= <u

Proor. Given x large enough, we have

= A + Ay — A4,
where
A= >, L
d<./x I1<x/d
S(d*)=r mod m
heY Y
1<y/x d<x/l
S(d*)=r mod m
and
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First, we may write using the orthogonality relation (1.2)

d<./x Jj=0
Loy byl S o(— ) 509 + 00D (3.1)
o 2 a2 ) %

d<./x J=1
where
LS(d?
Si(x) = Z w, for each je[l,m—1].
d<\/x

The first sum can be estimated as a consequence of Lemma 2.1 giving

Zd—z—xlogx+yx+0(\/_) (3.2)
d<\/x

Next, using Abel’s summation formula, we get

el 2
sy @)

e X )« [ (el )

Thanks to Theorem A, we write for je[l,m — 1]

Ze@S(dz))

d<u

1 (log u) (1/2)w(g)+4
; ultoq(i/m)

Hence, we obtain

VX du log ) (1/20(@)+4
Jl (Z (mS(dz))>_2_ j+0<%), (33)

d<u

where

too ] du .
(xj:L (;;,(éS(dﬂ))E, for every je[l,m—1].
<u
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Using Theorem A again, we have
(log x) (1/2)e(q)+4
d<\/'
Taking the identities (3.3) and (3.4) jointly and setting

Oum= min oy, S
jell,m—1] m

log x)(1/20(@)+4

xa'q.m/z

we find

Considering (3.2) and choosing o, ,, small enough, we go back to (3.1) in order
to find

1
A :z—xlogx+—+yx+ O((log x) /24y 1meun/2), (3.5)
where o« = mz_:l e( rj)oc
J=1 m) "

Next, we write

Iy > Se(Lisa-n)

1<\/_d<»c/1] 0

Ly oy 1+%mzle<—%) DY e(iS(cP))-

mlg\/z_(de/l j=1

It is easy to check, using Lemma 2.1, that

DD IED ] CERC)

1<\/‘d<v/1 /<\/‘
1 Y
= %xlog Xtoxt O(v/x). (3.6)

As a consequence of Theorem A, we get for je[l,m— 1],

; L=0y(j/m)
Z Z e(iS(d2)> < Z (log x)!/2ela)+ (?)
I<y/xd<x/l m I<x
« (log x) /2@t 1=ou(i/m)/2, (3.7)

The last bound follows from Lemma 2.1.
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Combining (3.6) and (3.7) and choosing g, ,, small enough gives
1 I (1/2)o(g)+4 1-
Ay = — 1 s 1 q ﬂ'q,m/z A
2= 0gx+mx+0((ogx) X ) (3.8)

Finally, thanks to Theorem A, we obtain

m—1 .
A= LS (o)1 L Zj( ) =) (WF+ o)

m = mA:

1
= x4 O((log x) /2Oy enn/2), (3.9)

Gathering (3.5), (3.8) and (3.9) together, we get the desired conclusion. M

4. Average of o,

The case s =0 was considered in the previous paragraph. We shall first
consider s > 0 and deal carefully with the subcase s = 1.

THEOREM 4.1. Let q > 2 and m > 2 be integers such that (m,q—1) =1,
let reZ and s > 0 be a real number. We assert that

S ) :$+ﬂ | [Olxlogx). if s=1,
' o(x", if s#1,

as x — +oo,
n<x

where ( stands for the Riemann zeta function defined in Lemma 2.1,

t = max(1,s) and B = i ( Z)( o <dz<:ue(n%5(d2))> udfz>

ProOF. Let x be large enough, we may write

Sam- Y (3)

n<x n<x din

S(d*)=r mod m
- x =3
d<x n<x

S(d?)=r mod mn=hd

Z Z e

d<x h<x/d
S(d?*)=r mod m
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Here, we should treat the subcases s =1 and s # | separately, using in both
cases Lemma 2.1 and applying (1.2).
o If s=1, then

Saw-y ¥ pro(sx))
n<x d<x d ded
S(d?*)=r mod m

1 m—1 jV e(és(dZ))
= %xz ;e(—m> ZT—’_ O(X IOg X)

d<x

_ ﬁxz{—l+ (@) + 0(x2)}

X

1, r\ x=¢(25(d”)
+%x2;e(‘]%> S ooz )

d<x

o If s#1, we set rt=max(l,s) so that

I
Sam -t Y e (Z:d_>

n<x d<x
S(d*)=r mod m

N M C PO

d<x

4 0(#‘{ I’CI:S L Ls) + O(x~) })

1

= mx”' {—XT_S—i— ((s+1)+ O(X_S_l)}

A+ ] m dZ) t
e (-4 S o

d<x

Going back to (4.1), we can summarize by the following formula

o s+ oy O(xlog x), if s=1,
D3 = (s +'”{O(Xf), if 51, (42)

n<x

where

I SR S (35(a%)
Bf(s_i_l)mx ;( )Z: AT (4.3)
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We apply Abel’s formula to B in order to get, for je[l,m— 1],

e(LS(d?
1 = Y )

d<x

- > ( ) s ((;e(%S(dZ))) e

As a consequence of Theorem A, the latter integral is again absolutely
convergent. Therefore, we get

J(r<ze<45<d2>)>u‘fi By + O((log x) /2 msmeaiim) - (4.4)
I \d<u

with

5 = J+oo (Ze(éS(aQO) uiztz’ for every je[l,m—1].

1 d<u

Using Theorem A once again, we have

<x

Considering the identities (4.4) and (4.5) jointly, we find
Tj(x) = (s + 1)f; + O((log x) /2@y =s=auli/m)y,

Going back to (4.3), we write

B % 1 4 O((log x) V2D 10y (4.6)

1 m—1
with 6, , = min o—q< ) and = Z < )

je[l,m—1]
Hence, taking (4.2) and (4.6) ]omtly enables to reach our result. |

In order to find the average order of ,(n) for negative s, we shall set
u = —s where u > 0.

THEOREM 4.2. Let q > 2 and m > 2 be integers such that (m,q—1) =1,
let reZ and s <0 be a real number. Thus
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o(l), if v<O,
ZF(H) (1 - s)er O((log x)1/P@D 30y = if >0 and s —0qm,
= m O((log x)"PWH5x155) - if (L) = 64m,

Viel[l,m—1] and s = —064m > —1,

as x — +oo, where { is the Riemann zeta function, 6, ,, = min g, (i> and
v=max(l +s,1— aq_m)' jel[l,m-1] m
Proor. In fact, if we set u = —s > 0, it follows from the orthogonality
relation (1.2) that
d u
> > (5
n<x n<x d|l’l n
S(dZ)Er mod m
=D w2
h<x d<x/h
S(d*)=r mod m
_*Flﬁ‘[b, (47)
where
-~ i)
and
1 —1
(B Y (L)
J=1 h<\ d<x/h
Therefore,

ne o)

h<x h<x
. » O(log x), if u=1,
:n—qx{C(l +u)+ O(x )}+{0({,§1; (u)+0(x’”)}>, else,

O(log x), if u=1,

1
=C(’:”)x+ o),  ifu>l,
o(x'=), ifu<l.
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Besides, Theorem A enables us to get for je[l,m—1],

5 X (1/2)w(q)+4 X 1—04(j/m)
Y 2 clsen) < X (eei) ()

h<x d<x/h

1/2)(u(£1)+4 1—a,(j/m) 1
(IOg x) ! ;hl+u oq(j/m) "

Thanks to Lemma 2.1,

)(I/Z)w(Q)Hxl—u)’ if O.q(%) —oym Vie[l,m—1]
and u = oy m,

0((10g x)(l/2)w(q)+4x1_u)7 ifu< Og,m,

0((log x)(1/2)(U(q)+4x1*‘7‘/v”’),

O((log x
I, =

if u>oym.

A discussion on the possible orders of the real numbers 0, 1 —u« and 1 — g,
completes the proof. |

5. Average of ¢

THEOREM 5.1. Let g > 2 and m > 2 be integers such that (m,q—1) =1,
let reZ. We assert that

Z(p = x° + O(x log x), as x — +oo,

where p = ':;le(— %) ( (d;u,u( Ye ( (d2)>> iu>

ProoF. Let x be large enough, due to (1.2) and Lemma 2.1 we have

> p(n)

I
g
(]
=
=
Y

n<x n<x d\n
S(d*)=r mod m
- Y
d<x h<x/d

Il
=
S

A~
|
~ 0o
+
Q
T~
QU =
NS
~

d<x
S(d?*)=r mod m
LR (L e(555(d%))
= 5% jgoe(—m> dix,u(d) 7 + O(x log x)
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:2:% +O< zzdz)

d>x

1 2n171 Jr e(%S(dz))
—&-Ex ) e(—%)z,u(d)T-i-O(xlogx)
j=1 d<x
_ 1 2+Ooﬂ(d)
=om™ 2 e + C+ O(x log x), (5.1)
where
1 , Jjr e(L£S(d?)

First, using the Mobius inversion formula (see [2, p. 32]), we get

+© 1 + m +© 1 +o 1
(£0)(£2) -5 3 ) - ()

d=1 d,m m|k
dm=k
so that
ud) 6
iR (53)

d=1

Next, we may apply Abel’s summation formula again to C in order to obtain

= ud)

d<x

() [ (Swe(en) )

The integral is trivially convergent. Subsequently, we get

J(;ﬂ ( >>dup]+0( ) (54)
J (gﬂ ( ))% for each je[1,m—1].

dz))

with
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Clearly, we have

%Zﬂ(d)e&swz)) —o(x). (5.5)

d<x
Considering the identities (5.4) and (5.5) jointly, we find
Ui(x) =2p;+ O(x7").

Going back to (5.2), we write

P 2
C== o 5.6
L3+ o), (56)
. . ] m—1 j}’
with 6, :]_eullr’lgliu| a4 (m) and p = /;1 e( m>pj.
Hence, considering (5.1), (5.3) and (5.6) together gives the desired result.
|

6. Average of 7

THEOREM 6.1. Let g > 2 and m > 2 be integers such that (m,q—1) =1,
let re Z. We state that

4
S 7n) =L x4 0((log ) MHUO ) s o,

n<x
where
m—1 . 400 .
_ _Jr sy | #
S (i)
j=1 d<u
and G4 pm = [ﬁﬁn lﬂaq (é) (g, being the constant stated in Theorem A).
Je|l,m—

ProoF. Given x large enough, we have

dorm=4%" > xd)

n<x n<x d|n
S(d*)=r mod m

=4 > )

dh<x

S(d?*)=r mod m
N SR>
d<x h<x/d

S(d?*)=r mod m
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S(d?*)=r mod m S(d?)=r mod m
Since
+ 00 d 1
ad) Ll 3
= d 3

S oall= X adirows

d<\/x d</x
S(d*)=r mod m S(d?*)=r mod m
m—1 iS d2
:ix e<—£> X(d)e(md( ))+0(\/})
m Jj=0 m d<./x
1 (2 y(d) ( 1 >>
m (dl d VX
1 m—1 _]S d2
PS5 3 s S o)
m J=1 m d</x
Vs
_%x+D+0(\/?c), (6.2)
with
R o(25(d?)
J=1 d</x

Applying Abel’s formula to D gives, for je [l,m— 1],
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The integral converges absolutely and following Theorem A

I (Zz (st >)>@—v]+0<<logx)<‘/2>w<q>+4x-%<-f/m>/2>, (64)

d<u

where

X(d) :e(%)_‘_e(_%) (6.5)

we are left with two sums of the type > e(ad + S(d?)) (with « =7 and

d<x
o = —1) which can be handled exactly as in Theorem A since Mauduit and

Rivat start by applying a Van der Corput inequality in [10, Lemme 15] that
will cancel the term od written above.
Obviously, according to the previous argument, we have

Z < dZ)) ((IOg x)(1/2)w(q)+4x—aq(j/m)/2). (66)
d<\/—

Considering the identities (6.4) and (6.6) together, we find
I/]()C) = Vj —+ 0((10g X)(1/2)w<q)+4x70‘/(j/m)/2).

Going back to (6.3), we write

D =L x+ O((log x) /P04 1=00/2) (6.7)
m
| : it
with g, —le[[r}lgl 1}]0‘1 (IL) and v = ]; e(— ]E)vj'

Finally, it remains to bound the second sum in (6.1) as follows

/szf ﬁ;x/h /1<ijZ ( ) ﬁ;x/;z)((d)e<’is(d2))

S(d*)=r mod m

= A1 + Ay — A3. (68)
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with
1
h<y/x/x<d<x/h
1! Jr j
Ay =— e<—> Sy X(d)e(_5(42)>
= M) Jrd=x/h m
and

But, > y(d), between any limits, is 0 or +1, hence

Ay < A/x. (6.9)
Furthermore, the identity (6.5) and its following remark imply
A; « (log x)1/2e@+4 1-0un/2 (6.10)

and

i (0] —a, 1
5 sare(Ls(a) < tog Vi 3

h<yxd<x/h h<y/x

« (log x)1/2l0 4 1=0un/2, (6.11)

The last bound follows from Lemma 2.1.
Thus, putting (6.9), (6.10) and (6.11) in (6.8), then combining (6.2), (6.7)
and (6.8) jointly in (6.1) allows to reach our result. |
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