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ABSTRACT. We give a local description of the topology of the space of all geometric
limits of closed abelian subgroups of PSL,(C). More precisely, we give geometric
descriptions for all possible neighborhoods of a point of this space. Intuition from
hyperbolic geometry plays an important role by identifying PSL,(C) with the group of
isometries of H3. The tools and ideas developed in the authors’ previous paper on
one-generator closed subgroups of PSL,(R) allow one to reduce this problem to a
problem about the geometric limits of certain closed subgroups of € and C*.

1. Introduction

The present article was announced in [3], in which the authors, motivated
by the desire to understand the closure of the faithful discrete type-preserving
PSL,(C)-representations of the fundamental group of the once-punctured torus,
gave a complete description of the closure of the space of one-generator closed
subgroups of PSL,(R) for the Chabauty topology. See [5] for a general
exposition of Chabauty topology; we also included in [3] a mini-History of
Chabauty topology and related topics.

In the world of geometric limits of Kleinian groups, a sequence of infinite
cyclic groups each of which is generated by one hyperbolic isometry can
converge to a subgroup isomorphic to Z2, whose generators are both parabolic
isometries. This fact can be equivalently stated using Chabauty topology, a
topology one puts on the space of the closed subgroups of PSL,(C). The
existence of such a behaviour was first observed by Jorgensen. See [9], Section
5 and [11], Example 9.14 for more detail.

A natural question arising is how to find conditions on a given sequence of
groups for the limit group to exist, and to describe this limit group.

In this paper we answer this question for an arbitrary sequence of abelian
subgroups of PSL,(C) by using an “exhaustion of cases” approach (see Sub-
section 2.4: Strategy).
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Here is now a summary of the paper.

Section 2. We recall some properties of the Chabauty topology, provide
a reminder of results from [3], and basic properties of subgroups of PSL,(CT).
These have been included mainly for notational purposes.

Section 3. The carefully chosen matrix representation of non-parabolic
isometries of H* (Subsections 3.1 and 3.2) leads to Propositions 1 and 2: the
space of all non-trivial, non-parabolic, closed abelian subgroups of PSL,(C)
is homeomorphic to ® x (¢(C")\{1}); the space of all non-trivial discrete
subgroups of PSL,(C) generated by one elliptic (resp. hyperbolic) generator
is homeomorphic to ® x Nx, (resp. ® x (C\D)), where ® is the space of
pairs of distinct points on € (Subsection 3.3). The matrix representation of
parabolic isometries of IH? yields Propositions 4 and 5: P{ (resp. P}), the
space of all non-trivial discrete cyclic (resp. abelian) parabolic subgroups of
PSL,(C) is a 4-twist fiber bundle of €* over S? (resp. is homeomorphic to
5% % (€*\{0}))

Section 4. We use the Reduction Lemma introduced in [3] to reduce
the problem of convergence of closed abelian subgroups of PSL,(C) to some
problem of convergence of closed subgroups of € (Subsection 4.1). We give
geometrical interpretations for the parameters introduced (Subsection 4.2) and
for the closed subgroups of € we are left to study in the enrichment case
(Subsection 4.3).

Section 5. We describe the whole exhaustion of cases for sequences of
closed abelian subgroups of PSL,(C). This exhaustion is radically simplified
by the reducing results in Subsection 4.1, and involves continued fraction in a
rather unexpected way.

Section 6. We provide local models for neighborhoods of parabolic sub-
groups inside the space of all closed abelian subgroups of PSL,(C). This
section is independent from Section 5.

Section 7. This short section consists only of a Summary Statement,
collection of the different results in this paper, and of a short conclusion.

2. Preliminaries

2.1. Chabauty topology. Recall that the Chabauty topology of a locally
compact group G is the topology on the space F(G) of all its closed subgroups
induced by the Hausdorff distance on the one-point compactification G of G
(see [3] for instance, or [4]). Equipped with this topology, F(G) becomes
a compact metric space; F(G), together with the Hausdorff distance dy, will
be usually referred to as the Chabauty space of G. We write it 4(G). In the
context of Kleinian groups, the limit of a convergent sequence in the Chabauty
topology is called the geometric limit of the sequence.
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In the previous paper [3] of the authors, we obtained the following
theorem, where C (resp. E, H, P) is the closure of the space of discrete
cyclic subgroups of PSL,(IR) (resp. discrete subgroups generated by an elliptic,
hyperbolic, parabolic element of PSL,(IR)).

THEOREM 1. The space of geometric limits of closed subgroups of PSL,(IR)
with one generator is C = EUH/~, where

(1) E is a wedge sum of countably many 2-spheres D,/0D,, which
accumulate to a disk D., and to the cone P on the circle 0D.,.
(see 5 in [3]).

(2) H is the cone on a closed Mobius band, the inside of which is
foliated by “bent” open Mobius bands, which accumulate to an open
Mobius band My and the cone P on the circle 0M, (see Figure 6
in [3]).

(3) ~ represents the gluing of E and H along P.

The geometric convergence of Kleinian groups is not easy to handle
directly in general; we developed a tool to reduce the problem of the con-
vergence for the Hausdorff topology in some complicated space (e.g. C <
% (PSL,(R))) to the convergence for the Hausdorff topology in a better-known
space (e.g. some particular families of closed subsets of €). See Proposition 6
in Section 4.

2.2. Transformations of PSL,(C). Note, after identification of PSL,(C) with
the group Aut(IH*) of conformal automorphisms of H?, that each element
of PSLy(C) acts on the sphere at infinity € = dH®. Let us recall that the
conformal automorphisms (i.e. isometries) of H? are of three types:
e parabolic if they have one fixed point in € = JH".
e elliptic if they have two fixed points in €, and act on H> as a rotation
along the axis defined by these fixed points.
e hyperbolic if they have two fixed points in €, and act on H> as a
translation with skew along the axis defined by these fixed points.
More precisely, elliptic (resp. hyperbolic) elements of PSL,(C) are conjugated
to a map [z — az|, by sending one of the fixed point to 0, and the other to oo;
we have ae S' (resp. a e €C*\S'), and we call a the multiplier of the element.
Note that @ is only defined up to the inverse mapping [z — z~!], except when
there is a way to decide which of the fixed points is sent to 0 and which is sent
to oo.

2.3. Closed abelian subgroups of PSL,(C). For each isometry g e Aut(IH?)
let Fix(g) be the set of fixed points of g on the sphere at infinity €. Recall
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that abelian subgroups of PSL,(C) are exactly the subgroups G = PSL,(C)
such that all elements have the same fixed points at infinity, i.e.

Vg1,92 € G\{1}, Fix(g1) = Fix(¢g2)

Note that a non-trivial abelian subgroup G of PSL,(C) can be of two
rather different kinds, namely:

e (G is a parabolic subgroup, i.e. each of its non-trivial element is

parabolic and fixes the same point z € C. Then G is conjugated to
a subgroup I' of translations of €, under a map sending z to oo; for z
fixed, if this map is chosen once and for all, G is entirely and uniquely
described by I' (see Section 3.4).

e (G is a non-parabolic subgroup, i.e. each of its non-trivial element is
non-parabolic and fixes the same points zj,z; € C. Then the space of
all multipliers of its elements is a subgroup Z of €*, and G is entirely
described by the unordered pair {zj,z;} and by Z.

As a generalization of [3], the authors were originally interested solely in
the closure of the space of cyclic closed subgroups of PSL,(C). Since, as we
will see, this closure already contains the space of abelian closed parabolic
subgroups of PSL,(C), it is very natural to consider also the closure of the
space of all abelian closed subgroups of PSL,(C). Thus, let us define C; (resp.
C,) to be the closure of the space of cyclic (resp. abelian) closed subgroups of
PSL,(C), for the Chabauty topology on the space % (PSL,(C)) of all closed
subgroups of PSL,(C). Also, define P; (resp. P,) to be the closure of the
space of cyclic (resp. abelian) closed parabolic subgroups of PSL,(C). There
will be no special need for analogs for the spaces E and H introduced
in [3].

2.4. Strategy. One goal of this article is to understand all limits of
sequences G, in C,. Let us explain in more detail what we mean by
this. In the present paper, we associate to each G e C, a finite list of
parameters p; (e.g. fixed points, multiplicity, etc.) that lie in some compact
sets K; where convergence is well understood (e.g. [0,00], S, SO;). Then,
given a sequence G, such that all parameters p;, converge in K; to some
Dj,«, G, converges to a group G which we describe explicitely from the limit
parameters p; .

If G, — G, there is a subsequence ¥ such that all parameters p; )
converge (this is because all p;, lie in compact sets). Call these limit
parameters p; . We describe G = G(p. ) explicitly from them. Moreover,
if we want to know whether a sequence G, converges, it is enough to look at
all possible subsequences y of G, such that all p; ,(, converge. Then G, — G
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if, and only if all G(p. ) are equal. In this very specific sense, we regard this
as describing all possible limits of sequences G, in C,. We used this strategy
in [3] to show Theorem 1.

Here is now a list of the parameters we introduce and a brief description

of them.
e If G is non-parabolic: zj,z; e C (alternatively ((y, &), (62, &) € CPYY:
the fixed points common to all elements of G; E € @ (C*) the set of
multipliers of elements of G (see Subsection 3.2).
e If G is parabolic: zeC (alternatively ({,&) e CP'): the fixed point
common to elements of G; I' e ¥(C), the set of multipliers of ele-
ments of G (the multiplier here is not well-defined, so we need some
normalization. See Subsection 3.4 for a precise definition).
Case 0: If G, are all parabolic, the parameters z, =limz, and
I, =1lim I, completely describe G, (see Subsection 3.4 and in particular
Corollary 2).

Case 1: If G, are all non-parabolic, the parameters zj ., 22 o and Z,
completely describe G., provided that zj o, # z> o, by Theorem 3.

Case 2: If G, are all non-parabolic and z; ., =z, we introduce the
following parameters (see Section 4):

* R > 1: the inverse of the spherical distance between z; and z; (in the
case considered, R, — o0).

* e [0,2x]: the opposite of the angle between the horizontal line and the
line passing through z; and z;.

* I' = R Log(E): multiplying by R is a way of zooming around 0 € Log E
(i.e. around 1 €= = C").

In Case 2, the limit parameters z.,, @, and I',, now completely determine

G,. Compared to E in Case 1, however, I',, is rather esoteric in that it is
obtained by zooming further and further (as R, — o) around 0 € Log &,, with
&, (possibly) becoming denser and denser.

As a notational reminder, the letter H (resp. P) will always be reserved

Jor nom-parabolic (resp. parabolic) elements of PSL,(C), G for subgroups of
PSL,(C), E for multiplicative subgroups of C* and T for additive subgroups
of C.

Before further study, it will be helpful to have the following example in

mind. Consider a sequence of elements o, of PSL,(C) of the form

Oy & Z piezm/”(z —ay) + ay.
Each «, is a hyperbolic isometry which fixes both a, and co. We will choose

both p, and a, so that («,) converges to [z — z+ 1] and (o) converges to the
parabolic element [z — z +y] with y ¢ R.
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For that purpose, set

1

ay = —————F-7-
n 1 — pgean/n

so that «,(0) = 1. In particular, this forces p, — 1.
When p, =1, o =id for all n, so (') obviously converges to the identity

map. When p, =1+2 for some constant o, (x,) is not convergent. When
pn =1+ o0(;) then o converges to a parabolic element, and when p, is defined

by
o
pn:1+ﬁ

then (o) converges to the map [z z—iZ%]. In this example, the sequence
of infinite cyclic groups {a,> converges to Z> generated by [z+ z+ 1] and
[z -z — l%]

This example is a part of Case 2 with R, = /a2 + 1, w, =0 and Log &,
the lattice generated by 2in/n and 2 logp,. We saw that it is not easy to
predict the limit subgroup as a, — oo (i.e. R, — o0) and Log &, gets denser:
this limit subgroup depends crucially on how fast ¢, — oo (so that «,(0) = 1)
and how fast p, — 1.

We solve this issue in Subsection 5.3 by introducing a parameter 6 whose
expansion in continuous fraction contains most of the information we need
to understand explicitely the limit group G.. See Section 5 for the explicit
algorithm.

3. Matrix representations

3.1. CP' as a quotient. Of crucial importance in [3] was the particular
matrix representations of elliptic and hyperbolic isometries.

To mimic this (the upshot being Propositions 1 and 2), let us first start by
finding a subspace of €2\{0} mapped homeomorphically to € via the projec-
tivizing map [({, &) — /€], and which stays away from both 0 and o (i.e. has
a compact closure that does not contains 0). The classical choice of such a
subspace as the plane € x {1} does not answer this condition, since it is not
compact; the choice of the sphere in € x R = € of radius 1/2 and centered at
(0,1/2), with the south pole removed:

SIS = {((,&) e C\{0}; &€ (0,1, 117 + (¢ —1/2)* = 1/4}

does not either, since its closure S* contains the south pole S = (0,0).
Let us therefore define ID* to be the unit upper hemisphere in € x R < €

D = {(4’75) € (]:2\{0},6 IS (()’ 1], |C|2 +62 _ 1}
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(0,1)
>

D" {|(P+ & =1;£€(0.1]}

(1,0

AN

S2:{IC]? + (€ —1/2)* = 1/4} Seo

Fig. 1. Three models for CIP! with a point removed: the plane € x {1}, the sphere S? minus its
south pole (0,0), and the upper unit hemisphere D.

Note that ({,&) — [(: ¢] induces an homeomorphism
D/S!, = CP.

REMARK 1. [t is straightforward to see that the stereographic projection

from DT to S? is given by

(£,¢) = (L&, &),
Let us define

D~ = (D7 /S )\{(0, 1)}
and

Siq :{(c,g) eu)ﬂg:g}.

Under the stereographic projection, ID*, D~ and Selq are respectively
mapped to S?\S, S?\N (where S and N are the south and north poles (0,0)
and (0,1)) and to the equator of S? for which ¢ is constantly 1/2.

3.2. Matrix representations of elliptic and hyperbolic isometries. In this sec-
tion, we show how to represent every elliptic and hyperbolic element of
PSL,(C) as a 2 x 2 matrix.

Recall that an elliptic (resp. hyperbolic) element of PSL,(C) fixes a unique
axis joining two distinct points of €, and that it then acts like a rotation
(resp. a screw motion) around this axis. Moreover, an elliptic (resp. hyper-
bolic) element is entirely determined by its two fixed points and its rotational
multiplier (resp. screw motion multiplier).
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Let H be either elliptic or hyperbolic, with multiplier a € C*; suppose first
that the two distinct points z; and z; of H are in €. Then it is straightforward
to check that the matrix of PSL,(C) representing H is

1 (azz—zl zlzz(a—l)>

Va(z; — zp) l1—a Zy —azy

Indeed, ¢ = |z — i is an automorphism of C mapping z; to 0 and z; to oo;
moreover, the element with multiplier ¢« and fixed points 0 and oo is simply
[z~ az]. Note that exchanging z; with z, while replacing @ by a~! does not
change this matrix, thus the ordering of the two fixed point does not matter, as
long as we study the subgroups, not particular elements, of PSL,(CT).

This description using z; € € has the drawback of blowing off when one
of the fixed points approaches oo € €. To circumvent this, let us replace z|
and z; by projectivized quantities {;/&; and {,/&,, with ({;,&;) e D*. Then the

matrix becomes

L(l“'ﬂ@él 1418} )
va\ —péié 11— piié
a—1

HE - 0&E

DEerINITION 1. For every pair of distinct points ({1,¢;), (¢, &) e DT, and
for every a € C* satisfying |a| = 1 (resp. |a| # 1), the elliptic (resp. hyperbolic)
element of PSL,(C) fixing both [¢; : &] € CIP! and with multiplier a is written

H. . ) :1<1+ﬂ5251 Jzete )
(€1,61):(&,62).a Va\ —uéé 1= uty&

with u =

Cchll:élfz :

With the choice of ID* for representing CIP'\{[I : 0]}, H e, (6.6),a
can be extended continuously when either one of the ({;,&;) approaches the
boundary of IDT. We write this continuation in the obvious way, e.g. if &; =0
(thus |¢)] = 1):

H _ bt w1 (1 1—a
<51’())7@2&2)’“_\/5 0 1—uli&) a\o a )

which does not depend on {;; thus we can think of the map [(x, y,a) — H,, 4]
as taking its first two components inside CPP' =D /S;ZO
Denote by ® the space of pairs of distinct points in S2:

with u =

© = ((CP' x CP')\A)/((x,») ~ (1,5)),



The space of geometric limits of abelian subgroups of PSL,(C) 9

where A is the diagonal {(x,x);x € CP'}; we definitely think of CPP' here as
being D*/S)_.
The following two propositions hold.

PrOPOSITION 1. The space of all non-trivial non-parabolic closed abelian
subgroups of PSLy(C) is homeomorphic to

O x (€(C)\{1}).

Proor. It is immediate to see that the desired homeomorphism is induced
by

((CP' x CP)\A) x (4(C)\{1}) = C,
(xa va') = {Hxﬁy,zﬂa € E}»

where by convention H,, ; is always the identity of PSL,(C). Indeed, the
map above descends to a homeomorphism from O x (¢(C*)\{1}) onto its
image, which is the space of all non-trivial non-parabolic closed abelian sub-
groups of PSL,(CT). O

PROPOSITION 2. The space of all non-trivial discrete subgroups of PSL,(C)
generated by one elliptic generator is homeomorphic to

® X N22

The space of non-trivial discrete subgroups of PSL,(C) generated by one
hyperbolic generator is homeomorphic to

® x (C\D),
where D is the unit disk in C.
Proor. This is similar to the proof of Proposition 1. O
Before studying parabolic subgroups, let us give a more recognizable form

to 0.

3.3. © as a subspace of CIP>. This subsection is due to John H. Hubbard,
and we thank him for explaining it to us.
For each pair ([ : &],[( : &)) € (CPY)?, consider the polynomial

P 06 (X) = (E1x = §)(Ex — &)

defined up to a multiplicative constant.
Note that P . 0.0 and Pz e, (¢, differ by a multiplicative constant if
and only if {[{; : &],[( : &]} coincides with {[(5 : &3], [(4 : &4]} as a set.  Also,
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we have [(1:&] =10 :¢&] if and only if the square-rooted discriminant of
P[Cliil]»[fziiz]

Ap = +(6HE - 4E)

is zero (remark that this number is, up to sign, the denominator of the quantity
4 defined in the matrix representations above, Definition 1).
Therefore, the map

CP' x CP' — CP?
[51 : fﬂa [Cz : fz] = [5152 =08 =& ClCz]

descends to a homeomorphism between ® and CP> minus the curve (actually a
sphere) of homogeneous equation

Y2 —4XZ =0.

3.4. Matrix representations of parabolic isometries. In this section, we show
how to represent every parabolic element of PSL,(C) as a 2 x 2 matrix. This
will lead to a complete description of P; and P».

It is well known that any two parabolic elements of PSL,(C) are
conjugate. We saw in [3] that we could find a way of normalizing parabolic
elements, by asking them to be conjugated to a particular parabolic element
by a chosen matrix. This led to a homeomorphism between the space of
non-trivial parabolic elements of PSL,(IR) and S! x IR*, the upshot being a
description of the space of parabolic cyclic subgroups of PSL,(IR). We cannot
immediately extend this method to the case of PSL,(C); we will actually see in
a while that the space of non-trivial parabolic elements of PSL,(C) is a non-
trivial bundle (see Proposition 3).

Write 2 for the space of all non-trivial parabolic elements of PSL,(C).
Since for each point z e S = C the space of parabolic elements of PSL,(C)
fixing z is homeomorphic to C*, we see that 2 is a SO,-bundle, with base space
S? and fiber €*. Recall that a G-bundle with fiber F is a fiber bundle such
that the topological group G acts on F as a group of symmetries, and such that
transition functions between charts are continuous.

Since 2 is a SO,-bundle over a sphere S?, one can understand its structure
via its clutching map. We briefly recall the basic description here. Consider
S$? as the union of two disks D™ and D~ glued along the equator Sj,. In
general, if trivialized fiber bundles over ID* with fiber F and structure group G,
and a map f : Selq — G (called the clutching map) are given, then one can glue
the two trivial bundles together via f to get a bundle over S? with fiber F.
Two homotopy-equivalent clutching maps produce equivalent bundles. If a
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G-bundle over S? is given, f is the transition function between the two charts
D* of S2.

In our case, F=C" and G is the circle SO,. The clutching map
I Selq — SO, is determined, up to homotopy, by its twisting number. Let
us compute the twisting number in our case.

We have two local trivializations

D* x C* — 2 < PSL,(C)

N s )
@an (10 2
and

D~ x C* — 2 < PSL,(C)

1-plé ple)?
(,8),p) — 7 _
(XN - %52 L+ 50

The clutching map associated with these two trivializations is
Sy — SO,
e [p — e¥p,

which represents the number 2 in H;(SO;) = Z. Thus we have reproven the
following known fact:

PROPOSITION 3.  The space 2 of non-trivial parabolic elements of PSL,(C)
is a 2-twist C*-bundle over S°.

3.5. The spaces P; and P,. Define P| (resp. P) to be the space of all non-
trivial discrete cyclic (resp. abelian) parabolic subgroups of PSL,(C); of course
P/ = P;. As above, we see that P/ is a fiber-bundle over S? with fiber the
space of all non-trivial discrete cyclic subgroups (resp. non-trivial discrete sub-
groups) of €. The former fiber is easily seen to be simply C*/(z ~ —z) = C",
hence SO, is the structure group of the bundle Pj; the latter is known from [7]
to be homeomorphic to (€?)* = R*\{0}, hence SOy is the structure group of
P}, where SOy acts on (€?)* in the usual way (namely, as a 4 x 4 real-matrix
group acts on (C?)%).

PROPOSITION 4. P is a 4-twist C*-bundle over S>.
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Proor. As above we have two trivializations

D" x (C/(z ~ —2)) = P|

NI s ) }
@am—{(' " Jwew

and

D™ x (C/(z ~ —2)) — P

1—pZe plef?
(,8),u) — ¢ _ |speluy
((&€),u) - %éz | 4 pE2 pelu

where {(u) is here the additive subgroup of C generated by +ue C*.
The clutching map associated with these two trivializations is now

e i [Quy = )],
which becomes, after identifying €*/(z ~ —z) with C™:
S, — S0, = S
el s 4. O
COROLLARY 1. Py is the one-point compactification of a 4-twist SO,-bundle
of D\{0} over S>.

Proor. The closure of the space of discrete cyclic subgroups of € for the
Chabauty topology of € is just a closed disc ID (see for instance [7]). Thus it
follows from Proposition 4 that P;\{Id} is a 4-twist bundle of ID\{0} over
S2. One recovers the compact set P; from P;\{Id} by taking the one-point
compactification. O

PROPOSITION 5. P} is homeomorphic to S x (C?*)*.

Proor. The space €,;(C) of all discrete subgroups of € is homeomor-
phic to €? via a map F explicited in Section 3 of [7]. This map F is the
inverse of

zel'\0 zel'\0

1 1 1 1
e (@72 ERTT ;)

One recognizes at once the modular invariants g, and g3 of an elliptic curve.
Now as above we have two trivializations
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D" x (€4(C)\{0}) — P,

1 —pt&  pc? > }
I — r
((¢,9).1) {( 2 1 )iPE
and

D x (€4(C)\{0}) — P}

1—ple  plef
Cvé)7r)'_) C _ ,peF
( - gfz 1+ pl¢

The clutching map associated with these two trivializations is now
e [[ = 2T
which becomes, using F:
Say, — SO4
e [(a,b) — (%a,e'?b)]

(see Lemma 2 in [7]). Since SO admits S* x S* (which is simply connected)
as double cover, and since the clutching map above is the double of some loop
in SO4, we see that it can be homotoped to the trivial loop

e = [(a,b) = (a,b)] = Idso,,
therefore P’ is homeomorphic to S? x %,(C)\{0}. ]

COROLLARY 2. P2 is homeomorphic to the one-point compactification of
S2 X IR4.

Proor. We can conclude, simply by considering the possible limits of
elements of P,\{Id}, that the homeomorphism described at the end of the
proof of Proposition 5 extends to a homeomorphism between P,\{Id} and
S? x (4(C)\{0}); €(C) is homeomorphic to S* (see [7]), so %(C)\{0} is
homeomorphic to IR*. One recovers the compact set P, from P,\{Id} by
taking the one-point compactification. O

4. Reduction lemma

4.1. The two reducing arguments. Any non-trivial non-parabolic closed
abelian subgroup of PSL,(C) is well defined by two fixed points and a closed
subgroup of C* (see Proposition 1). Let us consider a sequence (G,) of non-
trivial non-parabolic closed abelian subgroups of PSL,(C). For all n, let us



14 Hyungryul Baik and Lucien CLAVIER

define ((¢1),,, (€1),), (&), (&2),) €D so that [(£1),, = (1), (&), : (&),] € CP!

are the distinct fixed points of one (hence all) non-trivial element of G,
(the order does not matter); let us also define E, to be the subgroup of C*
consisting of the multipliers of the elements of G, (see Proposition 1). For

notational purposes, let us finally define R, > 1 and w, € R/27Z by

1
(£),(&1), — (), (&),

Rye'r =

Taking extractions if necessary, we can always assume that (({;),,(<1),)
and (((y),,(&y),) converge in DT, that (R,) converges in [l,c0] and (e™r)
converges in S'.  We denote the limits of these quantities by the subscript oo.

Theorems 2 and 3 below are the arguments needed to reduce the problem
of the convergence of non-parabolic groups in C, to problems about conver-
gence in % (C). The former deals with the case where the geometric limit is
parabolic, the latter deals with the easier case where the geometric limit is non-
parabolic.

Let us now recall the Reduction Lemma, a key tool in the reducing
arguments below.

ProposITION 6 (Reduction Lemma). Let (X,dy), (Y,dy) be two second
countable, locally compact metric spaces. Let (p,) be a sequence of maps from
X to Y, converging to a continuous proper map ¢, uniformly on every compact
subset.  Assume that for every compact subset K < Y, the closed subset

U ¢, '(K)
n>=N
is compact for N large enough.
Then whenever a sequence of closed subsets F, = X converges to a closed
subset F in the Hausdorff topology of X, the subsets ¢,(F,) converge to ¢(F) in
the Hausdorff topology of Y.

ProoOF. See Section 4 in [3]. O

REMARK 2. If the maps ¢, are only defined on some domains Q, c X
satisfying that for any compact subset K < X, we can find an integer N such that
for all n> N, K < Q, (or, equivalently, if for every neighborhood N of the
infinity-point oo € X and for all n large enough, Q5 <= "), then the conclusion of
Proposition 6 still holds if F, = Q, for every n, simply by declaring that ¢, sends
every point of Q° to e Y (see Section 5 in [3]).

THEOREM 2. Let (G,) be a sequence of non-trivial, non-parabolic, closed
abelian subgroups of PSLy(C) such that (R,) converges to R, = oo (equivalently
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(&), (&1),) converges to the same point for i=1,2), and (w,) converges to
some ..

For all n, let T, be the closed subgroup of C defined by T', = R, Log(E,).
Then (G,) converges if and only if (T') converges to some closed subgroup T, of
C (for the Chabauty topology of C), and in that case the geometric limit of G,
is the subgroup

iy, i, 2
e L AT A S V1
7/)81(0“,600 1 - pelw%éjwéw
where we defined (., to be ({y)., = ((2),, and &, to be (&), = (&), Note
that non-trivial elements of G, (if any) are parabolic elements of PSL,(C)

Sfixing [{,, &) € CP'.

Proor. We will only prove here the indirect implication. The direct
implication follows from Remark 3 which is slightly more general. This is
because convergence of both (w,) and (1/“;) implies convergence of (I',) (see
Remark 3 for notations).

The indirect direction will be proved by applying the Reduction Lemma
twice.

First, let us define for all » a map y, : C — PSL,(C) by

1+ ze((5), (&), ze™((1),(6), )
—Zeiw”(fl)n(fz)n 1 - Zeiw”(él)n(fz)n .

Let us also define y : € — PSL,(C) by

iC 0 1 o0 2
— <1 + ze': g%éw ze'” COC‘ >

—ze"‘“mfgO 1 —zef®={ &,

z (1 +Z/R,,)1/2(

We need to check that this family satisfies the condition of the Reduction
Lemma. This will be done through the following lemmas.

LeEmMMA 1. ) is proper and continuous.

Proor. This is clear, since whenever z — oo, at least one of the four
entries in the matrix ¥/(z) blows off to infinity. O

LEmMA 2. () converges uniformly to W on every compact set.

Proor. It is sufficient to prove it for every compact Ky = {z e C;
|z| < M}. Fix some ¢>0. Since R, — oo, we can find for every M >0
some integer N such that, for all n > N and all z € Ky,

l—e<(14z/R) " <1+e
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Therefore, we can also find an integer such that for every n larger than this N,

[(2) (o)l < ¢

holds for every z € Kj;, thus the proof is completed. |

LEMMA 3.  For any compact subset K of PSLy(C), the closed subset of C

U v, '(K)

n>N
is compact for N large enough.

Proor. 1t is sufficient to prove that for every M > 0 and for every z with
|z| > M, one of the entries of (i,(z)) has a modulus greater that some quantity
A(M) depending only on M, with A(M)— oo as M — co. Recall that
(2) oo (€)es (€)oo (@) s (1) (&2)y, and (61),,(&2),, cannot vanish at the
same time. Suppose for instance that the first entry does not vanish (other
cases are similar). Then there is a constant ¢ >0 for which we have
1(£2),(&1),] = ¢ for every n larger than some integer N. Also by taking a
larger N if necessary, we may assume that R, > M. Thus we have

(14 2/Ro)| ™12+ 26 (05),,(E0),

|z|lc — 1 |z]e — 1 |z]c — 1 1
> > > VM > (¢/V2)M — —
VIVl + 1Ry /22l /M V27| V2
and the proof is completed. O

Define for all n the subset %, = C by

R
|(£2)n(él)n - (éll );1(62)}1' 7 -
={R,(a—1);a€E,}.

97)1 =

Putting together Lemmas 1, 2, 3 and Proposition 6, we now see that if
(7,) converges to some closed subset 7, < C for the Hausdorff topology,
then (G,) = (¥,(Z,)) converges to (%) for the Chabauty topology, hence
Gy, = Y(Zy). The first step of the proof of Theorem 2 is completed.

The second step consists of applying the Reduction Lemma again. For all
n, define ¢, : C — C by

By the series expansion of exp, we see that the sequence (¢,) converges to the
identity map of €, uniformly on every compact subset, which is obviously
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continuous and proper. Since ¢, is periodic of period 2inR,, there is no
chance for

U . '(K)
n>=N

to be ever compact. Thus, let us use Remark 2, by defining for all n Q, to be
the band

Q, ={ze C;|Im(z)| < nR,},

which satisfies the required conditions of Remark 2, because R, — oo.
Then, we have the following, where ||z||,, stands for Max{|Re(z)|, [Im(z)|}:

Lemma 4. For every M >0, for every zeQ,, |z||, =M implies
lp,(2)] = M /2 provided n is large enough.

ProoF. Let us suppose that n is large enough so that R, > M. If
IRe(z)] = M, then |p,(z)| = R,(le?/®| —1) = R,(eM/® —1) > M. Thus, let
us suppose that z is in the closed subset

U,={zeC;|Re(z)| < M, M < |Im(z)| < nR,}.

z

Now U, is mapped homeomorphically by [z — e/®] onto a horseshoe
{ze e MP < |z < eM/B M/R, < Argz <2x— M/R,}

that avoids an open ball of radius sin(M/R,) around 1. Thus ¢,(U,) avoids a
ball of radius R, sin(M/R,) around 0. In view of the series expansion of sin,
and since R, — oo, we must have R, sin(M/R,) > M /2 for n large enough,
and the proof is completed. O

Thus, applying Proposition 6 again, we see that if I, — I, then %, =
¢,(T'y) — Ty, hence F, =T

All in all, we have G, = (T',), and this completes the proof of Theorem
2 for the indirect direction. O

REMARK 3. The equivalence of the convergence of (G,) and the conver-
gence of (I';) in Theorem 2 does not hold in general if (w,) does not converge.
In that case, the sequence (Gy) could converge while (') does not converge. To
prevent this, we could modify (U,) by multiplying it by the adjustment factor
e Namely, Theorem 2 actually says that the convergence of (G,) is equiv-
alent to the convergence of (1/“;) = (R,e™ Log(Z,)), and of the fixed points
(fin) to the same limit f.

Proor. The indirect implication immediately follows from the proof of
Theorem 2. This is because we can always assume that (w,) converges by
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extracting a subsequence. Checking the formula for G.,, we see that it does
not depend on the extraction.

To prove the direct implication, assume (G,) converges. Then it is neces-
sary that the fixed points f;, converge to (., /&,. Now since the modified
T, lie in the compact set €(C), it is enough to show that every converging
subsequence of (l/";) converges to the same subgroup f;o But applying
Theorem 2 to all converging subsequences for (I';) and (w,) produces the
same G.,. Direct inspection shows that this is only possible if all converging
subsequences for (l/";) converge to the same subgroup. O

THEOREM 3. Let (G,) be a sequence of non-trivial non-parabolic closed
abelian subgroups of PSLy(C) such that (R,) converges to R, < oo (equivalently
((¢i),s (€1),,) converge to the distinct points for i =1,2). (G,) converges if and
only if (B,) converges to some E., (for the Chabauty topology of C), and then
the geometric limit of (G,) is the subgroup

G ={H (), (),).(0),.(),),ai 4 € B}

Proor. Applying the Reduction Lemma with , : €* — PSL,(C) defined
by

e DR (), (&), (2= DR (0),(6), )
(2= DR (&), (&), 1= (2= DR (0),(E), )

and _, : €* — PSL,(C) by

. Z—I/Z(l +(z— 1)Rn.€"“’°’l‘ (&), (E
—(z =1 R,e = (&) . (&

)

l)oo (Z - 1)Rneiw% (Cl)w(£2)w >
)oc 1 - (Z - I)Rneiwm (Cl)oc(é2)oo

we conclude that if (E,) converges to E.,, (G,) = (¥,,(E,)) converges to ¥(E.,);
thus G, = Y (Ex).

For the other direction, assume (G,) converges. For any extraction ¢
such that (Z(,)) converges to some Z,4, we see that Zy is entirely determined by
G. Since E, € ¥(C) which is compact, this proves that (£,) converges, and the
proof is completed. O

4.2. Geometric view of R, and w,. Let us give geometric interpretations for
R and o, defined as above by

iw __ 1
R = OHE - 08&7

where ({1,¢1), ({, &) e DT, We already saw in Subsection 3.3 that (&, — {1&,
can be interpreted as a square rooted discriminant in a model of CIP%.
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LEMMA 5. R is the inverse of the “‘spherical distance” between [(; : &]
and ({5 : &) e CP.  Namely, I/R = 10¢ — (&) is equal to the distance, in
R3 = C x R, between the respective stereographic projections of (£1,¢1) and
((5,E,) e DT on the sphere S? of center (0,1/2) and radius 1/2 (see Figure 1).

ProoF. Recall from Remark 1 that the stereographic projection of DT
onto S?\S is given by

(&) = (L&,&).

Now, using that |{ ,<|2 =1- é,-z, it is a straightforward computation to show that
& = L&D =108 - L&)+ (6 - &) O

LEMMA 6.  is the opposite of the angle between [(;: 1] and [, : &) €
CP'. Namely, —w = Arg(68 — (&) is equal to the argument, in € x {1} =
C, of the vector zy —z; for the respective stereographic projections z; of
((i, &) e DT on the horizontal plane passing through N = (0,1).

Proor.  Since multiplying a number by a positive real does not change the
argument, we have

—o = Arg((Hé = §&) = Arg(/E - G /é). O

4.3. Geometric limits seen with cylinders. We would like now to give a
geometric interpretation of Theorem 2. Let (G,) be a sequence of non-trivial,
non-parabolic, closed abelian subgroups of PSL,(C) as above. Recall nota-
tions for (({1),,(&1),), (({2),:(&),) eD™, R, > 1, w, € [0,27]. Assuming here
that R, — oo, i.e. that the distance between the fixed points [({;), : ({1),] and
(&), : (&),) € CP! of G, tends to 0, recall the notation I, = R, Log(E,) with
=, the multiplicative group of multipliers of elements of G, (see the beginning
of Section 4).

For all n, I, is a subgroup of C containing 2inzR,. Equivalently,
I',/2inR,Z is a subgroup of C/2inR,Z, which is a cylinder. Let us view
this cylinder in IR® = € x IR as being the cylinder with circumference 2inR,
(i.e. radius R,) and with center line:

{(z,t) e C x R;Im(z) =0 and 1= R,}.

This cyclinder intersects the plane € x {0} in the line {Im(z) =0 and ¢ = 0}.
For notational convenience, let us denote this cylinder by C,. Otherwise
put, C, is the image of C under the map

C—-CxR

X+ iy (x+ iR, sin y,R,(1 —cos y)).
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angle

2

Fig. 2. Rotated cylinder C, associated to G, sitting on the plane € x {0}.

Better yet, imagine C, as being rotated by an angle w,, as in the following
drawing, Figure 2.

Now when n — oo, R, — oo also, i.e. the cylinders C, become wider and
wider; therefore (C,) converges, for the Hausdorff topology of R3, to the plane
C x {0}.

The last step of the description is to draw for all n the subgroup
I',/2inR,Z on C,, simply as the image of I', under the map

C—-CxR
X+ iy (e (x + iR, sin y), R,(1 — cos y)).

As n— oo and the cylinders C, become wider and wider, these images
look more and more like a closed subgroup of € x {0}, that we recognize to be
e,

Finally, plug the values of this subgroup eI, c € in the matrix
representation so that we obtain

2
G, — 1 +pC?foc pcoo pe eiwmroo ,
—pfoo 1= pluo

which is the geometric limit of G,.

5. Exhaustion of cases

In this section, we consider a converging sequence (G,) of non-trivial, non-
parabolic, closed abelian subgroups of PSL,(C), as in Section 4. Our goal is
to provide a way of prescribing the limit subgroup G, provided that we allow
extracting subsequences to make the introduced parameters (R,, w,, Z,, etc.)
converge. See notations introduced in Section 4. This will lead to a complete
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exhaustion of cases for converging sequences (G,). See also Subsection 2.4 for
further details about this strategy.

5.1. Case 1: |Fix(G,)| =2. Let us consider the case where G, is non-
trivial, non-parabolic. By Theorem 3 the exhaustion of cases for sequences
(G,) reduces (in an explicit way) to the exhaustion for sequences (n+— Z,) €
%(C"), ie. to the description of the Chabauty space of C*, which is well-
known. See for instance [1] (or [2] with pictures).

It is interesting to note that the Reduction Lemma (Proposition 6) implies
that we could assume without loss of generality that all G, have the same fixed
points in C:

Fix G, = {0, 00}.

This follows from minor changes in the proof of Lemma 7.

5.2. Case 2: |Fix(G,)|=1. Let us consider the case where G., is a non-
trivial parabolic subgroup. By Theorem 2, the exhaustion of cases for
sequences (G,) reduces (in an explicit way) to the exhaustion for sequences
of subgroups

(Ty) = (R, Log B, € 4(C)).

In order to unify the notation between Section 4 and the Example at the
end of Section 2.4, we write R, = /1 + a2, so that R, is the inverse of the
spherical distance between the stereographic projections of a, € R=? C and
o0 e €. The following Lemma allows us to assume further that Fix(G,) =
{a,, ©} with a, e R=°,

LemMmA 7. We can assume without loss of generality that the fixed points
of G, are
Fix(G,) = {a,, ©}

with a, € R=, a, — oo.

More precisely, given R, = /1 + a2 and T, there is a unique subgroup En
with Fix(&;) ={ay, 0} and T, as group of multipliers. Then (G,) converges
precisely when (5:,) converges and then

oo {(l )]

with T, =lim I, Moreover, G, is obtained from E; by conjugating with an
appropriate rotation.
Proor. We use the Reduction Lemma (Proposition 6).

For any two points z| # z; € @, there is a unique rotation ¢ € SO; that
sends z, to oo and z; inside R=?. Here SO; acts on € after identifying it with
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S? via the stereographic projection. Since SO; acts on PSL,(C) = Aut(H?)
by conjugation, we think of ¢ as a homeomorphism from PSL,(C) to
itself. We wish to apply the Reduction Lemma with X = Y = PSL,(C)
and the rotations ¢,. Given a sequence of fixed points z; ,, z2, converging
to the same limit z.,, if (w,) (defined in Section 4 as the angle Arg(zx, — z1.,))
converges to some ., € R/2znZ, then (p,) converges uniformly on compact
subsets of PSL,(C) to ¢, the only rotation that sends the vector centered at
z, and pointing in direction w., to the vector centered at oo and pointing
toward the positive reals.

Now let K be a compact set of PSL,(C). Since compact sets of PSL,(C)
are exactly the bounded closed subsets and since SO; is compact, we see that
for any N,

UN(/J;‘(K) =S0;'-K
n>

is bounded thus compact. Therefore we can apply the Reduction Lemma and
we conclude that if (¢,(G,)) converges, then (G,) converges. To show the
converse, apply the same argument replacing G, by ¢,(G,) and ¢, by ¢,
We conclude that (G,) converges if and only if (a,) = (¢,(G,)) converges.

O

With this in mind, we proceed to the exhaustion of cases. It reduces
completely to the exhaustion of cases for sequences (I';) of subgroups of €
satisfying 2izR, e ', with R, — oo, R, € R.

We can reduce it further, by defining

I, =Inf{x>0]ixeT,}.

When [, # 0, the integer 2zR,//, is the maximal order of an elliptic element
in G,.

LemMmA 8. Let [ > 0. The followings are all the closed subgroups T" of C
such that [0,i]NT = {0,i} or [0,il]:

e Al:=ilZ,

o Bl:=:zZ +ilZ for ze C with Re(z) >0 and Im(z) € [0,1],

e C,:=xZ+ iR for x>0,

o DI''=ilZ+ (1+i)R with teR,

e A'=C, :=iR,

b Co = C.

In Remark 4 below, we recall how letters for subgroups I' correspond to
different kinds of non-parabolic subgroups G of PSL,(C).
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REMARK 4. Let G be a non-trivial, non-parabolic, closed abelian subgroup
of PSLy(C), let T'= RLogE (see the beginning of Section 4 for notations).
Then exactly one of the following holds:

o T = A>RIm if G is generated by an elliptic element of order m,

e I is some Bf”R/’” if G is generated by an elliptic element of
order m and a non-trivial hyperbolic element; these two generators
need to have the same fixed points in CP' in order for G to be
abelian,

e T is some C, if G # C, G contains every elliptic element fixing a pair of
points in CPP', and G contains a non-trivial hyperbolic element fixing the
pair of points,

o T is some DZ®™ if G contains exactly m elliptic elements, and has
exactly m connected components homeomorphic to RR. Otherwise put,

U is a m-branched logarithmic spiral,

e T'=1iR if G consists of the elliptic elements sharing the same fixed point
set,

o T'=C if G consists of the elliptic and hyperbolic elements sharing the
same fixed point set.

—
o =e€

Let us continue the exhaustion of cases by mentioning easy cases first.
Note that by extracting a subsequence if necessary, we may assume that all ',
are of the same type (4, B, C or D) described in Lemma 8, and that (/,)
converges in [0, co].

If [, — 0 (resp. [, — [ with [ € (0, 00)), explicit limits T, for (I',) can be
computed, with T, = C, for x € [0, 0] (resp. a subgroup of letter A, B or D).
This is performed by separating cases as in [2]. The whole description is
somewhat tedious so we refer to [2] for the general picture.

Now we see that we are left with the problem of exhaustion of cases
for convergent sequences (I',) such that there is an [, >0 with i, e T,
[0,il,]NT, ={0,il,} and [, — co. The following lemma deals with the easier
cases.

LemMMA 9. In the Chabauty topology, we have the following convergence
results, for I, — oo throughout.
« Ah— {0},
{0} if Re(zy) — o0
(x+)Z if Re(z,) — x with x>0, and y, — y
@ for y, the unique (Im(z,) mod il,) in (—1,/2,1,/2]
{0} if Re(z,) — x with x>0 and y, — +o0,
{(1+it)]R if tn—1eR
|1]

C. if t, — oo and m—»xe[o,oo].
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ProorF. These assertions result from elementary manipulation of Haus-
dorff limits. O

Here again when all the I',, are of type B, we can further assume that
(Re(z,)) converges in [0, co] and we see that the case I', = Bl with [, — oo and
Re(z,) — 0 is the only remaining case. It will be studied separately in
Subsection 5.3 below. Note that this case exactly describes the exhaustion
of cases for sequences of abelian subgroups generated by an elliptic element
of order m, (this condition being vacuous for m, = 1) and by a non-trivial
hyperbolic element, and such that R,/m, — oco. In particular, this case
englobes the exhaustion of cases for sequences of cyclic subgroups of PSL,(C)
generated by one hyperbolic element, converging to a parabolic group (example

in Section 1, with [, =2n\/1+ a2, x, =2\/1+ a2 In(p,), 0, = 1/n).

5.3. Remaining case. We will now study the convergence of lattices I',, =« C
of the form

T, = ly, x, + 10,1,

with [, >0, x, >0 and 0, € [0,1], in the case where /, — oo and x, — 0.
Taking extractions if necessary, we can assume that 6, — 0., € [0, 1].
The strategy to describe the explicit limit of the sequence (I',) is to replace

the generators (il,, x, + i0l,) by a “better” pair of generators, “better” here

meaning roughly “closer to the origin”. The intuition is that while (i/,) and

(x,, + i0l,) converge/diverge possibly in very different speeds, linear combina-

tions of these generators may very well end up close to the origin. Better

generators will prevent this enrichment behavior to happen.
This is where the continued fractions enter to the picture. See for instance

[6] for a geometry-flavoured exposition to continued fraction.

We write 6 = [og; o1, 02, 23, . . .] for the expansion in continued fraction of 6:
1
0 =09+
o + T
0w+

gt

with o9 e Z and o; > 1 for i > 1.

Recall that for j less than or equal to the length of the expansion in
continued fraction of # (this condition being vacuous for 6 irrational), the jth
convergent

bi_ [o; o1, 02, ., 0]
qj

with p;, g; coprime, satisfies the following properties.
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LemMa 10. By convention, p_1 =1, po=o0y, q_1 =0, gqo=1. For all
j=1

(1) pj=opj1 + pi-2s 45 = %qj-1 + g2,
2) g1pj — qpin = (=1),
(3) pj/q; alternates around 0. More precisely, sign(0 — p,/q,) = (—1)",
@) 10— pi/gjl < 1/q;:1 < 1/

Proor. These are standard facts. For instance, see [10]. O

\S)

Recall the previous notations I', = <il,, x, + i0,l,> with [, >0, x, >0,
0,€0,1, I,— o, x,—0 and 60,— 0, €][0,1]. Let as before 0, =
(050, 1,...,0,...] be the continued fraction expansion of 0,.

Define for all integers n and j

Up,j = qn,jXn + iln(qn‘jen - pn,j)'

Note that we always have I, = uy j,up 1. Indeed, {u, ;,un i1} is
linearly independent by Lemma 10-(3) and generates I',, since (2) and (4) imply
that there is no point of I', in the interior of the triangle with vertices 0, u, ;
and u, j41.

At this point, it does not seem that the way we expressed I, using
the continued fraction expansion of 6, is by any mean more concrete that the
Weierstrass elliptic function used in [7]. Contrary to this appearance, the
following two lemmas show that a lot of the properties of the pair (u, j, ity j+1)
can be “read” in the continued fraction expansion of 6,.

Re(u k+1 . . .
Lemma 11. p, . = M has continued fraction expansion
' Re(uy 1)
Pnk = [an,k-&-] s Ondey O e—1y + - - ,‘“n.l]a
Im(un,k+1)

and 1, , = ‘ has continued fraction expansion

Im(un’k)
Mok = (05 0 k425 %kt 3, - - -]

In other words, p, , is obtained by reading the continued fraction of 0, back-
wards, starting at the index k + 1, and n,, . is obtained by reading the continued
fraction of 0, forwards, starting at the index k + 2.

Proor. We prove the first assertion by a simple induction on k for
Pkt = qnk+1/qn k> using Lemma 10-(1). Indeed, p, | = ¢n.1/qn0 = %1 and

o qn, k+1 o On, k+19n, k + qn, k-1
pn,k+1 - -

= Oy, k+1 + .
qn k qn,k P,k
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Similarly for the second assertion, define for all &

n o qn,k+10n — Pnk+1
nk+1 — .
Gn, k00 — Dn,k

Then 7, o = 0, and by (1)

"  ngkt1On = Ppr ., .
nk+1 — 7 = T Unk+1 .
q’hkOH — Pnk 7711‘/(

O

LEMMA 12, The set of lattices of C generated by a pair of vectors u,v e C
satisfying

0 < Re(u) < Re(v),

0 < lm(v)] < [Im(w),
Im(u) - Im(v) < 0,
Re(v)/Re(u) € R\ @,

is dense in the space of closed subgroups of C, for the Chabauty topology.

Proor. This follows from a standard density argument. O

The following theorem translates in the world of PSL,(C) as saying that
we can obtain any parabolic group P as the limit of a sequence of cyclic groups
H, with hyperbolic generators. Additionally, this remains true even if we
ask the fixed points of H, to converge radially. More precisely, suppose for
instance that the fixed point of P is 0 € € ~ CP' and choose some preferred
angle w. Then we can find a sequence (H,) converging to P with Fix(H,) =
{0, f,} and Argf, = —w for all n.

THEOREM 4. Let T' be any closed subgroup of C, and 0 ¢€[0,1). Then
there exist sequences I, — oo, x, — 0 and 6, — 0 such that the sequence of
lattices

(Ty) = (Kilyy xy + i0,41,)
converges to I' in the Chabauty topology.

ProOOF. Assume that 0 € [0, 1]\@Q (the case ¢ € @ is only different in the
fact that the expansion in continued fractions of @ is finite; it can be dealt with
by minor changes to the present proof). Assume that I' is generated by a pair
of vectors u,v e C satisfying the condition of Lemma 12, and consider p =
Re(v)/Re(u) and n = |Im(v)/Im(u)].

Suppose for instance that Im(u) > 0, the case Im(u) < 0 being similar.
Also, define the following continued fraction expansions:
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0=10;01,00,...],
p = [Po; B1,Pas - -]
n= [0§V1,y2,--~]-

Here by assumption, the first two expansions are infinite, f, > 0, and the last
expansion is either finite or infinite.
Let us define the sequence 6, by:

Hn = [O;alaoQa'~~7an7ﬁn7ﬁn717'"7ﬂ07y17y27"'}'
Recall that p, ., and g, ), are defined by

Pn,Zn/(jn,Zn = [Oa 01,002, .- '7“n7ﬂn7ﬁn—l7 s 7ﬂ1]'

Set x, and /, so that x,q, 2, = Re(u) and /,(gn 2.0, — pn,2n) = Im(u), and let
I, = <ily,x, +i0,l,». By definition of x, and /,, we have that u, ,, = u, and
we want to prove that w, 2,11 — v. But by Lemma 11, p,,, and 7, ,, verify

{pn,Zn = [ﬂo;ﬂla'--7ﬂn7an7-"aa1]7
Myon = [0;))177)27"']7

therefore w2011 = Py 20 R€(Un,20) — 1y 20 IM(thy20) — p Re(u) — n Im(u) = v.
Because u# and v are linearly independent, I', = {uy 2n, tp, 201> — I’ = {u,v)
and the proof is completed for this case.

Now by Lemma 12 and by a standard density and diagonal argument, the
proof is completed in all the remaining cases. O

Finally, let us describe explicitely the limit of a converging sequence (I';)
as above, using only the sequences (/,), (x,) and the coeflicients «; of the
expansion in continued fraction of #. Let us start with an easy lemma.

Lemma 13. For any n, two minimal values of the sequence (j— |[un;l|.,)
Jor the max norm ||x + iy||,, = Max(|x|,|y|) are obtained for two consecutive
;min  ;min

integers, that we write (j;"", j"" +1).  Then w, jmn and u, jwn. are also
minimal for the max norm amongst all non-zero elements of T,

PrOOF. Since (j+ g ;x,) 1is increasingly converging to oo and
(J = |qn,j0n — pn;]) is decreasingly converging to 0,

J = NG jxn + i (Gn,j00 — Pu)l o

is first decreasing and then increasing; this proves the first assertion. The
second follows from Lemma 10-(2) and (4). ]

DeriniTION 2. For all n, define u,, v, by

Uy, = un jmin
+Jn
Uy, = un’j;nin+1.
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THEOREM 5. Suppose that for instance Im(u,) >0 for all n (the case
Im(u,) <0 for all n is similar, and we can assume either one of the two by
extracting subsequences if necessary). Define t, =lim Argu, €[0,7n/2], t, =
lim Arg v, € [—7/2,0], assuming these limits exist by taking an extraction if
necessary. If t, and t, are neither both 0 nor both +n/2, then the limit subgroup
I, = 1lim<u,, v,y is the one we expect, namely

I, =T,+T,
with
(I+it,)R if u, — 0,
Uy =lmu,) =S uZ if uy, — uy € C\{0},
{0} if w, — o0.
and similarly for v.
If t, and t, are either both O or both +xn/2, then:
© To=HZ+Rif t,=1,=0, u,—0 and g™ Re(v,) + [Im(v,)| — y,
with by convention yZ =R if y=0, yZ ={0} if y= oo,
e T, =xZ if t,=1t,=0 and u, —» xeR, x>0,
e I'y=xZ+iR if t,=4n/2, t,=—-7/2, v, — 0 and Im(u,) mm +
Re(u,) — x, with by convention xZ =R if x=0, xZ = {0} if x = o,
e I, =0Z if t,=+n/2, t,=—n/2 and v, — —iy, y > 0.

Proor. The first part follows easily from the minimality of the generators
(tty,v,), see Lemma 13. The two cases t, =1, =0 and ¢, = +7n/2, t, = —n/2
are similar; let us prove only the result for the former case.

If t,=1t,=0 and u, — 0, draw the line passing through v, and parallel
to the line through 0 and u,; consider its intersection —iy, with the vertical
axis. It is easy to see that y, = ;‘22;”; Re(v,) + |Im(v,)|, and since u, — 0 and
t, =0, we conclude that I'., = iyZ + R.

If t,=1t,=0 and u, — x with x > 0, then consider Figure 3. By the
minimality of the generators (u,,v,) for the max norm, there can not be any
element of I';, = {uy,, v,y in the two left shaded squares. As a consequence,
there can not be any element of I', in any of the shaded region. Now
Im(v,)| < Im(u,), so Re(v,) must be bigger than the real part of the point
rReFr)esented by z on Figure 3, which is easily seen to be Re(z)=

e(u,

W(Re(un) —Im(u,)). Since u, — x>0 we conclude that T',, = xZ, and

the proof is completed. ]

6. Local models for C,

We would like now to provide local models for neighborhoods of elements
in C;. Recall that the space of non-trivial, non-parabolic elements of C; is



The space of geometric limits of abelian subgroups of PSL(C) 29

Un

Un

B

u, jmin |
»Jn

Fig. 3. If u, — x with xe R, x > 0, then Re(v,) — 0.

homeomorphic to ® x (¢(C*)\1) (see Proposition 1). Since we know how to
describe geometrically (C*) (see [2]), we have a clear enough picture of what
a neighborhood of a non-trivial, non-parabolic element of C, looks like.

6.1. Local models in terms of marked subgroups of C. Lect G be a parabolic
group in C,. For clarity, assume that its fixed point is 0. In the following,
we will look at groups H in C;, close enough to G that:

e if H is parabolic, its fixed point is not oo. In this case, we get
“the” subgroup I' associated to H, via the specific local trivialization
D™ x C"— 2 from Section 3.4.

e if H is non-parabolic, its fixed point set does not include co. Therefore
it makes sense to talk about the argument w of z; — z;, for z; € C the
stereographic projections for the two fixed points f; on C.

Call T'; the subgroup of C associated to G.

Non-parabolic groups in C, are specified by two fixed points f; and f,
and by a closed subgroup I' = Re™ Log E € ¢(C). T contains the element
0 = 2inRe™ with R >1 (see Subsection 4.3). Note that for notational pur-
poses, I in this section refers to I" from Remark 3 (the hat symbol is dropped).
This should not introduce any confusion.

Alternatively, non-parabolic groups can be specified by the giving of one
fixed point f;, and by a marked closed subgroup (I",d), the marking J being
of absolute value > 2z. This is because we can recover f, from fj, R and w.
Thus, let us define:

M =1{(T,8);T € 4(C),6 e TU {0}, 0] = 27}
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We put on .# the topology inherited by inclusion into @ (C) x (CU{c0}).

Consider the fixed point exchange map (fi,0 = 2inRe) — f>, where f>
are defined by d(fi, f2) = 1/R and o is the angle between the horizontal line
and the line through f; and f.

THEOREM 6. Let B be an open ball around 0 inside S*, small enough
that o ¢ B (recall the choice of S? as a subset of C€* in Subsection 3.1). Let
A" be a neighborhood of (I'y, c0) € M, small enough that: Nf; € B, ¥(I',0) € N,
fr # 0. Then the following map is a homeomorphism onto its image:

(B X */V)/«f]?raé) ~ (f27r7 _5)) — G
(/1,1,0) — H(f1,T,9),

where H(f1,T,0) is the non-parabolic group with fixed points fi, f, and the
associated group T if 6 # oo, or the parabolic group with a fixed point fi and the
associated group T if 6 = o0.

ProoOF. Injectivity comes from the classification of abelian subgroups of
PSL,(C). Remark 3 implies that a sequence in the source space converges if
and only if its image converges in the target space. O

Theorem 6 reduces the problem of describing neighborhoods of parabolic
groups in C; to the one of describing the neighborhoods of marked subgroups
(I'1,0) € A4. The authors produced several pictures of these neighborhoods
depending on the type of I' as a subgroup of €. Describing these pictures in
detail would require lengthy explanations that we decided not to include in the
present paper. We will discuss accumulation behavior depending on the type
of Fl.

6.2. Dichotomy of accumulation behavior. As the space C, accumulates to
P,, we face the situation of a 6-dimensional space accumulating on another
6-dimensional space. We expect spiraling behaviors of some sort; this sub-
section is an attempt to make this precise.

In general, there is one simple nice dichotomy for the case when an
n-dimensional space X accumulates to another n-dimensional space Y (say X,
Y metric spaces). Let pe Y be a limit point of X. Then either there is a
continuous path y:[0,1] — X U Y such that y([0,1)) =« X and y(1) =pe Y, or
there is no such a path. Otherwise put, either for every neighborhood U of p
in XUY the arcwise-connected component of U containing p contains an
element of X, or for every neighborhood U of p in XUY the arcwise-
connected component of U containing p contains no element of X. We would
like to reserve the term “‘spiraling of X toward p in Y for the latter behavior,



The space of geometric limits of abelian subgroups of PSL(C) 31

Fig. 4. In both pictures, a 2-dimensional space X is accumulating onto a 2-dimensional space
Y. In the picture, we only show the approximation of a pleating of one end of X. It looks like
an accordion with more and more pleating. As a limit of this process, X finally accumulates onto
a the square Y. The fundamental difference between these two cases is captured by the paths y.
In the first case, if you pick a point p in X, then there is no finite path starting at this point and
reaching Y. But such a path exists in the second case.

since it is similar to [I,00) = IR accumulating onto S' via x — (1 —1)e™ e C.
We do not think that this terminology is standard.

Let us see an example in dimension 2 showing the two different situations.
See Figure 4.

For notational convenience, define now X = C;\P, to be the space of
all non-trivial non-parabolic closed abelian subgroups of PSL,(C). In the
following subsections, we will prove the following theorem.

THEOREM 7. Let G be a group in Py, Then

1. if G is isomorphic to Z?, then X accumulates towards G in a spiraling
way.

2. if G is not isomorphic to Z*, X accumulates toward G in a non-spiraling
way.
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6.3. The spiraling case. In this subsection, we prove Theorem 7, part 1.

Let G be a parabolic group in C, isomorphic to Z>. We can assume
without loss of generality that its fixed point is 0 and its associated subgroup I';
is Z+iZ < C.

Assume there is a path 7€[0,1] — G, € C, such that G, e X for every
te0,1], and with G; =G. We would like to find a contradiction. Tt
is sufficient to look at the induced path in the space .# introduced in
Section 6.1.

By shortening G, if necessary, we can assume that for all 7, the fixed points
of G;, fi(t) and f3(f) are not co. Let I'; = R(r)e™") Log Z(¢) € 4(C), and
0(t) = 2inR(t)e™" e T';. Then since G; = G is parabolic and J is continuous,
o(t) — oo as t — 1. The space of lattices being an open subset of €(C), we
may assume that I', is a lattice for any 7€ [0,1]. We can define generators
g1(1), g2(¢) of T', so that g;(#) — 1 and g»(f) — i as t — 1. For small & > 0, let
N, be a neighborhood of I'} in € (C) such that the following holds: T, lies in
N, if and only if |1 — g(?)] < e and |i — g2(¢)| <& For each ¢, there are some
integers k1 (7), k»(¢) such that ki (#)gi(?) + k2(¢)g2(¢) = (). But since ¢ +— k;(¢)
is continuous and [0, 1] is connected, kj, k» are constant maps. This contra-
dicts the fact that J blows up to co when approaching 1. Hence a continuous
path ¢ — G, cannot exist, and the proof of Theorem 7 is completed in the first
case.

6.4. Non-spiraling cases. There are several subcases that we would like to
investigate now. In each case, we will provide conditions for the existence of
continuous paths starting at particular points in X.

(1) G is parabolic, isomorphic to Z,

(2) G is parabolic, isomorphic to R x Z,
(3) G is parabolic, isomorphic to R,

(4) G is parabolic, isomorphic to C,

(5) G is the trivial subgroup {1}.

(1) Let G be a parabolic group in C, isomorphic to Z. We can assume
without loss of generality that its fixed point is 0 and that its associated
subgroup I'y is Z < €. For small ¢ >0, let N, be the neighborhood of T’
in ¢(C) consisting of the cyclic groups <{g;» and of the lattices <{g;,¢>> with
|1 —gi| <& and g, € {|Re(z)| <1 and Im(z) > 1/e}. Take Gy € X in a small
ball U around G in C, for which every element has its associated subgroup
in N,. Write Ty for the associated subgroup of Gjy; it equals either g;(0)Z
or {gi(0),¢2(0)>. An argument in Subsection 6.3 would show easily that if
0(0) = k1g; then there are no continuous paths ¢ — G, € U such that G; = G.
Moreover, each different choice for k; > 0 corresponds to a different connected
component for U.
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Now if 6(0) = kig) + kaga with k; >0, the path in U defined by
L =<91(0),92(0)), /() = (1 =0)fi, (1) =kigi(1) + kaga(r)  with  g1(1) =
(1 =1#)g1 +t and g»(7) = g2 + - connects Gy to Gi.

(2) Let G be a parabolic group in C, isomorphic to Z x R. We may
again assume that its fixed point is 0 and its associated subgroup I'j is R + iZ.
For small ¢ >0, let N, be a neighborhood of I'} in ¢(C) consisting of the
subgroups {gi,g2) with |gi| <e&, |Arg(g))| <e& and |i —ga2| <&, and of sub-
groups of € isomorphic to Z x IR which are close enough to I';. Now, as
above, let U be a neighborhood of G for which every element has its associated
subgroup in N,. Discussions as before show that lattice subgroups in N, with
a choice 0(0) = kig1 + kag2, ko > 0 each corresponds to one connected com-
ponent of U that intersects P, non-trivially. The novelty in the case k; =0
is that g; can be made to converge to 0 continuously. In the process,
o(t) = ki1g1(¢) has to get close to 0 also, thus G, needs to exit U at some
point.

(3) The case where G is isomorphic to R is very similar to the case (2)
but slightly more complicated, since now it is possible to approach I' by groups
of type Z, and we will not elaborate further.

Case (4) is somewhat wilder. Indeed, assuming again G) has fixed point
0 and I'; = C, neighborhoods of G; include copies of the neighborhood of
the wedge point of the D-bouquet in the Chabauty space of C* (see [2]). We
will only attempt to show that G| possesses arbitrary small neighborhoods U
such that both U and XN U are arcwise connected; this statement somewhat
represent an ultimate non-spiraling behavior.

LemMA 14.  Given any subgroup Ty, with marked point 6 = (0) and close
enough to I'y = C for the Chabauty topology dy ), there is a path t+—
(C1,0(t)) € M such that t— dg)(I';,T1) is decreasing and d(t) is constant.

Proor. Since I'y is close to C, it has to be of type IR x Z or a lattice.

First, consider I'y to be a subgroup of € of type R x Z. Let L; be
the line passing through 0 and J, and L, any line through 0 distinct from
L; and not included in I'y. Then the path ¢ — I', with I, obtained from Iy by
applying the linear shear T,(L;, L,) that leaves L, pointwise fixed and contracts
the direction L, by a factor 1/(1 —r) satisfies that the distance be-
tween two consecutive copies of R in T', continuously decreases, while d(¢) € L;
stays fixed.

Now consider Iy to be a lattice. Let L; be the line passing through 0 and
0, and L, a line passing through 0 and any point in I')\L;. Then applying
T,(L1, Ly) to Tg yields a path from I’y to a subgroup of type IR x Z, with dy(q)
decreasing and o(¢) fixed. Concatenating this path with the path described
above finishes the proof. O
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COROLLARY 3. There exist arbitrary small neighborhoods U — C, of G
such that both U and XN U are arcwise connected.

Proor. For ¢ > 0, consider U, to be the neighborhood of G, consisting of
all groups in C, with a fixed point |f| < &, with corresponding I" either of type
R x Z and then the distance between two consecutive copies of IR in I' is less
than ¢, or a lattice with generators g; and ¢, |g1],]g2] < ¢, and in both cases
with 6 € I' verifying [0 > 1/e.

Now let G,G" € U,. We want to show there exists a path in U, from G to
G’, with the additionnal requirement that if both groups are in X, the path is
in X. By Lemma 14, we can assume that both G and G’ have corresponding
group I' = C. Then, by concatenating if necessary with a path that moves a
fixed point to 0 while leaving I" and ¢ constant, we can assume that G and G’
have f; = 0. But then, by concatenating with a path that connects the 6 of G
and G’ via a segment, we see that the claim holds. O

(5) {Id} has arbitrary small arcwise connected neighborhoods U, but
XNU always has infinitely many arcwise connected components. First, for
e>0, let U, be the neighborhood consisting of all groups in C, with fixed
points |f;| < & and with I'N B¢(0,1/¢) = {0}. Then for any group Gy in U,
the path in U, that moves f; to 0 (for instance in a straight line) while
expanding Ty by a factor 1/(1 —¢) continuously deforms G, into Id. There-
fore U, is path-connected. The second claim holds because for any given
neighborhood U of Id, and any integer k > 0 there are groups G € U such that
[0,6]NT contains exactly k + 1 points. As argued before, different choices for
k yield different connected components of U NX.

7. Summary statement
The following statement collects and summarizes all results in this paper.

Summary Statement The space X of non-trivial, non-parabolic, closed abelian
subgroups of PSL,(C) is homeomorphic to

O x (¢(C)\{1}),

where @ =~ CIP>\CP' is the space of pairs of points of a 2-sphere (see Sub-
section 3.3) and ¢(C") is the Chabauty space of C* (see for instance [2]). See
Proposition 1.

Moreover, the space of non-trivial discrete cyclic subgroups of PSL,(C)
generated by an elliptic generator is homeomorphic to

0 x sz,
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and the space of non-trivial discrete cyclic subgroups of PSL,(C) generated by
a hyperbolic generator is homeomorphic to

® x (C\D).

See Proposition 2.

The closure P; of the space of cyclic parabolic subgroups in C; < C, is
the one-point compactification of a 4-twist SO,-bundle of D\{0} over S? (see
Corollary 1). It lies inside the space P, of parabolic closed abelian subgroups
of PSL,(C); P, is homeomorphic to the one-point compactification of S x IR*
(see Corollary 2).

Reducing arguments (Theorems 2 and 3) show that the problem of
convergence of sequences of elements of C, can be reduced to a problem
about convergence of the associated closed subgroups of C.

The way X = C,\P; is attached to P, derives from Theorem 2. It results
from a blow-up phenomenon corresponding to cylinders getting wider and
wider; see Subsection 4.3. In spirit, this attachment is very similar to the
bending described in [3] (recall Theorem 1).

The whole exhaustion of cases for sequences of closed abelian subgroups
of PSL,(C) is described in Section 5. The last case, englobing in particular
the case of cyclic hyperbolic subgroups H, of X converging to a point in
P, involves the expansion in continued fraction of the multiplier 8, of a
generator of H, by stopping at some index and then reading the expansion
from right to left, and from left to right starting at this index. See Sub-
section 5.3.

Finally, the description of local models for neighborhoods in C, of
parabolic groups G € C; is reduced to a problem about marked subgroups
of C; see Subsection 6.1. In the generic case where G is isomorphic to Z2,
X accumulates towards G in a spiraling way. When G is not isomorphic to
Z*, X accumulates toward G in a non-spiraling way (see Section 6 for more
details).

An interesting direction in generalizing this work would be to study the
case of elementary subgroups of PSL,(C). Since those are precisely the sub-
groups of PSL,(C) with finite index abelian groups, it seems reasonable to
expect that the Chabauty space of elementary groups is not too much more
complicated.

Also, along the way of Subsection 5.3 we discovered that it was possible
to relate some aspects of geometric limits to the continued fraction of some
quantity (namely 60,) by reading its expansion, first backwards starting from
some index j + 1, then forwards starting at the index j +2. We would be very
interested in finding other occurences of these relations in other parts of
mathematics.
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