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Abstract. This article is concerned with general singularly perturbed second order

semilinear elliptic equations on bounded domains WHRn with nonlinear natural

boundary conditions. The equations are not necessarily of variational type. We

describe an algorithm to construct sequences of approximate spike solutions, prove

existence and local uniqueness of exact spike solutions close to the approximate ones

(using an Implicit Function Theorem type result), and estimate the distance between

the approximate and the exact solutions. Here spike solution means that there exists

a point in W such that the solution has a spike-like shape in a vicinity of such point

and that the solution is approximately zero away from this point. The spike shape is

not radially symmetric in general and may change sign.

1. Introduction

The aim of this paper is to study the existence, local uniqueness and

asymptotic behaviour for e ! 0 of spike solutions to singularly perturbed

elliptic boundary value problems of the type

e2
Pn
i; j¼1

qxiðaijðxÞqxj uÞ þ
Pn
i¼1

biðxÞqxiu
 !

¼ f ðx; u; eÞ; x A W;

Pn
i; j¼1

aijðxÞniðxÞqxj u ¼ gðx; u; eÞ; x A qW:

8>>>>><
>>>>>:

ð1:1Þ

Here e > 0 is a small parameter, WHRn is a bounded domain with su‰ciently

smooth boundary qW, and ni are the components of the unit outer normal

at qW. The coe‰cients aij ; bi : W ! R, and the right-hand sides f : W� R�
½0; 1� ! R and g : qW� R� ½0; 1� ! R are supposed to be su‰ciently smooth.
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Further, the di¤erential operator in (1.1) is supposed to be uniformly elliptic,

i.e. aij ¼ aji and there exists a constant c0 > 0 such that

Xn
i; j¼1

aijðxÞyi yj b c0jyj2 for all ðx; yÞ A W� Rn:

Roughly speaking, below we prove the existence, local uniqueness and

asymptotic behaviour for e ! 0 of solutions ue to (1.1) with the following

properties:

(I) There exists a point x0 A W such that ue has a spike-like behavior in a

vicinity of x0, that is to say, jueðxÞj has a local maximum at xe A W such that

xe ! x0 and jueðxeÞj remains uniformly bounded away from 0 as e ! 0.

(II) In all remaining points x A Wnfxeg we have ueðxÞA0 as e ! 0.

Such solutions turn out to exist under a series of natural assumptions. The

assumption, mainly implying property (II), is the following:

(A1) f ðx; 0; 0Þ ¼ 0 and qu f ðx; 0; 0Þ > 0 for all x A W.

The rest three assumptions implying mainly property (I) we formulate as

follows:

(A2) There exist a subdomain ~WWJW and a smooth map ðr; xÞ A ½0;yÞ�
~WW 7! fxðrÞ A R such that for every fixed x A ~WW the function f ¼ fx solves the

one-dimensional boundary value problem

f 00ðrÞ þ n�1
r
f 0ðrÞ ¼ f ðx; fðrÞ; 0Þ; 0 < r < y;

f 0ð0Þ ¼ 0; fðyÞ ¼ 0; fð0Þ0 0:

�
ð1:2Þ

(A3) There exists a non-degenerate solution x0 A ~WW to the algebraic

system

A�1ðxÞbðxÞ þ ‘x log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det AðxÞ

p ðy
0

f 0
xðrÞ

2
rn�1 dr

� �
¼ 0; ð1:3Þ

where

AðxÞ :¼ ½aijðxÞ�ni; j¼1 and bðxÞ :¼ ½biðxÞ�ni¼1: ð1:4Þ

Each function fx from assumption (A1) corresponds, via FxðyÞ :¼ fxðjyjÞ,
to a radially symmetric solution v ¼ Fx of the following n-dimensional bound-

ary value problem

DyvðyÞ ¼ f ðx; vðyÞ; 0Þ; y A Rn;

vðyÞ ! 0 for jyj ! y:

�
ð1:5Þ

In the scope of our consideration, such symmetric solutions Fx will be used to

describe a scaled profile of the spike which may appear at point x. It is easy
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to show (see Remark 1.2) that the functions v ¼ qyjFx0 are solutions of the

linearized problem

DyvðyÞ ¼ qu f ðx0;Fx0ðyÞ; 0ÞvðyÞ; y A Rn;

vðyÞ ! 0 for jyj ! y:

�
ð1:6Þ

Our last assumption concerns the following non-degeneracy property:

(A4) For any solution v to (1.6) it holds v A spanfqyjFx0 : j ¼ 1; . . . ; ng.
Our main result is of the following type:

For small e > 0 and m ¼ 0; 1; . . . we will construct smooth functions

We;m : W ! R which have the properties (I) and (II) and which satisfy (1.1)

approximately. Moreover, we will prove that for small e > 0 there exists an

exact solution u ¼ ue to (1.1) such that for any a A ð0; 1Þ and any m it holds

kue �We;mk2þa; e;W ¼ Oðemþ1Þ for e ! 0;

where

kuk2þa; e;W :¼
X2
k¼0

ek sup
jmj¼k

sup
W

jDmuj þ e2þa sup
jmj¼2

sup
x;y AW;
x0y

jDmuðxÞ �DmuðyÞj
jx� yja

is an e-dependent norm in the Hölder space C2þaðWÞ. Finally, we will prove a

local uniqueness assertion for ue: If e > 0 is small and u is a solution to (1.1)

which is close to We;0 (in a sense to be made precise) then u ¼ ue.

In order to describe our results more exactly, let us consider the lowest

approximation order case m ¼ 0. Define

WeðxÞ :¼ Fx0ðTeðxÞÞ:

Here TeðxÞ are stretched coordinates defined as follows:

TeðxÞ :¼
1

e
Aðx0 þ ex1Þ�1=2ðx� x0 � ex1Þ for x A W:

Further AðxÞ�1=2 is the inverse square root of the positive definite matrix

AðxÞ (see notation (1.4)), and x1 is the correction term of the first order to the

spike’s position determined from Eq. (3.57). Now our result for m ¼ 0 reads

as follows:

Theorem 1.1. Suppose that assumptions (A1)–(A4) are fulfilled.

Then for any a A ð0; 1Þ there exist ea > 0, da > 0 and ca > 0 such that the

following is true:

( i ) For all e A ð0; eaÞ there exists a solution u ¼ ue to (1.1) such that

kue �Wek2þa; e;W a cae:
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(ii) If u is a solution to (1.1) with e A ð0; eaÞ and

ku�Wek2þa; e;W < dae
2;

then u ¼ ue.

Existence and multiplicity results for problem (1.1) have been objects of

systematic investigation during last decades. This interest is, in particular,

motivated by the study of standing waves in the nonlinear Schrödinger equa-

tion which leads typically to the consideration of concentrating solutions (so

called bound states) of the following elliptic boundary value problem

e2Du ¼ VðxÞu� uq; x A W;

qnu ¼ 0; x A qW;

�

where q > 1, and V : W ! R is a smooth positive potential (we recall, among

many others, [50, 15, 32, 38, 45, 35, 1, 3, 5, 9]). Another source of applica-

tions for problem (1.1) is concerned with the study of pattern formation in

chemical reaction-di¤usion systems, including well-known Gierer-Meinchardt

and FitzHugh-Nagumo models [27, 46], where under certain circumstances

problem (1.1) plays the role of so-called shadow system.

One can distinguish two main approaches used systematically in this field.

A first one, initiated by Floer and Weinstein [15], relies on a finite dimensional

Lyapunov-Schmidt reduction (see also [31, 20, 46] for other applications of this

technique in the singular perturbation theory). A second approach is based on

variational methods jointly with a penalization technique (see [38, 45, 34, 35] to

name a few and the monograph [1] for further references).

Our study di¤ers from the above in several points. First, our elliptic

equation does not have a divergence form, what makes impossible application

of variational methods used, for example, for similar equations with biðxÞ ¼ 0,

see e.g. [41, 36]. Second, for arbitrary space dimension n we obtain a sequence

of approximate solutions with pointwise asymptotic estimates in the Ly-norm

up to any power of e. Note that in contrary to most of the previous studies

concerned with (1.1), our approximate solutions may comprise non-zero outer

expansion parts. This fact makes the formulas for the inner expansions of

the spike and boundary layers more complicated, but simultaneously shows the

universality of our approach. Third, the spike shapes are allowed to change

sign. And finally, to prove our Theorem 5.2 we do not need eigenvalue

estimates for the linearized (in the approximate solution) problem. Instead

we use a lemma of R. Magnus [24, Lemma 1.3] which helps to verify the

assumptions of a quite general implicit function theorem (see our Section 3).

Remark 1.1. Various su‰cient conditions for the existence of radially

symmetric solutions of problem (1.5) can be found in literature (see, for example,
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[7, 8, 16, 43, 11, 12]). Some of them [7, 8] were obtained with the help of

variational methods, when instead of the solution to problem (1.5) one looks for

a critical point of the energy functional

ExðvÞ :¼
ð
R n

1

2
j‘yvðyÞj2dyþ Fðx; vðyÞ; 0Þ

� �
dy; ð1:7Þ

where

Fðx; v; eÞ :¼
ð v
0

f ðx; u; eÞdu:

An important role in this analysis is played by the Pohozaev’s identity (see [7,

Section 2])

n� 2

2

ð
R n

j‘yvðyÞj2dy ¼ �n

ð
R n

Fðx; vðyÞ; 0Þdy: ð1:8Þ

which is valid, in particular, for any radially symmetric solution v A W 1;2ðRnÞ of

problem (1.5). Remark, the identity (1.8) implies that for any radially symmetric

solution of problem (1.5) holds

ExðvÞ ¼
1

n

ð
R n

j‘yvðyÞj2dy: ð1:9Þ

Another method for proving the existence of radially symmetric solutions of

problem (1.5) is to analyse directly the corresponding one-dimensional problem

(1.2). It was used, in particular, in [16, 43, 11, 12].

Remark 1.2. For the solution fx to problem (1.2), one can easily show (see

[7, Lemma 4]) that

lim
r!0

f 0
xðrÞ
r

¼ lim
r!0

f 00
x ðrÞ ¼

1

n
f ðx; fxð0Þ; 0Þ: ð1:10Þ

Since above we have assumed that fxð0Þ0 0, limits (1.10) immediately imply

that

f ðx; fxð0Þ; 0Þ0 0: ð1:11Þ

Further, every solution f ¼ fx to problem (1.2) corresponds to a solution

y ¼ ðfx; f 0
xÞ

T
of the linear system

y 0ðrÞ ¼ PxðrÞyðrÞ; where PxðrÞ :¼
0 1Ð 1

0 qu f ðx; tfxðrÞ; 0Þdt � n�1
r

� �
:

39Asymptotics of spike solutions



Hence, taking into account assumption (A1) and applying classical results of

exponential dichotomy theory [10, Chapter 6, Proposition 1], we come to the

conclusion that for every x A ~WW and every k A ð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qu f ðx; 0; 0Þ

p
Þ it holds

jfxðrÞj; jf 0
xðrÞj; jf

00
x ðrÞjaCðx; kÞe�kr for all r A ½0;yÞ; ð1:12Þ

where Cðx; kÞ > 0 is a certain constant. Alternatively, one can get exponential

estimates (1.12) from the determining system (1.5) for Fx (see [37]).

Moreover, it is easy to show that for each x A ~WW the partial derivatives

qxjfxðrÞ, j ¼ 1; . . . ; n, exist, that the corresponding functions qxjfx satisfy the

linear inhomogeneous di¤erential equation

qxjf
00
x þ n� 1

r
qxjf

0
x � qu f ðx; fxðrÞ; 0Þqxjfx ¼ qxj f ðx; fxðrÞ; 0Þ; 0 < r < y;

and, hence, that they satisfy estimates analogous to (1.12).

Remark 1.3. Note that subdomain ~WW in assumption (A2) plays a technical

role only. In particular, if at the very beginning we know a point x0 A W and

a corresponding solution f0 of problem (1.2), then a straightforward application

of the Implicit Function Theorem guarantees the existence of a subdomain ~WW

containing x0 and the existence of a smooth map ðr; xÞ A ½0;yÞ � ~WW 7! fxðrÞ A R

such that (1.2) is satisfied for all x A ~WW and that f0 ¼ fx0 .

Remark 1.4. Since functions Fx are assumed to be radially symmetric,

a standard way to verify assumption (A4) is to find all bounded solutions of

the problem (1.6) by the method of separation of variables. This scheme was

previously used to demonstrate that assumption (A4) is fulfilled for any posi-

tive, radially symmetric solution of the problem (1.5) with the right-hand side

f ðx; u; eÞ ¼ VðxÞu� uq, q > 1, and VðxÞ > 0 (see [50, Appendix A] and [22]).

Further generalizations of this result can be found in [30].

Besides, assumption (A4) is always fulfilled in the case n ¼ 1. This fact

follows from assumption (A1) and well-known results on the exponential dichot-

omy [10, Chapter 6, Proposition 1].

Remark 1.5. Below we prove existence of spike solutions to (1.1), where

the spike shapes are approximately radially symmetric, but may change sign.

Remark that, if the solution to (1.5), which approximately determines the spike

shape, is positive, then it is necessarily radially symmetric (by the famous Gidas-

Ni-Nirenberg theorem [19]).

Remark 1.6. Our results can be easily generalized for the case of

solution to problem (1.1) with a finite number of distinct spike’s. They are
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also applicable to a broader class of singularly perturbed elliptic equations of

the type

e2
Xn
i; j¼1

qxiðaijðxÞqxj uÞ ¼ f ðx; u; eÞ þ ef1ðx; u; e‘xu; eÞ:

The construction procedure and the technique of proof remain almost the same in

this case.

Furthermore, the proposed asymptotic analysis can be used to generalize some

known results about boundary spike solutions (see [29, 30, 18, 47, 48, 49, 6]) and

interior transition layers (see [13, 25]) in singularly perturbed problems of the

type (1.1).

Our paper is organized as follows:

Section 2 contains a particular example illustrating Theorem 1.1. Then,

in Section 3 we describe the algorithm of the construction of our approxi-

mate solutions. In Section 4 we formulate and prove a generalized Implicit

Function Theorem, and in Section 5 we derive from this existence, local

uniqueness and estimates of exact solutions to (1.1) close to the approximate

ones. Finally, some needed technical estimates are provided in Appendix.

2. Example

Let us consider problem (1.1) with a right-hand side of the type

f ðx; u; eÞ ¼ V1ðxÞu� V2ðxÞuq; where q > 1 and V1ðxÞ;V2ðxÞ > 0:

This nonlinearity obviously satisfies assumption (A1). Moreover, Remark 1.2

and Remark 1.4 point out the way how to verify assumptions (A2) and (A4).

Thus, to employ Theorem 1.1 it only remains to find a suitable position of

spike from Eq. (1.3). To do this, we remark that every solution v ¼ Fx to

problem (1.5) corresponds, via the substitution

FxðyÞ ¼
V1ðxÞ
V2ðxÞ

� �1=ðq�1Þ
Uð

ffiffiffiffiffiffiffiffiffiffiffiffi
V1ðxÞ

p
yÞ;

to a radially symmetric solution U of equation DU ¼ U �U q which decays to

zero at infinity and does not depend on x. This impliesð
R n

j‘yFxðyÞj2dy ¼ V1ðxÞðqþ1Þ=ðq�1Þ�n=2
V2ðxÞ�2=ðq�1Þ

ð
R n

j‘yUðyÞj2dy;

where the integral in the right-hand side also does not depend on x. Taking

into account that FxðyÞ ¼ fxðjyjÞ, we substitute this into Eq. (1.3) and obtain

A�1ðxÞbðxÞ þ ‘x logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det AðxÞ

p
V1ðxÞðqþ1Þ=ðq�1Þ�n=2

V2ðxÞ�2=ðq�1ÞÞ ¼ 0: ð2:1Þ
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Formula (2.1) generalizes all known equations of such kind. As particular

cases it comprises equations of spike positions obtained via variational methods

in [36] (for the case b ¼ 0, V2 ¼ 1) and in [5] (for the case b ¼ 0 and A being

the identity matrix). On the other hand, it includes a new non-variational

term b. If b ¼ 0, then (2.1) is the Euler-Lagrange equation corresponding to

the functional

x A W 7! logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det AðxÞ

p
V1ðxÞðqþ1Þ=ðq�1Þ�n=2

V2ðxÞ�2=ðq�1ÞÞ A R:

Hence, using variational techniques one can formulate su‰cient conditions for

solvability of (2.1) as well as algorithms to calculate approximate solutions. If

b0 0, then those variational techniques are not applicable anymore, and, in

general, the Newton iteration procedure is the only way to calculate approx-

imate solutions.

3. Construction of the approximate solutions

In this section, we construct approximate solutions to problem (1.1). For

this, we assume that the conditions (A1)–(A4) are satisfied and that the

function f and the coe‰cients aij and bi are su‰ciently smooth to allow

their representation via Taylor’s formula with necessary number of terms.

Following standard scheme of singular perturbation theory [26, 44, 28],

we look for approximate solutions of the type

We;mðxÞ ¼ ue;mðxÞ þ ve;mðxÞ þ we;mðxÞ; ð3:1Þ

which consist of three di¤erent parts: the outer expansion ue;mðxÞ (which is

defined by the property We;mðxÞ � ue;mðxÞA0 for all x away from the spike

center and from qW), the inner expansion ve;mðxÞ of the spike (which is defined

by the property We;mðxÞ � ve;mðxÞAue;mðxÞ for all x close to the spike center)

and the inner expansion we;mðxÞ of the boundary layer (which is defined by the

property We;mðxÞ � we;mðxÞAue;mðxÞ for all x close to qW). The ansatz for the

outer expansion and the inner expansion of the spike is

ue;mðxÞ ¼
Xm
k¼0

ekukðxÞ; and ve;mðxÞ ¼
Xm
k¼0

ekvkðTe;mðxÞÞ; ð3:2Þ

where Te;m is a stretching transformation near the spike, given by

Te;mðxÞ ¼
1

e
Qðxe;mÞðx� xe;mÞ with xe;m ¼

Xmþ1

k¼0

ekxk; ð3:3Þ
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and QðxÞ :¼ AðxÞ�1=2 (cf. notation (1.4)). The ansatz for the inner expansion

of the boundary layer is

we;mðxÞ ¼
wðd�1 distðx; qWÞÞ

Pm
k¼0

ekwkðSeðxÞÞ if distðx; qWÞ < 2d;

0 otherwise;

8<
: ð3:4Þ

where w : ½0;yÞ ! R is a non-increasing smooth cut-o¤ function such that

wðrÞ ¼ 1 for 0a ra 1 and wðrÞ ¼ 0 for rb 2. Further, d > 0 is a parameter,

Se is a stretching transformation near the boundary given by

S�1
e ðz; zÞ :¼ z� eznðzÞ with z A qW and 0a z <

2d

e
; ð3:5Þ

and nðzÞ is the unit normal vector of qW at z A qW pointing out of W. We

fix d su‰ciently small such that the map ðz; zÞ 7! z� eznðzÞ is bijective from

ð0; 2d=eÞ � qW onto the set of all x A W with distðx; qWÞ < 2d, and, hence, the

definitions (3.4) and (3.5) are correct.

In the ansatz (3.1)–(3.4) the functions uk : W ! R, vk : R
n ! R and

wk : ½0;yÞ � qW ! R as well as the vectors xk A Rn are unknown and have

to be determined by the algorithm described below.

For the sake of simplicity, in what follows we will use the notation

Eeu :¼ e2
Xn
i; j¼1

qxiðaijðxÞqxj uÞ þ
Xn
i¼1

biðxÞqxi u
 !

for the elliptic di¤erential operator in problem (1.1).

Roughly speaking, the algorithm is as follows: First we determine the

functions uk such that the equation

Eeue;m � f ðx; ue;m; eÞ ¼ 0 ð3:6Þ

is satisfied up to an error of order Oðemþ1Þ, this will be done in Subsection

3.1. Then we determine the functions vk and the vectors xk such that the

system

Eeve;m � f ðx; ue;m þ ve;m; eÞ þ f ðx; ue;m; eÞ ¼ 0;

‘xðue;m þ ve;mÞðxe;mÞ ¼ 0

�
ð3:7Þ

is satisfied up to an error of order Oðemþ1Þ, this will be done in Subsection 3.2.

The requirement ‘xðue;m þ ve;mÞðxe;mÞ ¼ 0 means that the extremum of the

approximate spike ue;m þ ve;m is located in the point xe;m, i.e. that xe;m is
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approximately the extremum point of the exact spike. And finally we deter-

mine the functions wk such that the boundary value problem

Eewe;m � f ðx; ue;m þ we;m; eÞ þ f ðx; ue;m; eÞ ¼ 0; x A W;Pn
i; j¼1

aijðxÞniðxÞqxj ðue;m þ we;mÞ � gðx; ue;m þ we;m; eÞ ¼ 0; x A qW

8><
>: ð3:8Þ

is satisfied up to an error of order Oðemþ1Þ, this will be done in Subsection 3.3.

In summary, we are going to prove the following theorem.

Theorem 3.1. Suppose that assumptions (A1)–(A4) are fulfilled.

Then, following the algorithm described in Subsections 3.1–3.3 one can

construct for any e A ð0;yÞ and for any nonnegative integer m a smooth function

We;m : W ! R such that for any a A ð0; 1Þ it holds

kEeWe;m � f ð�;We;m; eÞka; e;W ¼ Oðemþ1Þ; ð3:9Þ

Xn
i; j¼1

aijð�Þnið�ÞqxjWe;m � gð�;We;m; eÞ
�����

�����
1þa; e;qW

¼ OðemÞ: ð3:10Þ

Moreover, the functions We;m have structure (3.1)–(3.5) with smooth functions

uk : W ! R, vk : R
n ! R and wk : ½0;yÞ � qW ! R.

Finally, for any k A ð0; k0Þ and K A ð0; K0Þ with

k0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qu f ðx0; 0; 0Þ

p
and K0 :¼ min

z A qW

qu f ðz; 0; 0ÞPn
i; j¼1

aijðzÞniðzÞnjðzÞ
ð3:11Þ

there exists c > 0 such that for any k ¼ 1; . . . ;m and jmja 2 it holds

jDmvkðyÞja ce�kjyj for all y A Rn; ð3:12Þ

jDmwkðz; zÞja ce�Kz for all ðz; zÞ A ½0;yÞ � qW: ð3:13Þ

3.1. Outer expansion. We substitute the ansatz (3.2) for ue;m into (3.6).

Then we expand the left hand side of the resulting equation in the e-power

series. Equating to zero the coe‰cients of each power of e, we obtain an

array of algebraic equations. The lowest order equation is

f ðx; u0ðxÞ; 0Þ ¼ 0:

According to (A1), we choose u0ðxÞ1 0. Then the equations for uk, kb 1 are

given by

44 Oleh Omel’chenko and Lutz Recke



qu f ðx; 0; 0Þu1ðxÞ þ qe f ðx; 0; 0Þ ¼ 0;

qu f ðx; 0; 0ÞukðxÞ þ ðfunction depending on u0; . . . ; uk�1Þ ¼ 0; kb 2:
ð3:14Þ

Thanks to condition (A1) each uk is uniquely determined successively for

k ¼ 1; 2; . . . ;m. Moreover, we have

kEeue;m � f ð�; ue;m; eÞkC aðWÞ ¼ Oðemþ1Þ:

3.2. Inner expansion of the spike. Instead of variable x we will work with the

stretched variable y given by (cf. (3.3))

y ¼ Te;mðxÞ ¼
1

e
Qðxe;mÞðx� xe;mÞ; or x ¼ T�1

e;mðyÞ ¼ xe;m þ eQðxe;mÞ�1
y:

Obviously, for any smooth function v : Rn ! R we have

‘xðv � Te;mÞ ¼
1

e
Qðxe;mÞ‘yv � Te;m:

As usual, for vector functions z : W ! Rn we denote by z � ‘x :¼
Pn
j¼1

zjqxj the

first order di¤erential operator, generated by z, and by ‘x � z :¼
Pn
j¼1

qxj zj the

divergence of z.

Now we substitute the ansatz (3.2) for ve;m and the ansatz (3.3) for xe;m
into (3.7). Further, we use that for any smooth function v : Rn ! R it holds

Eeðv � Te;mÞðT�1
e;mðyÞÞ ¼ e2ð‘x � A‘xðv � Te;mÞ þ ðb � ‘xÞðv � Te;mÞÞðT�1

e;mðyÞÞ

¼ DyvðyÞ þQðxe;mÞ‘y � ðAðxe;m þ eQðxe;mÞ�1
yÞ

� Aðxe;mÞÞQðxe;mÞ‘yvðyÞ

þ eðbðxe;m þ eQðxe;mÞ�1
yÞ �Qðxe;mÞ‘yvðyÞÞ: ð3:15Þ

This way we get

ðEeve;m � f ð�; ue;m þ ve;m; eÞ þ f ð�; ue;m; eÞÞ � T�1
e;m

¼ Dyv0 � f ðx0; v0; 0Þ þ
Xm
k¼1

ekðDyvk � qu f ðx0; v0; 0Þvk

� Fkðy; x0; . . . ; xk; v0; . . . ; vk�1ÞÞ þOðemþ1Þ; ð3:16Þ

where the right hand sides Fkðy; x0; . . . ; xk; v0; . . . ; vk�1Þ depend on the functions

v0; . . . ; vk�1 via the values in the point y of those functions and their first and

second derivatives only. Moreover,

Fkðy; x0; . . . ; xk; 0; . . . ; 0Þ ¼ 0:
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Similarly, we get

‘xðue;m þ ve;mÞðxe;mÞ ¼
Xm
k¼0

ek�1ðQðxe;mÞ‘yvkð0Þ þ e‘xukðxe;mÞÞ

¼
Xm
k¼0

ek�1Qðxe;mÞð‘yvkð0Þ � dkðx0; . . . ; xk�2ÞÞ þOðemÞ;

where d0 ¼ d1 ¼ 0. Moreover, all the next right hand sides dkðx0; . . . ; xk�2Þ do
not depend on xk�1 since for the outer expansion we have assumed that

u0ðxÞ ¼ 0 (see Section 3.1).

We determine the functions vk and the vectors xk in the following order:

In the step number zero we solve the problem

Dyv0ðyÞ � f ðx0; v0ðyÞ; 0Þ ¼ 0;

‘yv0ð0Þ ¼ 0;

v0ðyÞ ! 0 for jyj ! y

8<
: ð3:17Þ

with respect to v0. In this step x0 is still unknown, i.e. the solution v0 depends

on x0.

In the step number one we solve the problem

Dyv1ðyÞ � qu f ðx0; v0ðyÞ; 0Þv1ðyÞ ¼ F1ðy; x0; x1; v0Þ;
‘yv1ð0Þ ¼ 0;

v1ðyÞ ! 0 for jyj ! y

8<
: ð3:18Þ

with respect to v1. Because the di¤erential equation is linear inhomogeneous

and because of assumption (A4), the right hand side F1ðy; x0; x1; v0Þ has to be

orthogonal to an n-dimensional subspace. This orthogonality condition gives

a system of n nonlinear algebraic equations to be solved with respect to x0.

Thus, after this step v1 and x0 are determined, but x1 is still unknown. More-

over, we show that x0 does not depend on x1, and v1 depends on x1 a‰nely.

In the step number two we solve the problem

Dyv2ðyÞ � qu f ðx0; v0ðyÞ; 0Þv2ðyÞ ¼ F2ðy; x0; x1; x2; v0; v1Þ;
‘yv2ð0Þ ¼ d2ðx0Þ;
v2ðyÞ ! 0 for jyj ! y

8<
: ð3:19Þ

with respect to v2. For that the right hand side F2ðy; x0; x1; x2; v0; v1Þ has to

be orthogonal to the n-dimensional subspace, again. Although the dependence

of F2ðy; x0; x1; x2; v0; v1Þ on x1 is not a‰ne, the corresponding orthogonality

condition produces a system of n inhomogeneous algebraic equations which

are a‰ne with respect to x1 and can be uniquely solved with respect to x1.
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Thus, after this step v2 and x1 are determined, but x2 is still unknown, x1 is

independent on x2, and v2 depends a‰nely on x2.

The next steps are as step number two: We have to solve

DyvkðyÞ � qu f ðx0; v0ðyÞ; 0ÞvkðyÞ ¼ Fkðy; x0; . . . ; xk; v0; . . . ; vk�1Þ;
‘yvkð0Þ ¼ dkðx0; . . . ; xk�2Þ;
vkðyÞ ! 0 for jyj ! y

8<
: ð3:20Þ

with respect to vk (linearly depending on xk, which is still unknown) and to

xk�1 (which does not depend on xk). Remark that we have to work up to step

number mþ 2 in order to determine all unknowns v0; . . . ; vm and x0; . . . ; xmþ1.

Straightforward calculations give the following representations for the right

hand sides

F1ðy; x0; x1; v0Þ ¼ ðx1 � ‘xÞ f ðx0; v0ðyÞ; 0Þ þ Gðy; x0; v0ðyÞÞ � Iðy; x0; v0Þ ð3:21Þ

and

Fkðy; x0; . . . ; xk; v0; . . . ; vk�1Þ

¼ ðxk � ‘xÞ f ðx0; v0ðyÞ; 0Þ þ ðxk�1 � ‘xÞðGðy; x0; v0ðyÞÞ � Iðy; x0; v0ÞÞ

þ quGðy; x0; v0ðyÞÞvk�1ðyÞ � Iðy; x0; vk�1Þ

þ 2� d2k

2
ððxk�1 � ‘xÞ þ vk�1ðyÞquÞððx1 � ‘xÞ þ v1ðyÞquÞ f ðx0; v0ðyÞ; 0Þ

þ Rkðy; x0; . . . ; xk�2; v0; . . . ; vk�2Þ for kb 2; ð3:22Þ

where

Iðy; x; vÞ :¼ QðxÞ‘y � ½ðQðxÞ�1
y � ‘xÞAðxÞQðxÞ‘yvðyÞ� þ bðxÞ �QðxÞ‘yvðyÞ;

and

Gðy; x; uÞ :¼ ðQðxÞ�1
y � ‘xÞ f ðx; u; 0Þ þ qu f ðx; u; 0Þu1ðxÞ þ qe f ðx; u; 0Þ

and each Rk is a certain function depending on y and xj and vj with ja k � 2

only. Remark that for kb 1 function Fk depends a‰nely on xk. Moreover,

for kb 3 it depends also a‰nely on xk�1 and vk�1, but F2 does not depend

a‰nely on x1 and v1, in general.

Now let us show that all the steps of the algorithm can be done rigorously.

Besides assumptions (A1)–(A4) we will need some properties of the linear

operator

Lx0 :¼ Dy � qu f ðx0;Fx0ðyÞ; 0Þ;

which are formulated in the next two lemmas.
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Lemma 3.1. For any a A ð0; 1Þ the operator Lx0 : C
2þaðRnÞ ! C aðRnÞ is

Fredholm of index zero.

Proof. The operator Lx0 is Fredholm of index zero because it can be

represented as a sum of invertible and compact operators

Lx0 ¼ Dy � qu f ðx0; 0; 0Þ þMðyÞ; ð3:23Þ

where MðyÞ :¼ qu f ðx0;Fx0ðyÞ; 0Þ � qu f ðx0; 0; 0Þ. Indeed, since qu f ðx0; 0; 0Þ >
0 (see assumption (A1)), the operator Dy � qu f ðx0; 0; 0Þ acting from C2þaðRnÞ
to C aðRnÞ is invertible (see for example [21, Theorem 3.4.3]). On the other

hand, the fact that the multiplication by M is a compact operator from

C2þaðRnÞ to C aðRnÞ can be verified as follows.

Let w : ½0;yÞ ! R be a non-increasing smooth cut-o¤ function such that

wðrÞ ¼ 1 for 0a ra 1 and wðrÞ ¼ 0 for rb 2. Then for each R > 0 the

function wRðyÞ :¼ wðjyj2=R2Þ is smooth and has compact support. Hence

the multiplication by wRM is a compact operator from C2þaðRnÞ to C aðRnÞ.
Now taking into account exponential estimates (1.12) for Fx0 , we easily see that

the operator wRM tends to M in the operator norm of LðC2þaðRnÞ;C aðRnÞÞ
when R ! y. However, the space of compact operators is closed in the

operator norm, therefore the operator M is compact. r

Because of assumption (A4) we have

Ker Lx0 ¼ spanfqyjFx0 : j ¼ 1; . . . ; ng:

Hence, Lemma 3.1 implies that

Ran Lx0 ¼ F A C aðRnÞ :
ð
R n

F ðyÞqyjFx0ðyÞdy ¼ 0 for all j ¼ 1; . . . ; n

� �
;

and the restriction of Lx0 is an isomorphism from C2þaðRnÞVRan Lx0 onto

Ran Lx0 . The following lemma shows that the inverse of this isomorphism

maps exponentially decaying functions onto exponentially decaying functions.

To formulate our statement, let us define the family of exponentially decaying

functions

rkðyÞ :¼ e�kð
ffiffiffiffiffiffiffiffiffiffi
1þjyj2

p
�1Þ with y A Rn; ð3:24Þ

and recall the notation k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qu f ðx0; 0; 0Þ

p
from Theorem 3.1.

Lemma 3.2. Suppose that a A ð0; 1Þ, k A ð0; k0Þ, F A Ran Lx0 such that

r�1
k F A C aðRnÞ, and v A C2þaðRnÞ such that Lx0v ¼ F. Then, it holds r�1

k v A
C2þaðRnÞ.
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Proof. First, we take use of formula (3.23) and rewrite the equation

Lx0v ¼ F in the following form

Dyv� qu f ðx0; 0; 0Þv ¼ ~FFðyÞ :¼ MðyÞvþ FðyÞ A C aðRnÞ:

Here due to the exponential estimates (1.12) for Fx0 we have r�1
k M A C aðRnÞ,

and this together with the assumption r�1
k F A C aðRnÞ implies r�1

k
~FF A C aðRnÞ.

Now we write function v as the Bessel potential (see [42, Chapter V, § 3])

vðyÞ ¼ �kn�2
0

ð
R n

G2ðk0ðy� zÞÞ ~FF ðzÞdz; ð3:25Þ

where G2 is the Bessel kernel

G2ðxÞ ¼ ð2pÞ�n=2
Kðn�2Þ=2ðjxjÞjxj�ðn�2Þ=2

and Kn is the modified Bessel function of the third kind. Regarding kernel G2

we know that it is an analytic function of jxj, except at x ¼ 0. Moreover, for

x ! 0 and for jxj ! y one can write explicit asymptotic formulas describing

the behaviour of kernel G2 and of all its derivatives (see, for example, [4,

Chapter II, § 4]). In particular, for all j; k ¼ 1; . . . ; n it holds

kG2kL1ðR nÞ < y; kqkG2kL1ðR nÞ < y; ð3:26Þ

jqkqjG2ðxÞja constjxj�n for jxj ! 0; ð3:27Þ

jG2ðxÞj; jqkG2ðxÞj; jqkqjG2ðxÞja const e�jxj for jxj ! y; ð3:28Þ

where qkG2ðxÞ denotes the first partial derivative of G2ðxÞ with respect to xk,

and qkqjG2ðxÞ is the analogous notation for the second partial derivative with

respect to xk and xj.

From (3.25) it follows

jr�1
k ðyÞvðyÞja kn�2

0 kr�1
k

~FFkLyðR nÞ

ð
Rn

jG2ðk0ðy� zÞÞjr�1
k ðyÞrkðzÞdz: ð3:29Þ

Let us show that the right-hand part of (3.29) is uniformly bounded for all

y A Rn, i.e. that

r�1
k v A LyðRnÞ: ð3:30Þ

Indeed, because of (3.26) the integrand in (3.29) is integrable over any compact

region including those which contain point z ¼ y. Hence, we need to consider

the integrand’s behaviour for jy� zj ! y only. Taking into account that for

every x A Rn it holds 0 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jxj2

q
� jxja 1 we easily obtain

r�1
k ðyÞrkðzÞa eke�kðjzj�j yjÞ for all y A Rn and z A Rn:
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Then using asymptotic formula (3.28) we get

jG2ðk0ðy� zÞÞjr�1
k ðyÞrkðzÞ

a eke�kðjzj�jyjÞjG2ðk0ðy� zÞÞj

a const e�kðjzj�j yjþj y�zjÞe�ðk0�kÞjy�zj for jy� zj ! y:

Now the triangle inequality jyja jy� zj þ jzj and the assumption k A ð0; k0Þ
imply the boundedness of the right-hand part in (3.29). Hence, estimate (3.30)

is true.

Next, we consider the partial derivatives qyk v. Because of the properties

of Bessel potentials, they are given by integrals

qyk vðyÞ ¼ �kn�1
0

ð
R n

qkG2ðk0ðy� zÞÞ ~FFðzÞdz; k ¼ 1; . . . ; n: ð3:31Þ

Since each qkG2 obeys estimates (3.26) and (3.28), we apply arguments as

above and obtain

r�1
k qyk v A LyðRnÞ for all k ¼ 1; . . . ; n: ð3:32Þ

To show that r�1
k qykqyj v A C aðRnÞ we need a more delicate analysis, since

the corresponding derivatives are determined by the improper integral

qykqyj vðyÞ ¼ �kn
0 lim

m!þ0

ð
jz�yjbm

qkqjG2ðk0ðy� zÞÞ ~FFðzÞdz; ð3:33Þ

which is not absolutely convergent (see asymptotics (3.27)). Nevertheless,

according to the classical results of potential theory [42, Chapter V, § 4] it

is known that for every ~FF A C aðRnÞ the singular integral (3.33) determines a

function from C aðRnÞ.
On the other hand, from (3.33) it follows

r�1
k ðyÞqykqyj vðyÞ

¼ �kn
0 lim

m!þ0

ð
jz�yjbm

r�1
k ðyÞqkqjG2ðk0ðy� zÞÞ ~FF ðzÞdz

¼ ĜGðyÞ � kn
0 lim

m!þ0

ð
jz�yjbm

qkqjG2ðk0ðy� zÞÞr�1
k ðzÞ ~FF ðzÞdz; ð3:34Þ

where

ĜGðyÞ :¼ �kn
0 lim

m!þ0

ð
jz�yjbm

ðr�1
k ðyÞrkðzÞ � 1Þ

� qkqjG2ðk0ðz� yÞÞr�1
k ðzÞ ~FFðzÞdz: ð3:35Þ
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In (3.35), the di¤erence in parentheses can be rewritten as follows

r�1
k ðyÞrkðzÞ � 1 ¼ ekð

ffiffiffiffiffiffiffiffiffiffi
1þjyj2

p
�
ffiffiffiffiffiffiffiffiffiffi
1þjzj2

p
Þ � 1 ¼ �kðz� yÞ �Yðz� y; yÞ;

where Y : Rn � Rn ! Rn is given by

Yðx; yÞ :¼
ð1
0

yþ txffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jyþ txj2

q ekð
ffiffiffiffiffiffiffiffiffiffi
1þjyj2

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjyþtxj2

p
Þ dt: ð3:36Þ

This identity together with estimates (3.27) and (3.28) implies that the improper

integral (3.35) converges absolutely and it holds

ĜGðyÞ ¼ kkn
0

ð
Rn

ðx �Yðx; yÞÞqkqjG2ðk0xÞr�1
k ðxþ yÞ ~FFðxþ yÞdx:

Now we can show that the right-hand part of (3.34) belongs to C aðRnÞ.
Indeed, since r�1

k
~FF A C aðRnÞ, the rightmost integral in (3.34) determines a

C aðRnÞ-function (compare with formula (3.33)). Further, from (3.27), (3.28)

and (3.36) we get the estimate

jqkqjG2ðk0xÞj jYðx; yÞj þ jYðx; yÞ �Yðx; zÞj
jy� zja

� �
a const jxj�n

e�ðk0�kÞjxj

valid for all x; y; z A Rn. Then, using r�1
k

~FF A C aðRnÞ again, we easily verify

that ĜG A C aðRnÞ. r

After this preparation we are ready to formulate the construction algorithm.

Case k ¼ 0. The problem to determine the leading term v0 is (3.17).

Due to assumption (A2), this problem is solved by v0ðyÞ ¼ Fx0ðyÞ. Remember

that at this step the value of x0 is unknown, and we have obtained actually

an x0-parametric family of functions v0. If we apply a di¤erential operator

ðc1 � ‘xÞ with any c1 A Rn to the di¤erential equation in (1.5) we obtain

Dy½ðc1 � ‘xÞFx0 � ¼ qu f ðx0;Fx0 ; 0Þ½ðc1 � ‘xÞFx0 � þ ðc1 � ‘xÞ f ðx0;Fx0 ; 0Þ; ð3:37Þ

which impliesð
R n

ðc1 � ‘xÞ f ðx0;Fx0 ; 0ÞqyjFx0ðyÞdy ¼ 0; j ¼ 1; . . . ; n: ð3:38Þ

Now, we demonstrate that the problems (3.18), (3.19) and (3.20) determine

recursively all unknown functions vk and all unknown vectors xk.

Case k ¼ 1. Obviously, a necessary condition for solvability of problem

(3.18) is

Jjðx0Þ :¼
ð
R n

F1ðy; x0; x1;Fx0ÞqyjFx0ðyÞdy ¼ 0; j ¼ 1; . . . ; n: ð3:39Þ
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Notice that because of (3.21) and (3.38) this system of equations does not

depend on the vector x1. More precisely, we have

Jjðx0Þ ¼
ð
R n

ðGðy; x0;Fx0Þ � Iðy; x0;Fx0ÞÞqyjFx0ðyÞdy:

Our next step is to rewrite the system Jðx0Þ ¼ 0 in terms of the data A, b, f

and the spike’s profile Fx only. For this, we use a series of relations collected

in the lemma below.

Lemma 3.3. We haveð
R n

hðyÞqyjFxðyÞdy ¼ 0 for any radially symmetric h A LyðRnÞ;
ð
R n

ðqyjFxðyÞÞðqykFxðyÞÞdy ¼ djk

n

ð
R n

j‘yFxðyÞj2dy;
ð
R n

yjqxl f ðx;FxðyÞ; 0ÞqykFxðyÞdy ¼ �qxl
djk

n

ð
R n

j‘yFxðyÞj2dy
� �

;

ð
R n

ysðqykqylFxðyÞÞðqyjFxðyÞÞdy ¼ 1

2n
ðdkldsj � dksdlj � dkjdslÞ

ð
R n

j‘yFxðyÞj2dy:

Proof. 1) All the derivatives qyjFxðyÞ decay exponentially for jyj ! y
(see Remark 1.2), hence for any h A LyðRnÞ it holds hqyjFx A L1ðRnÞ.
Moreover, because of FxðyÞ ¼ fxðjyjÞ we have

qykFxðyÞ ¼
yk

jyj f
0
xðjyjÞ; ð3:40Þ

and this implies the claimed identity.

2) Similarly because of (3.40) we obtainð
R n

ðqyjFxðyÞÞðqykFxðyÞÞdy ¼
ð
R n

yj yk

jyj2
f 0
xðjyjÞ

2
dy ¼ djk

n

ð
R n

j‘yFxj2dy: ð3:41Þ

3) Again, because of (3.40) we have

Jjkl :¼
ð
Rn

yjqxl f ðx;FxðyÞ; 0ÞqykFxðyÞdy

¼ djk

ð
R n

y1qy1

ðFxðyÞ

0

qxl f ðx; u; 0Þdu
 !

dy:

Then, integrating the latter expression by parts with respect to y1 and taking

into account the exponential decay property of Fx (see Remark 1.2), we obtain

Jjkl ¼ �djk

ð
Rn

dy

ðFxðyÞ

0

qxl f ðx; u; 0Þdu:
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On the other hand, due to the definition (1.7) we have

qxl ½Fðx;FxðyÞ; 0Þ� ¼
ðFxðyÞ

0

qxl f ðx; u; 0Þduþ f ðx;FxðyÞ; 0ÞqxlFxðyÞ:

Moreover, since Fx solves problem (1.5) and decays exponentially at infinity

together with its first derivatives (see Remark 1.2), the following identity holdsð
R n

f ðx;FxðyÞ; 0ÞqxlFxðyÞdy ¼
ð
R n

DyFxðyÞqxlFxðyÞdy

¼ �
ð
R n

‘yFxðyÞ � ‘yqxlFxðyÞdy

¼ � 1

2
qxl

ð
R n

j‘yFxðyÞj2dy:

Thus, collecting together the latter three formulas and applying identity (1.9),

we finally obtain

Jjkl ¼ �djkqxl

ð
R n

1

2
j‘yFxj2 þ Fðx;Fx; 0Þ

� �
dy ¼ � djk

n
qxl

ð
R n

j‘yFxj2dy:

4) Di¤erentiating formula (3.40) with respect to yl , we obtain

qykqylFxðyÞ ¼
dkl

jyj f
0
xðjyjÞ þ

yk yl

jyj
d

djyj
f 0
xðjyjÞ
jyj

� �
: ð3:42Þ

This identity together with formulas (3.40) and (3.41) implies thatð
Rn

ysqykqylFxðyÞqyjFxðyÞdy ¼ 1

n
dkldsj

ð
R n

j‘yFxðyÞj2dy

þ
ð
R n

yk yl ys yj

jyj2
f 0
xðjyjÞ

d

djyj
f 0
xðjyjÞ
jyj

� �
dy:

On the other hand, di¤erentiating the left-hand side of previous relation by

parts with respect to yj, we obtainð
Rn

ysqykqylFxqyjFx dy ¼ �dks

ð
R n

qylFxqyjFx dy�
ð
R n

ysqykqyjFxqymFx dy

¼ � 1

n
ðdksdlj þ dkjdslÞ

ð
Rn

j‘yFxj2dy

�
ð
R n

yk yl ys yj

jyj2
f 0
xðjyjÞ

d

djyj
f 0
xðjyjÞ
jyj

� �
dy:
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Now, comparing the latter two formulas with each other, we easily findð
R n

yk yl ys yj

jyj2
f 0
xðjyjÞ

d

djyj
f 0
xðjyjÞ
jyj

� �
dy

¼ � 1

2n
ðdkldsj þ dksdlj þ dkjdslÞ

ð
R n

j‘yFxðyÞj2dy:

Hence,ð
R n

ysqykqylFxðyÞqyjFxðyÞdy ¼ 1

2n
ðdkldsj � dksdlj � dkjdslÞ

ð
R n

j‘yFxðyÞj2dy:

That ends the proof. r

Applying Lemma 3.3 we rewrite the system (3.39) as follows

Jjðx0Þ :¼
1

2

Xn
k; r; s¼1

q�1
jk ðx0Þa�1

rs ðx0Þqxkarsðx0Þ þ
Xn
r¼1

brðx0Þqrjðx0Þ
 !

�
ð
R n

j‘yFx0 j
2
dyþ

Xn
k¼1

q�1
jk ðx0Þqxk

ð
Rn

j‘yFx0 j
2
dy ¼ 0;

j ¼ 1; . . . ; n: ð3:43Þ

Here we denote by a�1
rs ðx0Þ and q�1

jk ðx0Þ the components of the matrices

Aðx0Þ�1 (cf. (1.4)) and Qðx0Þ�1 ¼ Aðx0Þ1=2 (cf. (3.3)), respectively. Next, trans-

forming the first term in the parenthesis with the help of Jacobi’s formula

qxk ðdet AÞ ¼ trðA�1qxkAÞ;

we write equations (3.43) in the matrix form

1

2
Qðx0Þ�1‘xðlog det Aðx0ÞÞ þQðx0Þbðx0Þ

� �ð
R n

j‘yFx0ðyÞj
2
dy

þQðx0Þ�1‘x

ð
Rn

j‘yFx0ðyÞj
2
dy ¼ 0:

Multiplying the latter equation by the non-degenerate matrix Qðx0Þ and taking

into account that Qðx0Þ2 ¼ Aðx0Þ�1, andð
R n

j‘yFxðyÞj2dy ¼ Sn�1

n

ðy
0

f 0
xðrÞ

2
rn�1 dr;

where Sn�1 is the surface area of the n-dimensional unit ball, we obtain (1.3)

which, thus, is equivalent to the system (3.39). Hence, by assumption (A3) we

can choose

x0 ¼ x0; i:e: v0 ¼ Fx0 : ð3:44Þ
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Now, we show that the problem (3.18) with x0 and v0 determined by

(3.44) has, for any given x1 A Rn, a unique solution v1, and for any a A ð0; 1Þ
we have

r�1
k v1 A C2þaðRnÞ for all k A ð0; k0Þ: ð3:45Þ

Indeed, due to equation (3.37) and the linear superposition principle any

solution of problem (3.18) can be written in the following form

v1ðyÞ ¼ v1ðyÞ þ ðx1 � ‘xÞFx0ðyÞ; ð3:46Þ

where v1 solves the problem

Dyv1ðyÞ � qu f ðx0;Fx0ðyÞ; 0Þv1ðyÞ ¼ F1ðy; x0; 0;Fx0Þ
¼ Gðy; x0;Fx0ðyÞÞ � Iðy; x0;Fx0Þ;

‘yv1ð0Þ ¼ 0;

v1ðyÞ ! 0 for jyj ! y:

8>>><
>>>:

ð3:47Þ

But, the latter problem does have a unique solution. To see this notice first

that Lemma 3.2 implies the existence of a unique ~vv1 A C 2þaðRnÞVRan Lx0 such

that Lx0~vv1 ¼ F1ðy; x0; 0;Fx0Þ. This means that general solution of problem

(3.47) reads

v1ðyÞ ¼ ~vv1ðyÞ þ ðc1 � ‘yÞFx0ðyÞ; c1 A Rn; ð3:48Þ

where c1 A Rn is a free parameter. Then, substituting representation (3.48) into

condition ‘yv1ð0Þ ¼ 0, we obtain

‘y~vv1ð0Þ þ ‘yðc1 � ‘yÞFx0ð0Þ ¼ 0: ð3:49Þ

This relation determines an n-dimensional linear system with respect to the

unknown vector c1. Since Fx is a radially symmetric solution of problem

(3.17), direct calculation with the help of formulas (1.10) and (3.42) yields

qyjqykFx0ð0Þ ¼
djk

n
f ðx0;Fx0ð0Þ; 0Þ; ð3:50Þ

where f ðx0;Fx0ð0Þ; 0Þ0 0 due to (1.11). Formula (3.50) says that the matrix

of n-dimensional linear system (3.49) is non-degenerate, hence (3.49) has a

unique solution c1.

Now, let us prove (3.45): From (1.12) it follows that r�1
k Fx0 A C2þaðRnÞ

for all k A ð0; k0Þ. Therefore, from assumption (A1) and from (3.14) we obtain

r�1
k Gðy; x0;Fx0Þ A C aðRnÞ for all k A ð0; k0Þ. Similarly taking into account that
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for any j ¼ 1; . . . ; n and any k A ð0; k0Þ it holds yjrkðyÞ A C aðRnÞ, we easily get

that r�1
k Iðy; x0;Fx0Þ A C aðRnÞ for all k A ð0; k0Þ. Hence, (3.21) yields

r�1
k F1ðy; x0; x1;Fx0Þ A C aðRnÞ for all k A ð0; k0Þ: ð3:51Þ

Therefore Lemma 3.2 implies (3.45).

Similarly to (3.51) one can show that, for any given functions v0; . . . ; vk A
C2þaðRnÞ such that r�1

k v0; . . . ; r
�1
k vk A C 2þaðRnÞ for all k A ð0; k0Þ, we have

r�1
k Fkðy; x0; x1; . . . ; xk;Fx0 ; v1; . . . ; vkÞ A C aðRnÞ for all k A ð0; k0Þ:

Case k ¼ 2. We continue to construct the inner expansion of the spike

and consider now the problem (3.20) with k ¼ 2. First, we need to reveal

exactly the dependence of the right-hand side F2 on the unknown vector x1.

With this aim in view we substitute v1 from (3.46) into the formula (3.22) for

k ¼ 2 and obtain

F2ðy; x0; x1; x2;Fx0 ; v1 þ ðx1 � ‘xÞFx0Þ

¼ ðx2 � ‘xÞ f ðx0;Fx0ðyÞ; 0Þ þ ðx1 �CðyÞÞ þ 1

2
cðy; x1; x1Þ þ F 2ðyÞ; ð3:52Þ

where C : Rn ! Rn and c : Rn � Rn � Rn ! R are functions defined by

ðc1 �CðyÞÞ :¼ ðc1 � ‘xÞðGðy; x0;Fx0ðyÞÞ � Iðy; x0;Fx0ÞÞ

þ quGðy; x0;Fx0ðyÞÞ½ðc1 � ‘xÞFx0 � � Iðy; x0; ðc1 � ‘xÞFx0Þ

þ ððc1 � ‘xÞqu f ðx0;Fx0 ; 0Þ

þ q2u f ðx0;Fx0 ; 0Þ½ðc1 � ‘xÞFx0 �Þv1; ð3:53Þ

cðy; c1; c2Þ :¼ ððc1 � ‘xÞ þ ½ðc1 � ‘xÞFx0 �quÞ

� ððc2 � ‘xÞ þ ½ðc2 � ‘xÞFx0 �quÞ f ðx0;Fx0 ; 0Þ; ð3:54Þ

and F 2ðyÞ is a function which depends neither on x1 nor on x2. Note that

according to definitions (3.22), (3.52)–(3.54) and exponential estimates (3.12),

for any k A ð0; k0Þ it holds

jðc1 �CðyÞÞja cðkÞjc1je�kjyj;

jcðy; c1; c2Þja cðkÞjc1j jc2je�kjyj; y A Rn; ð3:55Þ

jF 2ðyÞja cðkÞe�kjyj for all y A Rn;

where cðkÞ is a certain positive constant independent of c1, c2 and y.
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Formula (3.52) shows that the dependence of the right-hand side F2 on the

vector x1 is not a‰ne. However, if we apply the operator ðc1 � ‘xÞðc2 � ‘xÞ
with arbitrary constant coe‰cients c1 A Rn and c2 A Rn to the di¤erential equa-

tion in (1.5) and write a consistency condition by analogy with (3.38) then

we get ð
R n

cðy; c1; c2ÞqyjFx0ðyÞdy ¼ 0; j ¼ 1; . . . ; n: ð3:56Þ

Hence, the necessary condition for solvability of problem (3.19) assumes the

following form

0 ¼
ð
R n

F2ðy; x0; x1; x2;Fx0 ; v1 þ ðx1 � ‘xÞFx0ÞqyjFx0 dy

¼
ð
R n

ðx1 �CðyÞÞqyjFx0 dyþ
ð
R n

F 2ðyÞqyjFx0 dy; j ¼ 1; . . . ; n; ð3:57Þ

where the dependence on x2 as well as the non-a‰ne dependence on x1 have

been cancelled due to identities (3.38) and (3.56), respectively.

Below we are going to demonstrate that system (3.57) can be rewritten as

follows

ðx1 � ‘xÞJjðx0Þ ¼ ðterms independent of x1Þ: ð3:58Þ

For this, we apply the partial derivative operator qyj to both sides of (3.37) and

after simple transformations get the identity

Dy½ðx1 � ‘xÞqyjFx0 � � qu f ðx0;Fx0 ; 0Þ½ðx1 � ‘xÞqyjFx0 �

¼ ððx1 � ‘xÞqu f ðx0;Fx0 ; 0Þ þ q2u f ðx0;Fx0 ; 0Þ½ðx1 � ‘xÞFx0 �ÞqyjFx0 : ð3:59Þ

Then, multiplying both sides of (3.59) by v1, integrating obtained equation by

parts and taking into account the di¤erential equation in (3.47), we obtainð
R n

ððx1 � ‘xÞqu f ðx0;Fx0 ; 0Þ þ q2u f ðx0;Fx0 ; 0Þ½ðx1 � ‘xÞFx0 �Þv1qyjFx0 dy

¼
ð
R n

ðDy½ðx1 � ‘xÞqyjFx0 � � qu f ðx0;Fx0 ; 0Þ½ðx1 � ‘xÞqyjFx0 �Þv1 dy

¼
ð
R n

ðDyv1 � qu f ðx0;Fx0 ; 0Þv1Þ½ðx1 � ‘xÞqyjFx0 �dy

¼
ð
R n

ðGðy; x0;Fx0ðyÞÞ � Iðy; x0;Fx0ÞÞ½ðx1 � ‘xÞqyjFx0 �dy: ð3:60Þ
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Combining (3.60) with (3.53), we getð
Rn

ðx1 �CðyÞÞqyjFx0 dy ¼ ðx1 � ‘xÞJjðx0Þ: ð3:61Þ

Hence, solvability condition (3.57) does have the form (3.58).

Since due to assumption (A3) the Jacobian matrix

Hðx0Þ :¼ fqxkJjðx0Þg
n
j;k¼1 ð3:62Þ

is non-degenerate, system (3.57) determines x1 in a unique way. Knowing x1
we proceed further as in the case k ¼ 1. Taking into account definition (3.22)

and estimates (3.12) we recall that r�1
k F2ðy; x0; x1; 0;Fx0 ; v1Þ A C aðRnÞ for any

k A ð0; k0Þ. Hence, Lemma 3.2 implies that the reduced problem (3.20), i.e.

that with k ¼ 2 and x2 ¼ 0, has a unique solution v2 such that r�1
k v2 A C2þaðRnÞ

for all k A ð0; k0Þ. Therefore full problem (3.20) with k ¼ 2 and nonvanishing

x2 has an x2-dependent family of solutions

v2ðyÞ ¼ v2ðyÞ þ ðx2 � ‘xÞFx0ðyÞ; ð3:63Þ

and r�1
k v2 A C2þaðRnÞ for all k A ð0; k0Þ.

Case kb 3. By analogy with (3.46) and (3.63), we know at this step that

vk�1ðyÞ ¼ vk�1ðyÞ þ ðxk�1 � ‘xÞFx0ðyÞ; ð3:64Þ

where the function vk�1 does not depend on xk�1. Substituting this into the

definition of Fk (see (3.22)) we again separate the terms depending on xk and

xk�1 as follows

Fkðy; x0; x1; . . . ; xk;Fx0 ; v1; . . . ; vk�1 þ ðxk�1 � ‘x ÞFx0Þ

¼ FkðyÞ þ ðxk �‘xÞ f ðx0;Fx0 ; 0Þþ ðxk�1 �‘xÞðGðy; x0;Fx0ðyÞÞ � Iðy; x0;Fx0ÞÞ

þ quGðy; x0;Fx0ðyÞÞ½ðxk�1 � ‘x ÞFx0 �

� Iðy; x0; ½ðxk�1 � ‘x ÞFx0 �Þ þ cðy; xk�1; x1Þ

þ ððxk�1 � ‘xÞqu f ðx0;Fx0 ; 0Þ þ q2u f ðx0;Fx0 ; 0Þ½ðxk�1 � ‘x ÞFx0 �Þv1; ð3:65Þ

where FkðyÞ is a function collecting all the rest terms which are independent

of xk�1 and xk. Now, arguing in a similar way as in (3.60), we obtainð
R n

ððxk�1 � ‘xÞqu f ðx0;Fx0 ; 0Þ þ q2u f ðx0;Fx0 ; 0Þ½ðxk�1 � ‘xÞFx0 �Þv1qyjFx0 dy

¼
ð
R n

ðGðy; x0;Fx0ðyÞÞ � Iðy; x0;Fx0ÞÞ½ðxk�1 � ‘xÞqyjFx0 �dy:
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Using this identity and relations (3.56), we write a necessary condition for

solvability of problem (3.20) in the following form

0 ¼
ð
R n

Fkðy; x0; x1; . . . ; xk;Fx0 ; v1; . . . ; vk�1 þ ðxk�1 � ‘xÞFx0ÞqyjFx0 dy

¼ ðxk�1 � ‘xÞJjðx0Þ þ
ð
Rn

F kðyÞqyjFx0 dy:

Hence, due to assumption (A3) the latter system determines a unique value of

xk�1. Then solving problem (3.20) we obtain an xk-dependent family of func-

tions vk which also can be written in the form (3.64), and r�1
k vk A C2þaðRnÞ for

any k A ð0; k0Þ.
It follows immediately from the above construction procedure that the

inner expansion ve;m satisfies

kEeve;m � f ð�; ue;m þ ve;m; eÞ þ f ð�; ue;m; eÞkC aðTe;mðWÞÞ ¼ Oðemþ1Þ:

3.3. Inner expansion for the boundary layer. The outer expansion ue;m does

not necessarily satisfy the boundary condition on qW. In order to compensate

this discrepancy, we correct our asymptotics adding to it a boundary layer

term we;m.

Recall that above (see (3.5)) we have introduced a local coordinate system

near the boundary qW. In this way every point x A W with distðx; qWÞ < 2d is

parameterized by the stretched distance to the boundary z ¼ e�1 distðx; qWÞ and
the corresponding point z A qW for which this distance is attained, i.e. distðx; qWÞ
¼ distðx; zÞ. Thus, substituting the ansatz (3.2) for ue;m and the ansatz (3.4)

for we;m into (3.8), and moving into the local coordinate system, we get

ðEewe;m � f ð�; ue;m þ we;m; eÞ þ f ð�; ue;m; eÞÞ � S�1
e

¼ NðzÞq2zw0 � f ðz;w0; 0Þ þ
Xm
k¼1

ekðNðzÞq2z wk � qu f ðz;w0; 0Þwk

�Hkðz; z;w0; . . . ;wk�1ÞÞ þOðemþ1Þ; ð3:66Þ

where

NðzÞ :¼
Xn
i; j¼1

aijðzÞniðzÞnjðzÞ;

and the right hand sides Hkðz; z;w0; . . . ;wk�1Þ, kb 0 depend on the functions

w0; . . . ;wk�1 via the values in the point ðz; zÞ of those functions and their first

and second derivatives. Moreover,

Hkðz; z; 0; . . . ; 0Þ ¼ 0:
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Similarly we rewrite the boundary condition of problem (1.1) in the local

coordinates ðz; zÞ and obtain

Xn
i; j¼1

aijðxÞniðxÞqxj ðue;m þ we;mÞ � gðx; ue;m þ we;m; eÞ
 !

� S�1
e

¼ �
Xm
k¼0

ek�1ðNðzÞqzwkð0; zÞ þ gkðz;w0; . . . ;wk�1ÞÞ þOðemÞ: ð3:67Þ

Here g0 ¼ 0 and the rest right hand sides gkðz;w0; . . . ;wk�1Þ, kb 1 depend on

the functions w0; . . . ;wk�1 via the values in the point ð0; zÞ of those functions

and their first derivatives.

Now, we proceed as follows. First, we solve the problem

NðzÞq2zw0ðz; zÞ � f ðz;w0ðz; zÞ; 0Þ ¼ 0;

qzw0ð0; zÞ ¼ 0;

w0ðz; zÞ ! 0 for z ! y;

8><
>: ð3:68Þ

which is actually a one dimensional boundary value problem with respect to z,

with variable z playing the role of parameter only. Due to assumption (A1),

we can choose

w0ðz; zÞ ¼ 0:

Remark that problem (3.68) may have other, nonzero solutions. Those other

solutions to (3.68) would produce other approximate solutions and, via the

procedure of Section 5, other exact solutions to (1.1). Note that those exact

solutions to (1.1) would not belong to the domains of local uniqueness,

described by Theorems 1.1 and 5.1, of course.

After w0 has been fixed, we solve in the next steps the linear boundary

value problems which determine the functions wk:

NðzÞq2zwkðz; zÞ � qu f ðz; 0; 0Þwk ¼ Hkðz; z;w0; . . . ;wk�1Þ;
NðzÞqzwkð0; zÞ ¼ �gkðz;w0; . . . ;wk�1Þ;
wkðz; zÞ ! 0 for z ! y:

8><
>: ð3:69Þ

Since the coe‰cients of corresponding homogeneous di¤erential equation do

not depend on z and because of assumption (A1), one can easily construct

Green’s function Gðz; z 0; zÞ and write the unique solution to problem (3.69) in

the following integral form

wkðz; zÞ ¼ NðzÞ�1mðzÞ�1
gkðz;w0; . . . ;wk�1Þe�mðzÞz

þ
ðy
0

Gðz; z 0; zÞHkð�Þdz 0; ð3:70Þ
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where

Gðz; z 0; zÞ :¼ �½mðzÞNðzÞ��1
e�mðzÞz 0 coshðmðzÞzÞ for 0a za z 0;

�½mðzÞNðzÞ��1 coshðmðzÞz 0Þe�mðzÞz for z 0 < z;

(

and mðzÞ :¼ ½qu f ðz; 0; 0Þ=NðzÞ�1=2. With the help of formula (3.70) we easily

derive the exponential estimates (3.13). Indeed, due to assumption (A1) we

have H1ðz; z; 0Þ ¼ 0. Hence, formula (3.70) for k ¼ 1 determines w1 which

obviously satisfies estimate (3.13). Now, we proceed by induction. Suppose

that all functions wj , j ¼ 0; . . . ; k � 1, satisfy estimate (3.13). Then expansions

(3.66) and (3.67) imply that for all K A ð0; K0Þ there exists a constant c > 0 such

that

jHkðz; z; 0; . . . ;wk�1Þja ce�Kz for all ðz; zÞ A ½0;yÞ � qW:

This means, in particular, that the integral formula (3.70) correctly deter-

mines a solution wk to problem (3.69), and the exponential estimate (3.13)

holds.

Now, we obtain immediately from the above construction procedure that

the inner expansion we;m satisfies

kEewe;m � f ð�; ue;m þ we;m; eÞ þ f ð�; ue;m; eÞkC aðSeðWÞÞ ¼ Oðemþ1Þ; ð3:71Þ

Xn
i; j¼1

aijð�Þnið�Þqxj ðue;m þ we;mÞ � gð�; ue;m þ we;m; eÞ
�����

�����
C 1þaðSeðqWÞÞ

¼ OðemÞ:

Indeed, in the d-vicinity of boundary qW the relation (3.71) is fulfilled because

of the determining problems (3.68) and (3.69). In the rest of domain W this

relation is satisfied since exponential estimates (3.13) hold.

4. A generalized implicit function theorem

In this section we formulate and prove an implicit function theorem

with minimal assumptions concerning continuity with respect to the control

parameter.

Our implicit function theorem is very close to those of P. C. Fife and

W. M. Greenlee [13, Theorem 4.2] and of R. Magnus [24, Theorem 1.2].

For other implicit function theorems with weak assumptions concerning con-

tinuity with respect to the control parameter see also [2, Theorem 7] and

[14, Theorem 3.4]. For applications of our implicit function theorem to other

singularly perturbed problems see [39, 33].
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Theorem 4.1. Let for any e A ð0; e0Þ be given Banach spaces Ue and Ve and

maps Fe A C1ðUe;VeÞ such that

kFeð0Þk ! 0 for e ! þ0; ð4:1Þ

kF 0
e ðuÞ � F 0

e ð0Þk ! 0 for jej þ kuk ! 0 ð4:2Þ

and

there exist e1 A ð0; e0� and c > 0 such that for all e A ð0; e1Þ
the operators F 0

e ð0Þ are invertible and kF 0
e ð0Þ

�1ka c:

�
ð4:3Þ

Then there exist e2 A ð0; e1Þ and d > 0 such that for all e A ð0; e2Þ there exists

exactly one u ¼ ue with kuk < d and FeðuÞ ¼ 0. Moreover,

kueka 2ckFeð0Þk: ð4:4Þ

Proof. For e A ð0; e1Þ we have FeðuÞ ¼ 0 if and only if

GeðuÞ :¼ u� F 0
e ð0Þ

�1
FeðuÞ ¼ u: ð4:5Þ

Moreover, for such e and all u; v A Ue we have

GeðuÞ � GeðvÞ ¼
ð1
0

G 0
eðsuþ ð1� sÞvÞðu� vÞds

¼ F 0
e ð0Þ

�1

ð1
0

ðF 0
e ð0Þ � F 0

e ðsuþ ð1� sÞvÞÞðu� vÞds:

Hence, assumptions (4.2) and (4.3) imply that there exist e2 A ð0; e1Þ and d > 0

such that for all e A ð0; e2Þ

kGeðuÞ � GeðvÞka
1

2
ku� vk for all u; v A K d

e :¼ fw A Ue : kwka dg:

Using this and (4.3) again, for all e A ð0; e2Þ we get

kGeðuÞka kGeðuÞ � Geð0Þk þ kGeð0Þka
1

2
kuk þ ckFeð0Þk: ð4:6Þ

Hence, assumption (4.1) yields that Ge maps K d
e into K d

e for all e A ð0; e2Þ, if e2
is chosen su‰ciently small. Now, Banach’s fixed point theorem gives a unique

in K d
e solution u ¼ ue to (4.5) for all e A ð0; e2Þ. Moreover, inequality (4.6)

yields kueka 1=2kuek þ ckFeð0Þk, i.e. (4.4). r

The following lemma is [24, Lemma 1.3], translated to our setting. It

gives a criterion how to verify the key assumption (4.3) of Theorem 4.1:
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Lemma 4.1. Let F 0
e ð0Þ be Fredholm of index zero for all e A ð0; e0Þ. Sup-

pose that there do not exist sequences e1; e2 . . . A ð0; e0Þ and u1 A Ue1 ; u2 A Ue2 . . .

with kukk ¼ 1 for all k A N and jekj þ kF 0
ek
ð0Þukk ! 0 for k ! y. Then (4.3) is

satisfied.

Proof. Suppose that proposition (4.3) is not true. Then there exists a

sequence e1; e2 . . . A ð0; e0Þ with ek ! 0 for k ! y such that either F 0
ek
ð0Þ is

not invertible or it is but kF 0
ek
ð0Þ�1kb k for all k A N. In the first case there

exist uk A Uek with kukk ¼ 1 and F 0
ek
ð0Þuk ¼ 0 (because F 0

ek
ð0Þ is Fredholm of

index zero). In the second case there exist vk A Vek with kvkk ¼ 1 and

kF 0
ek
ð0Þ�1

vkkb k, i.e.

kF 0
ek
ð0Þukka

1

k
with uk :¼

F 0
ek
ð0Þ�1

vk

kF 0
ek
ð0Þ�1

vkk
:

But this contradicts to the assumptions of the lemma. r

5. Existence and local uniqueness of exact solutions

In Section 3, we have constructed a sequence of formal approximate

solutions We;m to problem (1.1). Now we are going to prove the existence of

a locally unique exact solution ue to problem (1.1) such that We;m is close to

ue for small e. It will be shown that all We;m approximate the same exact

solution ue, and the larger is m the closer is We;m to ue. In order to obtain

such results we rewrite problem (1.1) in abstract form and then apply our

generalized Implicit Function Theorem. As a result we obtain

Theorem 5.1. Suppose that assumptions (A1)–(A4) are fulfilled. Then for

any mb 0 and any a A ð0; 1Þ there exist em;a > 0, dm;a > 0 and cm;a > 0 such

that the following is true:

( i ) For all e A ð0; em;aÞ there exists a solution u ¼ ue to (1.1) such that

kue �We;mk2þa; e;W a cm;ae
mþ1: ð5:1Þ

(ii) If u is a solution to (1.1) with e A ð0; em;aÞ and

u A Bm;a :¼ fu A C 2þaðWÞ : ku�We;mk2þa; e;W < dm;ae
2g;

then u ¼ ue.

We postpone the proof of Theorem 5.1 to the end of this section, since it is

based on Theorem 5.2 to be formulated below.

Remark 5.1. Theorem 1.1 is just Theorem 5.1 in the special case m ¼ 0.
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Remark 5.2. Suppose that the Hölder constant a is fixed. Then applying

Theorem 5.1 with di¤erent m ¼ 0; . . . ; k we obtain an array of solutions um
e to

problem (1.1), each of which is unique in the corresponding ball Bm;a. Since

min
mak

dm;a > 0 and it holds

kWe;m �We;mþ1k2þa; e;W ¼ Oðemþ1Þ for e ! 0; ð5:2Þ

one can choose e0 > 0 such that for every e A ð0; e0Þ all the solutions um
e coincide.

In other words, for su‰ciently small e, Theorem 5.1 provides di¤erent asymptotics

for the same solution to problem (1.1) which is unique in 6k

m¼0
Bm;a.

In the rest of this section, we assume that the Hölder constant a A ð0; 1Þ is

a fixed number. Our main purpose is to reveal the e-dependence of solution ue
to problem (1.1). Therefore writing any estimate we will not monitor whether

constants appearing there depend on a, although such a dependence is typically

present.

Auxiliary family of approximate solutions Ue;m;s. In Section 3, we have

constructed a sequence of approximate solutions We;mðxÞ consisting of three

di¤erent parts: the outer expansion ue;mðxÞ, the inner expansion we;mðxÞ of the

boundary layer and the inner expansion ve;mðxÞ of the spike. Recall that the

inner expansion of the spike is determined as the sum (3.2) of exponentially

decaying functions vk depending on the stretched variable Te;mðxÞ, and the

latter is given by formula (3.3) which contains the approximate spike’s position

xe;m as a parameter.

Keeping the outer expansion ue;m and the inner expansion we;m of the

boundary layer unchanged, we define the s-parametric family of functions

Ue;m;sðxÞ :¼ ue;mðxÞ þ we;mðxÞ þ ve;m;sðxÞ; ð5:3Þ
where

ve;m;sðxÞ :¼ eðs � ‘xÞFx0ðTe;m;sðxÞÞ þ
Xm
k¼0

ekvkðTe;m;sðxÞÞ;

Te;m;sðxÞ :¼
1

e
Qðxe;m þ esÞðx� xe;m � esÞ; ð5:4Þ

and s A Rn is a parameter. Compared with the approximate solution We;m, we

performed the following modifications. In the definition of Te;m, we shifted the

approximate spike’s position xe;m in the direction of vector es and obtain a new

stretched coordinates Te;m;s. Respectively, we replaced ve;m with ve;m;s, where

all the terms vk are identical to those in definition of ve;m (cf. (3.2)), but the

stretched coordinates Te;m were replaced with Te;m;s. Finally, in the definition

of ve;m;s we introduced new term eðs � ‘xÞFx0ðTe;m;sðxÞÞ which guarantees that

the resulting function Ue;m;s satisfies the di¤erential equation of problem (1.1)
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with a discrepancy of order Oðe2Þ for all s on compact sets. Indeed, follow-

ing the construction algorithm described in Subsection 3.2 (see, in particular,

formulas (3.16), (3.21), (3.22) and (3.52)), we get

ðEeve;m;s � f ð�; ue;m þ ve;m;s; eÞ þ f ð�; ue;m; eÞÞ � T�1
e;m;sðyÞ

¼ �e2 s �CðyÞ þ 1

2
cðy; x1 þ s; x1 þ sÞ � 1

2
cðy; x1; x1Þ

� �

þ e3rðy; s; eÞ; ð5:5Þ

where the functions C and c are defined in (3.53) and (3.54), and r : Rn �
Rn � R ! R is the remainder term in the corresponding Taylor formula.

Taking into account exponential estimates (3.12) we easily verify that for any

k A ð0; k0Þ and any multi-indices jm1ja 2 and jm2ja 1 it holds

jDm1
y Dm2

s rðy; s; eÞja cðk; s0; e0Þe�kjyj for all y A Rn; ð5:6Þ

where cðk; s0; e0Þ is a positive constant independent of y, jsj < s0 and e A ð0; e0Þ.

Remark 5.3. According to definition (6.6) from Appendix, for every non-

negative integer k and every l A ð0; 1Þ we have kukkþl; e;W ¼ ku � T�1
e k

CkþlðTeðWÞÞ.

Since

ðTe;m;s � T�1
e ÞðyÞ ¼ Qðxe;m þ esÞ y� xe;m

e
� s

� �
for all y A Te;m;sðWÞ;

and u � T�1
e ¼ ðu � T�1

e;m;sÞ � ðTe;m;s � T�1
e Þ, it is easy to verify that there exist

two positive constants c1 and c2 such that for any e A ð0; e0Þ, any jsj < s0 and

all u A CkþlðWÞ it holds

c1ku � T�1
e;m;skCkþlðTe;m; sðWÞÞ a kukkþl; e;W a c2ku � T�1

e;m;skCkþlðTe;m; sðWÞÞ:

This means that norms kukkþl; e;W and ku � T�1
e;m;skCkþlðTe;m; sðWÞÞ are equivalent

uniformly with respect to e and s.

Estimates for approximate solutions Ue;m;s. Below we are going to derive

some estimates for approximate solutions Ue;m;s. Our main tool will be the

di¤erentiation formula presented in the following

Remark 5.4. For every smooth function vðy; sÞ : Rn � Rn ! R and every

s A Rn it holds

ðs � ‘sÞðvð�; sÞ � Te;m;sÞ � T�1
e;m;sðyÞ

¼ ðs � ‘sÞvðy; sÞ � ðs �Qðxe;m þ esÞ‘yÞvðy; sÞ

þ eððs � ‘xÞQðxe;m þ esÞQðxe;m þ esÞ�1
y � ‘yÞvðy; sÞ: ð5:7Þ
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According to definition of Ue;m;s we have ‘sUe;m;s ¼ ‘sve;m;s. Applying

here formula (5.7) and taking into account exponential estimates (3.12) we see

that for any k A ð0; k0Þ and any multi-index jmja 3 it holds

jDm
y ðqsjUe;m;s � T�1

e;m;sðyÞÞja cðk; s0; e0Þe�kjyj for all y A Rn; j ¼ 1; . . . ; n;

where cðk; s0; e0Þ > 0 is a constant independent of y, jsj < s0 and e A ð0; e0Þ.
The latter pointwise estimate implies two corollaries formulated in terms of

the e-dependent Hölder norms. Namely, for every mb 0 and every e A ð0; e0Þ,
jsj < s0 it holds

max
j

kqsjUe;m;sk2þa; e;W a c0ðe0; s0Þ; ð5:8Þ

max
j

kqsjUe;m;sk2þa; e;qW a c0ðe0; s0Þe�cðe0;s0Þ=e; ð5:9Þ

where c0ðe0; s0Þ and cðe0; s0Þ are positive constants independent of e, s and W.

Moreover, applying the mean value theorem and formulas (5.8) we get

kUe;m;s �Ue;m;0k2þa; e;W a c0ðe0; s0Þjsj for all jsja s0: ð5:10Þ

Remark also that in a similar way we obtain the estimate for the second

derivative

max
i; j

kqsiqsjUe;m;sk2þa; e;W a const ð5:11Þ

for all e A ð0; e0Þ and all jsja s0.

Finally we prove that

ke�2ðs � ‘sÞðEeUe;m;s � f ð�;Ue;m;s; eÞÞ þ s �CðTe;m;sÞ

þ cðTe;m;s; x1 þ s; sÞka; e;W a cðs0; e0Þjsjðjsj þ jejÞ; ð5:12Þ

where cðs0; e0Þ is a constant independent of jsj < s0 and e A ð0; e0Þ. For this,

we di¤erentiate formula (5.5) with the help of identity (5.7). Then, taking into

account estimates (3.55), (5.6) and the identity

ðs � ‘sÞcðy; x1 þ s; x1 þ sÞ ¼ 2cðy; x1 þ s; sÞ

following from definition (3.54), we obtain (5.12).

Reformulation of problem (1.1). For every e A ð0;yÞ let us define the pair

of Banach spaces

Ue :¼ ðC2þaðWÞ; k � k2þa; e;WÞ � ðRn; j � jÞ
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and

Ve :¼ ðC aðWÞ; k � ka; e;WÞ � ðC1þaðqWÞ; k � k1þa; e;qWÞ � ðRn; j � jÞ;

where j � j denotes Euclidian norm in Rn.

Now, instead of the original boundary value problem (1.1) we consider the

following abstract equation

Feðv; sÞ ¼ 0; ð5:13Þ

where the operator Fe : Ue ! Ve reads

Feðv; sÞ :¼

e�2ðEeðe2vþUe;m;sÞ � f ð�; e2vþUe;m;s; eÞÞ

e�1
Pn
i; j¼1

aijð�Þnið�Þqxj ðe2vþUe;m;sÞ � gð�; e2vþUe;m;s; eÞ
 !

e�1ð‘xðe2vþUe;m;sÞÞðxe;m þ esÞ

0
BBBBB@

1
CCCCCA;

and where solution u to problem (1.1) was represented via the following ansatz

u ¼ e2vþUe;m;s with ðv; sÞ A Ue: ð5:14Þ

In what follows we shall assume that mb 2. This restriction as well as

the appearance of additional factors e2 and e�2 in the definition of operator Fe

reflects, roughly speaking, the fact that to determine parameter s during the

construction of approximate solution one needs to consider the second order

approximation equation (3.19) of the algorithm described in Section 3.

Definition of operator Fe contains three components: the first and the

second components coincide with the di¤erential equation and boundary

condition of problem (1.1), while the third component means that the point

xe;m þ es is an extremum of solution u. Hence, it is easy to see that every

solution ðv; sÞ of augmented equation (5.13) determines via formula (5.14) a

solution to problem (1.1). Further every k � k2þa; e;W-vicinity of We;m is nat-

urally projected onto the vicinity of origin in Ue, therefore proving the

following theorem we simultaneously justify Theorem 5.1.

Theorem 5.2. Suppose that assumptions (A1)–(A4) are fulfilled.

Then there exist e0 > 0, d > 0 and c > 0 such that for all e A ð0; e0Þ there

exists exactly one solution ðve; seÞ of equation Feðv; sÞ ¼ 0 with kðve; seÞkUe
< d.

Moreover,

kðve; seÞkUe
a 2ckFeð0; 0ÞkVe

:

Proof. We are going to apply Theorem 4.1, therefore we verify its

assumptions.
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Verification of assumption (4.1). The construction of function Ue;m;s

implies that Ue;m;0 ¼ We;m and Te;m;0 ¼ Te;m. Hence, we get

Feð0; 0Þ ¼

e�2ðEeWe;m � f ð�;We;m; eÞÞ

e�1
Pn
i; j¼1

aijð�Þnið�ÞqxjWe;m � gð�;We;m; eÞ
 !

e�1ð‘xWe;mÞðxe;mÞ

0
BBBBB@

1
CCCCCA: ð5:15Þ

Now estimates (3.9) and (3.10) from Theorem 3.1 imply that for e ! 0 it holds

kFeð0; 0ÞkVe
a const em�1: ð5:16Þ

In particular, kFeð0; 0ÞkVe
! 0 for e ! 0 provided mb 2.

Verification of assumption (4.2). We calculate the derivative operator

F 0
e ðv; sÞðv; sÞ ¼

½F 0
e ðv; sÞðv; sÞ�1

½F 0
e ðv; sÞðv; sÞ�2

½F 0
e ðv; sÞðv; sÞ�3

0
B@

1
CA:

Its first component reads as follows

½F 0
e ðv; sÞðv; sÞ�1 ¼ Eev� qu f ð�; e2vþUe;m;s; eÞv

þ e�2ðs � ‘sÞðEeUe;m;s � f ð�;Ue;m;s; eÞÞ

þ e�2ðs � ‘sÞð f ð�;Ue;m;s; eÞ � f ð�; e2vþUe;m;s; eÞÞ:

Similarly we calculate the second component

½F 0
e ðv; sÞðv; sÞ�2 ¼ e

Xn
i; j¼1

aijð�Þnið�Þqxj v� qugð�; e2vþUe;m;s; eÞv
 !

þ e�1ðs � ‘sÞ
Xn
i; j¼1

aijð�Þnið�ÞqxjUe;m;s � gð�;Ue;m;s; eÞ
 !

þ e�1ðs � ‘sÞðgð�;Ue;m;s; eÞ � gð�; e2vþUe;m;s; eÞÞ:

Finally, applying definition (5.3) we get

ð‘xUe;m;sÞðxe;m þ esÞ ¼ ð‘xue;mÞðxe;m þ esÞ

þ e�1Qðxe;m þ esÞ eðs � ‘x Þ‘yFx0ð0Þ þ
Xm
k¼0

ek‘yvkð0Þ
 !

;
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and this together with the fact that ðs � ‘xÞ‘yFx0ð0Þ ¼ 0 results in

½F 0
e ðv; sÞðv; sÞ�3 ¼ eð‘xvÞðxe;m þ esÞ

þ e2ððs � ‘xÞ‘xvÞðxe;m þ esÞ þ ððs � ‘xÞ‘xue;mÞðxe;m þ esÞ

þ ððs � ‘xÞQðxe;m þ esÞÞ
Xm
k¼0

ek�1‘yvkð0Þ
 !

:

Using obtained formulas for components of the derivative operator F 0
e ðv; sÞ

we shall verify that kF 0
e ðv; sÞðv; sÞ � F 0

e ð0; 0Þðv; sÞkVe
! 0 for eþ kðv; sÞkUe

! 0,

uniformly with respect to kðv; sÞkUe
¼ 1. In particular, for the first component

we write the inequality

k½F 0
e ðv; sÞðv; sÞ�1 � ½F 0

e ð0; 0Þðv; sÞ�1ka; e;W

a kðqu f ð�; e2vþUe;m;s; eÞ � qu f ð�;Ue;m;0; eÞÞvka; e;W

þ ke�2ðs � ‘sÞðEeUe;m;s � f ð�;Ue;m;s; eÞ � EeUe;m;0 þ f ð�;Ue;m;0; eÞÞka; e;W

þ ke�2ðs � ‘sÞð f ð�; e2vþUe;m;s; eÞ � f ð�;Ue;m;s; eÞÞka; e;W ð5:17Þ

and estimate separately each term in the right-hand part of (5.17). First,

employing the identity

qu f ðx; e2vþUe;m;s; eÞ � qu f ðx;Ue;m;0; eÞ

¼
ð1
0

q2u f ðx; e2tvþ tUe;m;s þ ð1� tÞUe;m;0; eÞdt � ðe2vþUe;m;s �Ue;m;0Þ

and inequalities (5.10), (6.9) and (6.11), we get the following estimate

kðqu f ð�; e2vþUe;m;s; eÞ � qu f ð�;Ue;m;0; eÞÞvka; e;W

a constkvka; e;W � ke2vþUe;m;s �Ue;m;0ka; e;W

a constkvka; e;W � fe2kvka; e;W þ jsjg:

In a similar way we consider the third term in the right-hand part of (5.17) and

conclude that it obeys the inequality

ke�2ðs � ‘sÞð f ð�; e2vþUe;m;s; eÞ � f ð�;Ue;m;s; eÞÞka; e;W

¼ ðs � ‘sÞ
ð1
0

qu f ð�; te2vþUe;m;s; eÞdt
� �

v

����
����
a; e;W

a constjsj � kvka; e;W:
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Finally, we apply formula (5.12) to estimate the second term in the right-hand

part of (5.17), and considering the di¤erence cðy; x1 þ s; sÞ � cðy; x1; sÞ with

the help of definition (3.54) and inequalities (3.55) we obtain

ke�2ðs � ‘sÞðEeUe;m;s � f ð�;Ue;m;s; eÞ � EeUe;m;0 þ f ð�;Ue;m;0; eÞÞka; e;W

a constjsjðjsj þ jejÞ:

The estimate for k½F 0
e ðv; sÞðv; sÞ�2 � ½F 0

e ð0; 0Þðv; sÞ�2k1þa; e;qW is even simpler

to obtain, since the approximate solution Ue;m;s and all its partial derivatives

in the definition of ½F 0
e ðv; sÞðv; sÞ�2 are exponentially small near the boundary

qW (see inequalities (5.9)).

Finally, we analyze the third component of the derivative operator F 0
e ðv; sÞ.

According to the construction procedure described in Section 3, we know that

u0 ¼ 0, ‘yv0ð0Þ ¼ ‘yv1ð0Þ ¼ 0. Then taking into account definition (6.6), we

easily obtain

k½F 0
e ðv; sÞðv; sÞ�3 � ½F 0

e ð0; 0Þðv; sÞ�3kR n a constðjsj kvk2þa; e;W þ kvk2þa; e;W þ eÞ:

Hence, we have shown that assumption (4.2) is also satisfied.

Verification of assumption (4.3). We are going to apply Lemma 4.1. For

this we first write operator F 0
e ð0; 0Þ in the matrix form

F 0
e ð0; 0Þðv; sÞ ¼

F11v F12s

F21v F22s

F31v F32s

0
B@

1
CA;

where

F11v

F21v

F31v

0
B@

1
CA¼

Eev� qu f ð�;We;m; eÞv

e
Pn
i; j¼1

aijð�Þnið�Þqxj v� qugð�;We;m; eÞv
 !

eð‘xvÞðxe;mÞ

0
BBBBB@

1
CCCCCA

and

F12s

F22s

F32s

0
B@

1
CA¼

e�2ðs � ‘sÞðEeUe;m;s � f ð�;Ue;m;s; eÞÞjs¼0

e�1ðs � ‘sÞ
Pn
i; j¼1

aijð�Þnið�ÞqxjUe;m;s � gð�;Ue;m;s; eÞ
 !					

s¼0

ððs � ‘xÞ‘xue;mÞðxe;mÞ þ ððs � ‘xÞQðxe;mÞÞ
Pm
k¼0

ek�1‘yvkð0Þ
� �

0
BBBBBBBB@

1
CCCCCCCCA
:
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According to classical results on boundary value problems for linear

elliptic equations (see for example [23]), the operator

F11v

F21v

� �
: C2þaðWÞ ! C aðWÞ � C1þaðqWÞ

is a Fredholm operator of index zero. On the other hand all the rest

components

F31 : C
2þaðWÞ ! Rn; F12 : R

n ! C aðWÞ;

F22 : R
n ! C1þaðqWÞ; F32 : R

n ! Rn

are operators with finite-dimensional ranges. Hence, the operator F 0
e ð0; 0Þ is a

Fredholm operator of index zero from Ue to Ve, and to apply Lemma 4.1 we

yet need to verify its second assumption only.

We perform this verification by contradiction. For this we suppose that

ek A ð0;yÞ and ðuk; skÞ A Uek are two sequences with

kðuk; skÞkUek
¼ kukk2þa; ek ;W

þ kskkRn ¼ 1 ð5:18Þ

and

ek þ kF 0
ek
ð0; 0Þðuk; skÞkVek

! 0 for k ! y: ð5:19Þ

Then our strategy will be to demonstrate that assumptions (5.18) and (5.19)

lead to the limit kðuk; skÞkUek
! 0 for k ! y, which obviously contradicts to

(5.18).

Before we proceed further, let us write explicitely the meaning of limit

(5.19) for each component of the operator F 0
ek
ð0; 0Þðuk; skÞ. To simplify the

resulting formulas we neglect in each of them all the terms that vanish for

e ! 0. Notice that because of (5.18) without loss of generality we may assume

that there exists s� A Rn such that

sk ! s� in Rn for k ! y:

To this end, we consider the first component of operator F 0
ek
ð0; 0Þðuk; skÞ

which reads

½F 0
ek
ð0; 0Þðuk; skÞ�1 ¼ Eek uk � qu f ð�;Wek ;m; ekÞuk

þ e�2
k ðsk � ‘sÞðEekUek ;m;s � f ð�;Uek ;m;s; ekÞÞjs¼0:

Then taking into account assumptions (5.18) and (5.19), and simplifying the

last term with the help of estimate (5.12), we get

kEek uk � qu f ð�;Wek ;m; ekÞuk � s� �CðTek ;mÞ � cðTek ;m; x1; s�Þka; ek ;W ! 0: ð5:20Þ
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For the second component ½F 0
ek
ð0; 0Þðuk; skÞ�2, we take use of the fact that

function Ue;m;s and all its partial derivatives are exponentially small near

boundary qW (see inequality (5.9)). Combining this with assumption (5.18)

and neglecting in the limit

k½F 0
ek
ð0; 0Þðuk; skÞ�2k1þa; ek ;qW

! 0

all the terms vanishing for e ! 0, we obtain

ek
Xn
i; j¼1

aijð�Þnið�Þqxj uk

�����
�����
1þa; ek ;qW

! 0: ð5:21Þ

Finally, we consider the meaning of limit (5.19) for the third component

½F 0
ek
ð0; 0Þðuk; skÞ�3. Here, since the outer expansion ue;m starts with a term of

order OðeÞ and because of identities ‘yv0ð0Þ ¼ ‘yv1ð0Þ ¼ 0 (see construction

procedure in Section 3), we easily get

kekð‘xukÞðxek ;mÞkR n ! 0: ð5:22Þ

In the rest of proof we will show that as a consequence of assumptions

(5.18) and (5.19) we have two limits

sk ! 0 ð5:23Þ

and

e2k

Xn
i; j¼1

qxiðaijð�Þqxj ukÞ � qu f ð�; 0; 0Þuk

�����
�����
a; ek ;W

! 0: ð5:24Þ

Regarding the latter limit, we remark that in contrary to (5.20) it contains

the positive coe‰cient qu f ðx; 0; 0Þ (see assumption (A1)) instead of the sign-

changing coe‰cient qu f ðx;Wek ;m; ekÞ. Therefore, as soon as we prove (5.24)

we can apply the e-dependent Schauder-type estimates from Appendix to

conclude that kukk2þa; ek ;W
! 0 for k ! y. Then this limit together with

(5.23) will constitute the necessary contradiction kðuk; skÞkUek
! 0 for k ! y.

For the sake of clearness we divide further argumentation into few steps.

Step 1. Operator Pe; s. For every s A ð0; k0Þ, where k0 is given by (3.11),

we define an operator

Pe; s : C
aðWÞ ! C aðRnÞVL2ðRnÞ;

by

Pe; su :¼ ððw0uÞ � T�1
e;mÞrs: ð5:25Þ
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Here

rsðyÞ ¼ e�sð
ffiffiffiffiffiffiffiffiffiffi
1þjyj2

p
�1Þ with y A Rn

is the exponentially decaying function defined previously in (3.24), and

w0 : W ! R is a smooth cut-o¤ function such that

w0ðxÞ ¼ 1 if jx� x0j < d; w0ðxÞ ¼ 0 if jx� x0j > 2d;

where d ¼ 1

4
distðx0; qWÞ:

Note, in definition (5.25) we assume that the product w0u is extended by zero on

the whole Rn. Then the argument of resulting function is stretched according

to the transformation T�1
e;m and the obtained function is finally multiplied by the

factor rs.

Taking into account Remark 5.3 and inequalities (6.8), (6.9) from Ap-

pendix, we easily verify that for any e0 > 0 there exists c0ðe0Þ > 0 such that

for all e A ð0; e0Þ and u A C aðWÞ it holds

kðw0uÞ � T�1
e;mkC aðRnÞ a c0ðe0Þkuka; e;W ð5:26Þ

and

kPe; sukC aðR nÞ a krskC aðR nÞkðw0uÞ � T�1
e;mkC aðR nÞ a c0ðe0ÞkrskC aðR nÞkuka; e;W:

Moreover, since the definition of operator Pe; s contains the exponentially

decaying factor rs A L2ðRnÞ the estimate (5.26) implies

kPe; sukL2ðR nÞ a krskL2ðR nÞkðw0uÞ � T�1
e;mkLyðR nÞ a c0ðe0ÞkrskL2ðR nÞkuka; e;W: ð5:27Þ

Hence, for all e A ð0; e0Þ and all u A C aðWÞ we have Pe; su A C aðRnÞVL2ðRnÞ,
provided s > 0.

Similarly we show that for any s > 0 and e0 > 0 there exists c1ðs; e0Þ > 0

such that for all e A ð0; e0Þ and u A C2þaðWÞ it holds

kPe; sukC 2þaðR nÞ þ kPe; sukW 2; 2ðR nÞ a c1ðs; e0Þkuk2þa; e;W: ð5:28Þ

Hence, the operator Pe; s also maps C2þaðWÞ into C2þaðRnÞVW 2;2ðRnÞ.
Now let us define the sequence

v̂vk :¼ Pek ; suk:

In fact each v̂vk depends also on s. But later on we will fix s independently of

k, therefore we do not mention the s-dependence in the notation of v̂vk for the

sake of simplicity.
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Because of (5.18) and (5.28) the sequence v̂vk is bounded in the Hilbert

space W 2;2ðRnÞ. Without loss of generality we may assume that there exists

v� A W 2;2ðRnÞ such that

v̂vk * v� in W 2;2ðRnÞ for k ! y: ð5:29Þ

Step 2. Derivation of equation for v� and s�. From (3.15) it follows

jðEek ukÞðT�1
ek ;m

ðyÞÞ � Dyðuk � T�1
ek ;m

ÞðyÞja const ekð1þ jyjÞkukk2þa; ek ;W
ð5:30Þ

for all y A Tek ;mðWÞ. Further, according to the definitions of w0 and Te;m, for

any e0 > 0 there exists d̂d ¼ d̂dðe0Þ > 0 such that

w0ðT�1
e;mðyÞÞ ¼ 1 for all e A ð0; e0Þ and jyja d̂d=e:

Hence, assumption (5.18) implies for all h A L2ðRnÞð
jyjad̂d=ek

ðPek ; sðEek ukÞ � rsDyðuk � T�1
ek ;m

ÞÞh dy ! 0;

provided s > 0. Because of uk � T�1
ek ;m

¼ r�1
s v̂vk this yieldsð

jyjad̂d=ek

ðPek ; sðEek ukÞ � Dv̂vk � 2ðrs‘r�1
s � ‘v̂vkÞ � rsv̂vkDr

�1
s Þh dy ! 0: ð5:31Þ

But assumption (5.18) and the inequalities (6.8), (6.9) from the Appendix imply

kEek ukka; ek ;W a const;

whereas the definition of rs results in the inequalities

krsqyjr�1
s kLyðR nÞ a s; krsDr�1

s kLyðR nÞ a sðsþ 2n� 1Þ:

Hence, in (5.31) the limits of integration may be extended to Rn and we getð
Rn

ðPek ; sðEek ukÞ � Dv̂vk � 2ðrs‘r�1
s � ‘v̂vkÞ � rsv̂vkDr

�1
s Þh dy ! 0: ð5:32Þ

In other words, we have

Pek ; sðEek ukÞ � Dv̂vk � 2ðrs‘r�1
s � ‘v̂vkÞ � rsv̂vkDr

�1
s * 0 in L2ðRnÞ: ð5:33Þ

Similarly we show that

Pek ; sðqu f ð�;Wek ;m; ekÞukÞ � qu f ðx0;Fx0 ; 0Þv̂vk * 0 in L2ðRnÞ: ð5:34Þ
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Indeed, as above we can replace the integrals over Rn by integrals over

jyja d̂d=ek. This reduction is possible since the integrals over jyjb d̂d=ek vanish

for k ! y because of the inequality

jqu f ð�;Wek ;m; ekÞ � T�1
ek ;m

� qu f ðx0;Fx0 ; 0Þja const ekð1þ jyjÞ; y A Tek ;mðWÞ

that follows from the structure of formal asymptotics We;m.

Finally, we need to verify the last weak limit in L2ðRnÞ

Pek ; s½s� �CðTek ;mÞ þ cðTek ;m; x1; s�Þ� � ðs� �C þ cð�; x1; s�ÞÞrs * 0; ð5:35Þ

where the functions C and c are defined in (3.53) and (3.54), respectively. But

this limit holds true since the left hand side of (5.35) vanishes for jyja d̂d=ek.

Collecting together the limits (5.33)–(5.35) and using (5.20) and (5.27) we

get

Dv̂vk þ 2ðrs‘r�1
s � ‘v̂vkÞ � ðqu f ðx0;Fx0 ; 0Þ � rsDr

�1
s Þv̂vk

� ðs� �C þ cð�; x1; s�ÞÞrs * 0 in L2ðRnÞ:

This gives the desired equation for v� and s�

Dsv� :¼ Dv� þ 2ðrs‘r�1
s � ‘v�Þ � ðqu f ðx0;Fx0ðyÞ; 0Þ � rsDr

�1
s Þv�

¼ ðs� �C þ cð�; x1; s�ÞÞrs for a: a: y A Rn: ð5:36Þ

Step 3. Proof of the fact that s� ¼ 0. Assumption (A1) and estimate

(3.12) imply that f ðx0;Fx0 ; 0Þ A C aðRnÞ and ðs� �C þ cð�; x1; s�ÞÞrs A C aðRnÞ,
therefore every solution v� A W 2;2ðRnÞ to Eq. (5.36) belongs simultaneously to

C2þaðRnÞ. Below we demonstrate that an appropriate choice of s guarantees

that s� ¼ 0 and v� A spanfrsqyjFx0 : j ¼ 1; . . . ; ng. To this end, we use the

following lemma.

Lemma 5.1. There exists s0 > 0 such that for every s A ½0; s0Þ the operator

Ds (cf. (5.36)) mapping C2þaðRnÞ into C aðRnÞ is a Fredholm operator with

dim Ker Ds ¼ codim Ran Ds ¼ n. Moreover,

Ker Ds ¼ spanfrsqyjFx0 : j ¼ 1; . . . ; ng;

Ran Ds ¼ v A C aðRnÞ :
ð
R n

vðyÞr�1
s ðyÞqyjFx0ðyÞdy ¼ 0; j ¼ 1; . . . ; n

� �
:

Proof. Straightforward calculation yields

lim
s!0

k2ðrs‘r�1
s � ‘Þ � rsDr

�1
s kLðC 2þaðRnÞ;C aðR nÞÞ ¼ 0: ð5:37Þ
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Since small perturbations do not violate Fredholm property and do not increase

the dimension of kernel and the codimension of range (see, for example, [40,

Theorem 5.11]), estimate (5.37) together with Lemma 3.1 and assumption (A4)

imply that for su‰ciently small s > 0 the operator Ds is Fredholm of index zero

and dim Ker Ds ¼ codim Ran Ds a n.

Above we have assumed that s A ð0; k0Þ, where the constant k0 is given

by (3.11). Therefore estimates (3.12) guarantee that rsqyjFx0 A C 2þaðRnÞ.
Moreover, according to assumption (A4) we know that rsqyjFx0 A Ker Ds.

Hence, the only remaining point regarding Ker Ds is to show that the functions

rsqyjFx0 , j ¼ 1; . . . ; n, are linearly independent, i.e. that dim Ker Ds ¼ n. To

check this we write the Gram matrix GðsÞ with elements

½GðsÞ�jk :¼
ð
R n

rsqyjFx0rsqykFx0 dy:

It is clear that Gð0Þ is non-degenerate (see assumption (A4)). On the other

hand, simple calculation shows that the matrix derivative G 0ð0Þ with respect to

s is bounded. Therefore for su‰ciently small s matrix GðsÞ is non-degenerate

too, hence, for such values s functions rsqyjFx0 , j ¼ 1; . . . ; n, are linearly

independent.

Now let us prove the statement regarding Ran Ds. For this we remark

that due to exponential estimates (3.12), for any s A ð0; k0Þ and any v A C 2þaðRnÞ
we can perform integration by parts in the following formulað

Rn

ðDvðyÞ þ 2ðrsðyÞ‘r�1
s ðyÞ � ‘vðyÞÞÞr�1

s ðyÞFx0ðyÞdy

¼
ð
R n

vðyÞðDðr�1
s Fx0ÞðyÞ � 2ð‘r�1

s ðyÞ � ‘Fx0ðyÞÞ � 2Fx0ðyÞDr�1
s ðyÞÞdy

¼
ð
R n

vðyÞðr�1
s ðyÞDFx0ðyÞ �Fx0ðyÞDr�1

s ðyÞÞdy:

With the help of this identity we easily see that for any s A ð0; k0Þ and any

v A C 2þaðRnÞ it holdsð
R n

ðDsvÞðyÞr�1
s ðyÞqyjFx0ðyÞdy ¼ 0 for all j ¼ 1; . . . ; n:

Moreover, in complete analogy with our consideration of functions rsqyjFx0

(see the Gram matrix argument above) we can show that for all s > 0 small

enough functions r�1
s qyjFx0 , j ¼ 1; . . . ; n, are linearly independent. r

Let us assume that the parameter s of function rs satisfies the inequality

0 < s < minðk0; s0Þ. (Note that this is the only restriction that we impose on
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s in our proof !) Then regarding Eq. (5.36), Lemma 5.1 and the Fredholm

alternative imply thatð
R n

ðs� �C þ cð�; x1; s�ÞÞrsr�1
s qyjFx0 dy ¼ 0; j ¼ 1; . . . ; n: ð5:38Þ

These equations have been already considered in Section 3, when we analysed

the system (3.57). Using identities (3.56) and (3.61) obtained there, we rewrite

system (5.38) as follows

Hðx0Þs� ¼ 0;

where Hðx0Þ is the Jacobian matrix of system (1.3) at point x0 (see definition

(3.62)). Due to assumption (A3) this matrix is non-degenerate. Hence, s� ¼ 0

and v� A Ker Ds, i.e.

v� ¼
Xn
j¼1

CjrsqyjFx0 ;

where Cj A R are some constants.

Step 4. Proof of the fact that v� ¼ 0. With the help of limit (5.22), below

we show that v� ¼ 0. To this end, we again define a non-increasing smooth

cut-o¤ function w : ½0;yÞ ! R such that wðrÞ ¼ 1 for 0a ra 1 and wðrÞ ¼ 0 for

rb 2. Then for every R A ð0;yÞ we define the function wRðyÞ :¼ wðjyj2=R2Þ
that satisfies the inequality

kwRkC 2þaðR nÞ a const for all Rb 1:

Since v̂vk * v� in W 2;2ðRnÞ, for every R > 0 we also have wRv̂vk * wRv� in

W 2;2ðRnÞ. Then the compact imbedding W 2;2ðRnÞ ,! L2ðsuppðwRÞÞ implies

kwRv̂vk � wRv�kL2ðRnÞ ! 0 for k ! y: ð5:39Þ

On the other hand, because of (5.18) and (5.28), for every Rb 1 it holds

kwRv̂vkkC 2þaðR nÞ a const: ð5:40Þ

Hence, from (5.39) and (5.40) we easily get

kwRv̂vk � wRv�kC 1þaðsuppðwRÞÞ ! 0 for k ! y: ð5:41Þ

Indeed, suppose that (5.41) is not true. Then there exists c > 0 and a subse-

quence wRv̂vkj of wRv̂vk such that

kwRv̂vkj � wRv�kC 1þaðsuppðwRÞÞ b c for all j ¼ 1; 2; . . . : ð5:42Þ
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Due to the compact imbedding C2þaðsuppðwRÞÞ ,! C1þaðsuppðwRÞÞ and esti-

mate (5.40), this new sequence wRv̂vkj contains a subsequence converging in

C1þaðsuppðwRÞÞ to a certain function oR and koR � wRv�kC 1þaðsuppðwRÞÞ b c (cf.

(5.42)). But this contradicts to the limit (5.39). Hence, the limit (5.41) holds

true.

Taking into account that rsð0Þ ¼ 1 and ‘yrsð0Þ ¼ 0, the limit (5.41) implies

that

‘yv̂vkð0Þ ! ‘yv�ð0Þ ¼
Xn
j¼1

Cj‘yqyjFx0ð0Þ for k ! y: ð5:43Þ

On the other hand, direct calculation with the help of definition (5.25) and limit

(5.22) yields

‘yv̂vkð0Þ ¼ ‘yðukðT�1
ek ;m

ðyÞÞrsðyÞÞjy¼0 ¼ ekQðxek ;mÞ
�1‘xukðxek ;mÞ ! 0;

where we used the facts that xe;m ! x0 for e ! 0 and that Qðx0Þ is a non-

degenerate matrix. Now comparing the latter limit with formula (5.43) we

obtain ‘yv�ð0Þ ¼ 0. Therefore considering the right-hand part of (5.43) as an

n-dimensional linear system with respect to Cj , and taking into account that

the ðn� nÞ-matrix qyjqykFx0ð0Þ is non-degenerate (see (3.50) and (1.11)) we

come to the conclusion that C1 ¼ � � � ¼ Cn ¼ 0, and hence v� ¼ 0.

The latter result has an important consequence: If we substitute v� ¼ 0

into limit (5.41) and apply definition (5.25), we easily get that for every fixed

Rb 1 it holds

kwRðuk � T�1
ek ;m

ÞkC 1þaðsuppðwRÞÞ

a constkwRv̂vkkC 1þaðsuppðwRÞÞ ! 0 for k ! y: ð5:44Þ

This limit plays a crucial role in the next step.

Step 5. Construction of contradiction. Now we have all necessary ingre-

dients to demonstrate that assumptions (5.18) and (5.19) do result in limit

(5.24). In particular, above we have proved that s� ¼ 0. Substituting this

into formula (5.20) we obtain

kEek uk � qu f ð�;Wek ;m; ekÞukka; ek ;W ! 0 for k ! y:

The latter limit can be further reduced to limit (5.24) if we show that the

following two relations hold true

e2k

Xn
i¼1

bið�Þqxiuk

�����
�����
a; ek ;W

! 0 for k ! y; ð5:45Þ

kðqu f ð�;Wek ;m; ekÞ � qu f ð�; 0; 0ÞÞukka; ek ;W ! 0 for k ! y: ð5:46Þ
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First limit (5.45) is trivial. It follows from the assumption (5.18) and the

estimate

ek
Xn
i¼1

bið�Þqxi uk

�����
�����
a; ek ;W

a const max
i

kekqxi ukka; ek ;W a constkukk2þa; ek ;W

that is a consequence of inequalities (6.8), (6.9) and (6.11) from Appendix.

To justify limit (5.46), we write the triangle inequality

kðqu f ð�;Wek ;m; ekÞ � qu f ð�; 0; 0ÞÞukka; ek ;W

a kðqu f ð�;Wek ;m; ekÞ � qu f ð�;Fx0 � Tek ;m; 0ÞÞukka; ek ;W

þ kðqu f ð�;Fx0 � Tek ;m; 0Þ � qu f ðx; 0; 0ÞÞukka; ek ;W: ð5:47Þ

Since the structure of formal asymptotics We;m (see Theorem 3.1) implies that

kWe;m �Fx0 � Te;mka; e;W ¼ OðeÞ for e ! 0;

we easily get the estimate

kqu f ð�;We;m; eÞ � qu f ð�;Fx0 � Te;m; 0Þka; e;W ¼ OðeÞ for e ! 0:

Hence, taking into account that kukk2þa; ek ;W
a 1, with the help of inequalities

(6.9) and (6.11), we find that the first term in the right-hand part of formula

(5.47) vanishes for k ! y.

For the last term in the right-hand part of formula (5.47), we write the

inequality

kðqu f ð�;Fx0 � Tek ;m; 0Þ � qu f ð�; 0; 0ÞÞukka; ek ;W

¼
ð1
0

q2u f ð�; tFx0 � Tek ;m; 0ÞdtðFx0 � Tek ;mÞuk
����

����
a; ek ;W

a constkðFx0 � Tek ;mÞukka; ek ;W a constkFx0ðuk � T�1
ek ;m

Þk
C aðTek ;m

ðWÞÞ;

where the norm k � ka; e;W was estimated by k � k
C aðTek ;m

ðWÞÞ according to Remark

5.3. Now employing the notation of the cut-o¤ function wR (see above), we get

kFx0ðuk � T�1
ek ;m

Þk
C aðTek ;m

ðWÞÞ

a kFx0kC aðTek ;m
ðWÞÞkwRðuk � T

�1
ek ;m

Þk
C aðTek ;m

ðWÞÞ

þ kð1� wRÞFx0kC aðTek ;m
ðWÞÞkuk � T

�1
ek ;m

k
C aðTek ;m

ðWÞÞ

a kFx0kC aðR nÞkwRðuk � T�1
ek ;m

ÞkC aðsuppðwRÞÞ

þ kð1� wRÞFx0kC aðsuppð1�wRÞÞkukka; ek ;W; ð5:48Þ
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The sum in the right-hand part of (5.48) tends to zero for k ! y due to the

following argument. Because of the exponential decay of Fx0 (see Remark

1.2), for arbitrarily small g > 0 we can first take R su‰ciently large such that

it holds

kð1� wRÞFx0kC aðsuppð1�wRÞÞkukka; ek ;W a g for all k ¼ 1; 2; . . . :

Then fixing this R and applying relation (5.44), we can choose su‰ciently large

k to obtain

kFx0kC aðR nÞkwRðuk � T�1
ek ;m

ÞkC aðsuppðwRÞÞ a g:

Thus we have justified limit (5.46).

Recall that obtained limits (5.45) and (5.46) result in another limit (5.24).

Therefore we can apply Theorem 6.1 from Appendix to relations (5.21) and

(5.24). As a result we get kukk2þa; ek ;W
! 0 and this together with another limit

sk ! 0 constitutes the necessary contradiction. Now, Lemma 4.1 provides us

with the required estimate for the inverse operator F 0
e ð0; 0Þ

�1 and the claimed

assertion follows from our generalized Implicit Function Theorem. r

Proof of Theorem 5.1. Translating the assertion of Theorem 5.2 into

original settings we obtain the solution to problem (1.1)

ue ¼ e2ve þUe;m;se ;

where kðve; seÞkUe
¼ kvek2þa; e;W þ jsej ¼ Oðem�1Þ for e ! 0 (see estimate (5.16)).

Then recalling that Ue;m;0 ¼ We;m and taking into account inequality (5.10) we

derive the estimate

kue �We;mk2þa; e;W a e2kvek2þa; e;W þ kUe;m;se �Ue;m;0k2þa; e;W ¼ Oðem�1Þ:

Note that the accuracy of di¤erence Ue;m;se �Ue;m;0 is dominating in the latter

expression. Now since mb 2, direct calculation with the help of relation (5.2)

yields

kue �We;m�2k2þa; e;W a kue �We;mk2þa; e;W þ kWe;m �We;m�2k2þa; e;W ¼ Oðem�1Þ;

and this after reindexing m 0 ¼ m� 2 gives the claimed result (5.1).

The second assertion of theorem is trivial, since for every e A ð0;yÞ and

every u A C 2þaðWÞ we have

kðe�2ðu�We;mÞ; 0ÞkUe
¼ e�2ku�We;mk2þa; e;W:

That ends the proof. r
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6. Appendix: Schauder type estimates in Hölder spaces with e-dependent

norms

Let W be a bounded domain in Rn with smooth boundary qW and e a

scalar positive parameter. We consider the singularly perturbed linear elliptic

operator

Leu :¼ e2
Xn
i; j¼1

qxiðaijðx; eÞqxj uÞ þ cðx; eÞu ð6:1Þ

defined in W, which is equipped with the natural boundary operator

Neu :¼ e
Xn
i; j¼1

aijðx; eÞniðxÞqxj u ð6:2Þ

defined on qW, where ni are the components of the unit outer normal at qW.

Introducing weighted e-dependent norms in Hölder spaces, we modify some

well-known results of the Schauder theory for the composite operator ðLe;NeÞ
in a way to produce the upper bound estimate for inverse operator ðLe;NeÞ�1,

which is uniform with respect to e ! 0.

For this we recall that for any l A ð0; 1Þ function u is called Hölder

continuous with exponent l in W if the seminorm

½u�l;W :¼ sup
x;y AW;
x0y

juðxÞ � uðyÞj
jx� yjl

ð6:3Þ

is finite. Respectively, for any integer kb 0 we define the Hölder space

CkþlðWÞ as a subspace of CkðWÞ consisting of all functions u with the finite

norm

kukkþl;W :¼ kukk;W þ sup
jmj¼k

½Dmu�l;W; ð6:4Þ

where

kukk;W :¼
Xk
j¼0

sup
jmj¼ j

sup
W

jDmuj

and a standard notation for multi-index m was adopted.

If domain W belongs to a class Ckþl with kb 1 (see corresponding

definition in [17, Sec. 6.3]), then one can naturally define a Banach space

CkþlðqWÞ with the norm

kukk;qW :¼ inf
U

kUkk;W; ð6:5Þ
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where U denotes a CkþlðWÞ-extention of function u on W and the infimum

is taken over all possible extensions U . Since the set of such extensions U is

nonempty (see Lemma 6.38 in [17]), definition (6.5) is always correct.

To eliminate the singularity occurring for e ! 0 in operators Le and Ne,

one might employ a simple coordinate transformation Te : R
n ! Rn defined

for all e A ð0;yÞ with the formula Tex :¼ x=e. Indeed, in the new coordinates

these di¤erential operators have regular coe‰cients and read as follows

~LLev :¼
Xn
i; j¼1

qyiðaijðey; eÞqyj vÞ þ cðey; eÞv;

~NNev :¼
Xn
i¼1

aijðey; eÞniðeyÞqyj v:

However, the former acts now in the e-dependent domain W=e :¼ TeðWÞ,
whereas the latter acts on the e-dependent surface qW=e :¼ TeðqWÞ. Taking

this into account we define the new e-dependent norms

kukkþl; e;W :¼ ku � T�1
e kkþa;W=e ¼

Xk
j¼0

e j sup
jmj¼ j

sup
W

jDmuj þ ekþl sup
jmj¼k

½Dmu�l;W ð6:6Þ

and

kukkþl; e;qW :¼ ku � T�1
e kkþl;qW=e; ð6:7Þ

in Hölder spaces CkþlðWÞ and CkþlðqWÞ, respectively. Such norms turn out

to be a natural setting for analysis of singularly perturbed composite oper-

ator ðLe;NeÞ. In particular, they satisfy a series of inequalities with a simple

explicit dependence on parameter e. We present these inequalities in the

following lemma.

Lemma 6.1. Let kb 0 be an integer and l A ð0; 1Þ. Then for any

e A ð0;yÞ it holds:

minð1; ekþlÞkukkþl;W a kukkþl; e;W

a maxð1; ekþlÞkukkþl;W for all u A CkþlðWÞ; ð6:8Þ

kuvkl; e;W a kukl; e;Wkvkl; e;W for all u; v A C lðWÞ: ð6:9Þ

Moreover, if kb 1 then it holds:
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minð1; ekþlÞkukkþl;qW a kukkþl; e;qW

a maxð1; ekþlÞkukkþl;qW for all u A CkþlðqWÞ; ð6:10Þ

kukk�1þl; e;W aCðn; k; lÞkukkþl; e;W for all u A CkþlðWÞ; ð6:11Þ

where Cðn; k; lÞ is a constant independent of e and W.

Proof. Inequalities (6.8)–(6.10) follow directly from definitions (6.5)–(6.7).

To verify the inequality (6.11) we first write the estimate

ek�1þl sup
jmj¼k�1

½Dmu�l;W

a ek�1þl sup
jmj¼k�1

sup
W

ð2jDmujÞ1�l sup
x;y AW;
x0y

jDmuðxÞ �DmuðyÞjl

jx� yjl

0
B@

1
CA

a sup
jmj¼k�1

sup
W

ð2ek�1jDmujÞ1�l

� �
sup
jmj¼k

sup
W

ðnekjDmujÞl
� �

aC�ðn; k; lÞkukkþl; e;W;

where C�ðn; k; lÞ > 0 is a constant independent of e and W. Then taking into

account definition (6.6) and denoting Cðn; k; lÞ ¼ 1þ C�ðn; k; lÞ we obtain the

claimed inequality (6.11). r

Now we are ready to formulate and prove the main statement concerning

the upper bound estimate of inverse operator ðLe;NeÞ�1.

Theorem 6.1. Let W be a bounded domain in Rn of class C2þa with a

given a A ð0; 1Þ. Suppose that the following assumptions hold:

( i ) For every e > 0 it holds aijð�; eÞ A C1þaðWÞ and cð�; eÞ A C aðWÞ. Fur-

thermore, there exists a constant M > 0 such that

kaijð�; eÞk1þa;W; kcð�; eÞka;W aM for all e A ð0;yÞ: ð6:12Þ

(ii) There exist constants k > 0 and c0 > 0 such that

Xn
i; j¼1

aijðx; eÞxixj b kjxj2 for all ðx; e; xÞ A W� ð0;yÞ � Rn; ð6:13Þ

and cðx; eÞa�c0 for all ðx; eÞ A W� ð0;yÞ: ð6:14Þ

Then there exist e0 > 0 and C0 > 0 such that for all e A ð0; e0Þ and all

u A C 2þaðWÞ it holds

kuk2þa; e;W aC0ðkLeuka; e;W þ kNeuk1þa; e;qWÞ:
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Proof. We base our proof on Lemma 4.1. First we remark that

inequality (6.8) implies the equivalence of norms k � kkþa; e;W and k � kkþa;W

for any kb 0. Similarly, from inequality (6.10) follows the equivalence of

norms k � kkþl; e;qW and k � kkþl;qW with kb 1. Hence, taking into account

classical results of the theory of linear elliptic operators (see Theorem 3.2 in

[23]), we easily see that the operator

ðLe;NeÞ : ðC2þaðWÞ; k � k2þa; e;WÞ ! ðC aðWÞ; k � ka; e;WÞ � ðC1þaðqWÞ; k � k1þa; e;qWÞ

is a Fredholm operator of index zero.

Let ek A ð0;yÞ and uk A C2þaðWÞ be sequences with

kukk2þa; ek ;W
¼ 1 ð6:15Þ

and

ek þ kLek ukka; ek ;W þ kNek ukk1þa; ek ;qW
! 0 for k ! y: ð6:16Þ

We are going to demonstrate that these two assumptions actually imply

kukk2þa; ek ;W
! 0 for k ! y ð6:17Þ

what is the necessary contradiction.

First we will show that assumption (6.16) together with properties (6.12)–

(6.14) results in the uniform estimate

kukk0;W ! 0 for k ! y: ð6:18Þ

Indeed, for each uk we can construct two functions of the following form

uGk ðxÞ :¼ ukðxÞGKðkLek ukka; ek ;W þ kNek ukk1þa; ek ;qW
Þ

G kNek ukk1þa; ek ;qW
wðxÞ exp � 1

ek
distðx; qWÞ

� �
;

where K is a positive constant to be chosen later, and w : ½0;yÞ ! R is a

smooth cut-o¤ function such that

wðrÞ ¼ 1 for 0a ra d and wðrÞ ¼ 0 for rb 2d;

with d > 0 being a fixed number, small enough to guarantee that for every

x A W satisfying distðx; qWÞ < 2d there exists the only point z A qW such that

distðx; zÞ ¼ distðx; qWÞ. Then simple calculation and estimate (6.13) yield

GNek u
G
k ðxÞ ¼GNek ukðxÞ þ kNek ukk1þa; ek ;qW

1

k

Xn
i; j¼1

aijðx; ekÞniðxÞnjðxÞb 0
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for all x A qW. On the other hand, using assumption (6.12) we easily check

that for every e A ð0; 1Þ it holds

e2
Xn
i; j¼1

qxi aijðx; eÞqxj wðxÞ exp � 1

ek
distðx; qWÞ

� �� �� ������
�����
0;W

a const:

Hence, assumption (6.14) allows us to choose K > 0 such that for all suf-

ficiently large indices k with ek A ð0; 1Þ we have

Lek u
þ
k ðxÞa 0 and Lek u

�
k ðxÞb 0 for all x A W:

Then Strong Maximum Principle for linear elliptic operators (see [17, Theorem

3.5]) implies

uþk ðxÞb 0 and u�k ðxÞa 0 for all x A W;

and this gives (6.18). The latter limit can be easily transformed into a stronger

one. Indeed, since the following inequality holds

eak ½uk�a;W a eak sup
W

ð2jukjÞ1�a sup
x;y AW;
x0y

jukðxÞ � ukðyÞja

jx� yja

a ð2kukk0;WÞ
1�a

nek sup
jmj¼1

sup
W

jDmukj
 !a

;

assumption (6.15) and limit (6.18) guarantee that

kukka; ek ;W ! 0 for k ! y: ð6:19Þ

To proceed further we remark that for every e A ð0; 1Þ estimates (6.8) and

(6.10) imply

eakuka;W a kuka; e;W a kuka;W for all u A C aðWÞ;

e1þakuk1þa;qW a kuk1þa; e;qW a kuk1þa;qW for all u A C1þaðqWÞ; ð6:20Þ

respectively. Hence, assuming without loss of generality that ek < 1, and

applying inequality (6.9), we get the limit

e2þa
k

Xn
i; j¼1

aijð�; ekÞqxiqxj uk

�����
�����
a;W

a e2k

Xn
i; j¼1

aijð�; ekÞqxiqxj uk

�����
�����
a; ek ;W
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a kLek ukka; ek ;W þ e2k

Xn
i; j¼1

qxi aijð�; ekÞqxj uk

�����
�����
a; ek ;W

þ kcð�; ekÞka;Wkukka; ek ;W ! 0 for k ! y; ð6:21Þ

where all the terms in the right hand part of (6.21) vanish because of assump-

tions (6.12), (6.15) and limits (6.16), (6.19).

According to classical Schauder estimates for linear elliptic operators (see

for example Theorem 6.30 in [17]), there exists C1 ¼ C1ðn; a; k;M;WÞ > 0

which is independent of e, such that for every u A C2þaðWÞ it holds

kuk2þa;W aC1

 Xn
i; j¼1

aijð�; eÞqxiqxj u
�����

�����
a;W

þ
Xn
i; j¼1

aijð�; eÞnið�Þqxj u
�����

�����
1þa;qW

þ kuk0;W

!
:

Multiplying both sides of this inequality with e2þa we get

e2þakuk2þa;W aC1

 
e2þa

Xn
i; j¼1

aijð�; eÞqxiqxj u
�����

�����
a;W

þ e1þa e
Xn
i; j¼1

aijð�; eÞnið�Þqxj u
�����

�����
1þa;qW

þ e2þakuk0;W

!
: ð6:22Þ

Hence, taking into account previously obtained estimate (6.21), assumptions

(6.15), (6.16) and inequality (6.20) we obtain from (6.22) that

e2þa
k kukk2þa;W ! 0 for k ! y: ð6:23Þ

Now, the last step is to derive from limits (6.19) and (6.23) the necessary

contradiction (6.17). For this we employ the interpolation inequality (see

Lemma 6.3.1 in [21])

eskuks;W aC2ðe2þakuk2þa;W þ ðes þ 1Þkuk0;WÞ

that holds true for all 0a sa 2þ a and e A ð0;yÞ with a positive constant

C2 ¼ C2ðn; a; s;WÞ which is independent of e. Indeed, due to limits (6.19) and

(6.23) we easily get

ekkukk1;W ! 0 and e2kkukk2;W ! 0 for k ! y:
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Thus, all terms in the definition of norm kukk2þa; ek ;W
vanish when k ! y and

limit (6.17) does hold. This means that Lemma 4.1 works and this ends the

proof. r

Remark 6.1. The prove of Theorem 6.1 can be easily modified to cover

the case of Dirichlet boundary conditions. In result we obtain the following

statement.

Suppose that all assumptions of Theorem 6.1 are fulfilled. Then there exist

e0 > 0 and C0 > 0 such that for all e A ð0; e0Þ and all u A C2þaðWÞ it holds

kuk2þa; e;W aC0ðkLeuka; e;W þ kuk2þa; e;qWÞ:
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[10] W. A. Coppel, Dichotomies in stability theory, Lecture Notes in Math., Vol. 629,

Springer-Verlag, Berlin, 1978.
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