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Abstract. In the structural equation modeling, unknown parameters of a covariance

matrix are derived by minimizing the discrepancy between a sample covariance matrix

and a covariance matrix having a specified structure. When a sample covariance

matrix is a near singular matrix, Yuan and Chan (2008) proposed the estimation method

to use an adjusted sample covariance matrix instead of the sample covariance matrix in

the discrepancy function. The adjusted sample covariance matrix is defined by adding

a scalar matrix with a shrinkage parameter to the existing sample covariance matrix.

They used a constant value as the shrinkage parameter, which was chosen based solely

on the sample size and the number of dimensions of the observation, and not on the

data itself. However, selecting the shrinkage parameter from the data may lead to a

greater improvement in prediction compared to the use of a constant shrinkage

parameter. Hence, we propose an information criterion for selecting the shrinkage

parameter, and attempt to select the shrinkage parameter by an information criterion

minimization method. The proposed information criterion is based on the discrepancy

function measured by the normal theory maximum likelihood. Using the Monte Carlo

method, we demonstrate that the proposed criterion works well in the sense that the

prediction accuracy of an estimated covariance matrix is improved.

1. Introduction

Structural equation modeling (SEM) has been widely used in many fields,

especially in social and behavioral sciences (see e.g., Bollen (1989), and Yuan

and Bentler (2007)). In SEM, unknown parameters of a covariance matrix are
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derived by minimizing the discrepancy between a sample covariance matrix and

a covariance matrix having a specified structure.

Let x1; . . . ; xN be independent random samples from x distributed accord-

ing to a p-variate normal distribution Npðm;SÞ, where N is the sample size.

We are interested in modeling the population covariance matrix S. Denote

the model of interest as SðyÞ, where y ¼ ðy1; . . . ; yqÞ0. For simplicity, we write

SðyÞ as Sy. Let S be an unbiased estimator of S, i.e.,

S ¼ 1

N � 1

XN
i¼1

ðxi � xÞðxi � xÞ0;

where x is the sample mean of x1; . . . ; xN defined by x ¼ N�1
PN

i¼1 xi. Then,

the candidate model is represented by

M : nS@Wpðn;SyÞ; ð1Þ

where n ¼ N � 1. Suppose that S0 is the true covariance matrix, i.e.,

Cov½x� ¼ S0. The true model is represented by

M0 : nS@Wpðn;S0Þ: ð2Þ

If the covariance structure can be correctly specified, then there exists y0 such

that S0 ¼ Sy0 . The classical approach to SEM fits the sample covariance

matrix S by Sy through minimizing the normal theory maximum likelihood

(ML) discrepancy function as

F ðS;SyÞ ¼ trðSS�1
y Þ � logjSS�1

y j � p: ð3Þ

Then, the ML estimator of y, which is represented by ŷy, is defined by

ŷy ¼ arg min
y

FðS;SyÞ:

In general, ŷy is obtained using a modification of Newton’s algorithm (see

e.g., Lee and Jennrich (1979)), which requires an iteration process to solve the

estimating equation. When S is near singular (not full rank), the iteration

process for obtaining ŷy will be very unstable and may require hundreds of

iterations to reach convergence (e.g., Boomsma (1985)). A near singular S

often occurs in practical data analysis due to not only small samples but also

multicollinearity or missing data even when sample size is quite large (Wothke

(1993)). When S is literally singular, it is very likely that the iteration will

never converge.

In order to avoid such a problem, Yuan and Chan (2008) proposed a new

method in which y is estimated by minimizing FðSa;SyÞ, where Sa ¼ S þ aIp,

a is a small positive value and Ip is a p-dimensional identity matrix. Here, a is
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commonly referred to as the shrinkage parameter. Hence, a new estimator of

y is defined by

ŷya ¼ arg min
y

FðSa;SyÞ:

Although ŷya has a constant bias, under LISREL models (see Jöreskog and

Sörbom (1996), pp. 1–3), Yuan and Chan (2008) reported that ŷya can be

adjusted to a consistent estimator through a simple procedure when the cova-

riance structure is the correct model. The adjusted estimator is defined as

~yya ¼ ŷya � aj;

where j is a q-dimensional vector whose elements are ones corresponding to the

parameters on the diagonals of the covariance matrix, and otherwise are zero.

They also studied for the case that Sy is not correctly specified. There exists

a unique vector y� such that

Sya� ¼ Sy� þ aIp; ð4Þ

where ya� is a population parameter minimizing FðS0 þ aIp;SyÞ, i.e.,

ya� ¼ arg min
y

F ðS0 þ aIp;SyÞ: ð5Þ

Then, ŷya and ~yya are consistent for ya� and y�, respectively. If Sy is correctly

specified, ya� ¼ y0 þ aj and y� ¼ y0.

The selection of the shrinkage parameter is crucial because if the shrinkage

parameter is changed, the estimate will be also changed. In Yuan and Chan

(2008), the shrinkage parameter was taken to be a constant, determined by only

N and p. This means that the shrinkage parameter was not chosen based on

the data. However, it is possible that the prediction could be improved by

basing the shrinkage parameter on the data itself. Furthermore, it does not

always guarantee that the estimator is proper solution by fixed a. Therefore,

we attempt to select the shrinkage parameter based on the predictive Kullback-

Leibler (KL) discrepancy (Kullback and Leibler (1951)). The basic idea is to

measure the goodness of fit of the model by the risk function assessed by the

predictive KL discrepancy. In the present paper, our objective is to select the

appropriate value of a by minimizing the risk function. However, we cannot

directly use the risk function to select a because the risk function includes

unknown parameters. Hence, instead of the risk function itself, we use its

estimator.

Akaike’s information criterion (AIC) (Akaike (1973)) is an estimator of the

risk function assessed by the predictive KL information (for the AIC for SEM,

see, e.g., Cudeck and Brown (1983), Akaike (1987), Ichikawa and Konishi

(1999), Yanagihara (2005)). The objective of the present study may be
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achieved by minimizing the AIC rather than the risk function. In general, the

AIC is defined by adding the bias to the risk function, i.e., the number of

independent parameters divided by n, to the KL discrepancy function with an

estimated parameter, which is referred to as a sample discrepancy function.

However, the bias term of the AIC is obtained under the situation that the

discrepancy function for estimating y is the same as that for evaluating the

model fit. In the present paper, the discrepancy function for estimating y is

F ðSa;SyÞ ¼ FðS;SyÞ þ a trðS�1
y Þ � logjSaj þ logjSj;

and that for evaluating the model is F ðS;SyÞ. Since the two functions are

di¤erent, we cannot use the bias term of the ordinary AIC. Therefore, we

must revaluate the bias using the same approach as the generalized informa-

tion criterion (GIC) proposed by Konishi and Kitagawa (1996). Hence, we

denote the proposed information criterion as GIC(a). We define GIC(a) by

adding an estimator of the revaluated bias to the sample discrepancy function

FðS;S ~yya
Þ. Then, the best a is chosen by minimizing GIC(a).

The remainder of the present paper is organized as follows: In Section 2,

we obtain GIC(a) from a stochastic expansion of ŷya. In Section 3, we verify

the performance of our criteria using the Monte Carlo method. In Section 4,

we present conclusions and discussions. The proof of the theorem presented

herein is provided in the Appendix.

2. GIC for selecting the shrinkage parameter

In order to select the best a, we consider the risk function between the true

model and the candidate model. Let LðSÞ be an expected ML discrepancy

function defined by

LðSÞ ¼ E½F ðS;SÞ�

¼ trðS0S
�1Þ � E½logjSj� þ logjSj � p:

In this paper, E denotes the expectation under the true model M0 in (2) with

respect to S. We measure the discrepancy between the candidate model M in

(1) and the true model M0 in (2) by the predictive KL discrepancy function.

Then, we define the risk function assessed by the predictive ML discrepancy in

(3) as

R ¼ E½LðS ~yya
Þ�:

We regard the shrinkage parameter a having the smallest R as the principle

best model. Obtaining an unbiased estimator of R will allow us to correctly

evaluate the discrepancy between the data and the model, which will further
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facilitate the selection of the best shrinkage parameter. A rough estimator of

R is the sample ML discrepancy function FðS;S ~yya
Þ. However, since F ðS;S ~yya

Þ
has a bias, the information criterion can be defined as FðS;S ~yya

Þ þ B̂B, where B̂B

is an estimator of the bias given as

B ¼ R� E½F ðS;S ~yya
Þ�: ð6Þ

Henceforth, in order to derive B̂B, we calculate a limiting value of B.

Let

Dy ¼
q

qy 0 vecðSyÞ; ð7Þ

and

Gya� ¼
q2

qyqy 0 FðS0 þ aIp;SyÞ
����
y¼ya�

; ð8Þ

where

q2

qyqy 0 FðS0 þ aIp;SyÞ

¼ 2D 0
yðS�1

y ðS0 þ aIpÞS�1
y nS�1

y ÞDy � D 0
yðS�1

y nS�1
y ÞDy

�
Xq

i; j

trfS�1
y ðS0 þ aIp � SyÞS�1

y
€SSyijgeie 0j :

Here, ei is a q-dimensional vector, the ith element of which is 1, with all others

being 0, and €SSyij ¼ q2Sy=qyiqyj . Since ya� is the minimizer of

FðS0 þ aIp;SyÞ, Gya� is a nonsingular matrix. Using the above notation,

we have the following theorem for the bias.

Theorem 1. Suppose that a set of standard regularity conditions, as given

in Browne (1984) or Yuan and Bentler (1997), is satisfied. Then, the bias of

E½FðS;S ~yya
Þ� is expanded as

B ¼ 2

n
trfDy�G

�1
ya�
D 0
ya�
ðS�1

ya�
S0S

�1
y�

nS�1
ya�
S0S

�1
y�
Þg þOðn�2Þ: ð9Þ

The proof of this theorem, which is derived by modifying the results presented

in Yanagihara, Himeno, and Yuan (2010), is given in the Appendix.

By replacing ya�, y�, and S0 by neglecting Oðn�2Þ in (9) with ŷya, ~yya, and

S, respectively, an estimator of B is given by

B̂B ¼ 2

n
trfD ~yya

G�1
ŷya
D 0
ŷya
ðS�1

ŷya
SS�1

~yya
nS�1

ŷya
SS�1

~yya
Þg:
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Thus, the information criterion for selecting a (GIC(a)) is defined by

GICðaÞ ¼ F ðS;S ~yya
Þ þ B̂B:

Let A be a set A ¼ fa j ab 0 and ~yya gives a proper solutiong. Then, the

best a is chosen by minimizing GIC(a), i.e.,

âa ¼ arg min
a AA

GICðaÞ:

When the candidate model is correctly specified, Sya� ¼ Sa. Then, the

bias becomes simple, as in the following corollary.

Corollary 1. If the candidate model is correctly specified, the bias of

E½FðS;S ~yya
Þ� is expanded as

B ¼ 2

n
qþOðn�2Þ:

This corollary indicates that the bias does not depend on a by neglecting the

Oðn�2Þ term when the candidate model is correctly specified. Hence, the best

a is the value that minimizes F ðS;S ~yya
Þ in A.

3. Monte Carlo results

In this section, we compare the risk functions of estimated S obtained

from the following methods.
� Method 1 (new method): We estimate S by S ~yyâa

, where âa is selected by

minimizing GIC(a).
� Method 2 (Yuan and Chan’s (YC) method): We estimate S by S ~yyp=N

.
� Method 3 (ordinary ML method): We estimate S by Sŷy.

Actually, since �E½logjSj� � p in the expected ML discrepancy does not

depend on the result of a selection of a, we evaluated the following expect-

ations:

Rnew ¼ E½LðS ~yyâa
Þ� þ a; RYC ¼ E½LðS ~yyp=N

Þ� þ a; RML ¼ E½LðSŷyÞ� þ a;

where a ¼ E½logjSj� þ p. In the simulation, we used the confirmatory factor

model, which is included in the LISREL model, as the true model M0, i.e., the

true covariance matrix is S0 ¼ L0F0L
0
0 þC0, where L0 is the true factor

loading matrix, F0 is the true correlation matrix, and C0 is the true covariance

matrix of the measurement errors. In this simulation, we defined C0 ¼
Ip � diagðL0F0L

0
0Þ. As the true model, we used the two models specified

by the following parameters:
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Case 1: L0 ¼
b 05

05 b

05 b

0
B@

1
CA; F0 ¼

1:0 :30

:30 1:0

� �
;

Case 2: L0 ¼
b 05 05

05 b 05

05 05 b

0
B@

1
CA; F0 ¼

1:0 :30 :40

:30 1:0 :30

:40 :30 1:0

0
B@

1
CA;

where b ¼ ð:70; :70; :75; :80; :80Þ0 and 0q is a q-dimensional vector of zeros.

The candidate model used in the simulation was also the confirmatory factor

model, i.e., the covariance matrix Sy ¼ LFL 0 þC , where C ¼ diagðc1; . . . ;

cpÞ. In the case 1, we used the confirmatory three-factor model as the

candidate model. On the other hand, the confirmatory two-factor model

was used as the candidate model in the case 2. Hence, l and F in the

candidate models were

Case 1: L ¼
l1 05 05

05 l2 05

05 05 l3

0
B@

1
CA; F ¼

1:0 f12 f13
f12 1:0 f23
f13 f23 1:0

0
B@

1
CA;

Case 2: L ¼
l1 05

05 l2

05 l3

0
B@

1
CA; F ¼ 1:0 f12

f12 1:0

� �
:

It is easy to see that the candidate model in the case 1 is overspecified, and that

in the case 2 is underspecified. In order to obtain smaller sample sizes, we

chose N ¼ 30, 50, and 100. The number of replications is 1000.

In order to calculate Rnew, RYC, and RML, we first obtained an estimator

of y for each method using R ver. 2.12.1. We then counted the frequencies

when the estimate of y is the proper solution (i.e., an estimator of S is

positive define). Next, we recorded the value of LðŜSÞ for each method, where

ŜS is an estimated S for each method. After the replication was finished,

we obtained the arithmetic mean of LðŜSÞ for each method. If all of the

estimators are proper solutions, then the arithmetic mean is regarded as a target

risk function.

From Table 1, when N ¼ 30 in the case 1, the Rnew was obtained, but

RYC and RML were not obtained because there were several improper solutions

for a ¼ p=N and 0. When N ¼ 50 and 100 in the case 1, since there were

no improper solutions, we could obtain all risk functions. Then, Rnew was

the smallest. On the other hand, in the case 2, Rnew and RYC were obtained,

but RML was not obtained. Then, Rnew was smaller than RYC. Hence, the
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proposed information criterion works well in the sense that the prediction

accuracy of an estimated covariance matrix is improved.

4. Conclusion and discussion

In the present paper, we proposed a GIC for selecting the shrinkage

parameter, which is used to obtain the estimator for SEM with a near singular

covariance matrix. In order to derive the GIC, we revaluated the bias of the

risk function. Then, GIC(a) was obtained by adding the estimator of the

revaluated bias to the sample discrepancy function. We have observed that

when the candidate model is correctly specified, the bias does not depend on a

when the Oðn�2Þ term is neglected, i.e., the bias term is equivalent to that of

the AIC. This means that the best a is the value that minimizes F ðS;S ~yya
Þ

under the condition that ~yya gives a proper solution. In the Monte Carlo

results, an estimate of ~yyâa was always a proper solution, and the risk function of

the estimated covariance matrix based on ~yyâa with the selected a was the

smallest.

In this paper, we assumed that data has normality. If we do not assume

normality to data, a kurtosis will appear in the bias to the risk function.

Hence, an estimator of kurtosis will be required to estimate the bias.

Unfortunately, Yanagihara (2007) reported that such an estimator gives a

poor value unless the sample is huge. When the sample size is large enough, a

sample covariance matrix will not become a near singular matrix in most

cases. A near singular sample covariance matrix occurs frequently under the

small or moderate sample sizes. This is almost the same as a well-known fact

that a multicollinearity frequently occur under the small or moderate sample.

In practice, we confirmed such results through many simulation experiments.

Hence, it is suitable to assume not the large sample case but the small or

moderate sample case under a near singular sample covariance matrix. There-

Table 1. Frequencies of the proper solutions and the risk functions for each method

Frequency Risk

Case N New YC ML New YC ML

30 1000 996 987 16.8295 — —

1 50 1000 1000 1000 15.9808 15.9858 16.0088

100 1000 1000 1000 15.5024 15.5044 15.5067

30 1000 1000 972 19.2521 19.3887 —

2 50 1000 1000 987 16.1748 16.2869 —

100 1000 1000 990 14.1732 14.2618 —
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fore, at present, we judge that it is necessary to deal with the case of nonnormal

when a sample covariance matrix is a near singular matrix.

Appendix

The derivation of the risk function and the proof of Theorem 1 are

presented in this appendix. First, we derive the risk function. In this paper,

we measure the discrepancy between the candidate model M in (1) and the true

model M0 in (2) by the following discrepancy function:

ð
log

f ðW jn;S0Þ
f ðW jn;S ~yya

Þ f ðW jn;S0ÞdW ¼ n

2
fLðS ~yya

Þ �LðS0Þg:

By omitting the terms that do not depend on a, we have

ð
FðW ;S ~yya

Þ f ðW jn;S0ÞdW ¼ LðS ~yya
Þ:

Hence, we define the risk function as R in Section 2.

Next, we prove Theorem 1. The bias of FðS;S ~yya
Þ, defined in (6), can be

written as

B ¼ E½LðS ~yya
Þ � F ðS;S ~yya

Þ� ¼ E½trfS�1
~yya
ðS0 � SÞg�: ðA1Þ

Since S0 � S ¼ Opðn�1=2Þ and E½S � ¼ S0, by applying the Taylor expansion to

trfS�1
~yya
ðS0 � SÞg at ~yya ¼ y�, we derive

E½trfS�1
~yya
ðS0 � SÞg� ¼ E½dy� ð~yya � y�Þ� þOðn�2Þ;

where y� is given by (4), and

dy� ¼
q

qy 0 trfS�1
y ðS0 � SÞg

����
y¼y�

:

The remainder term of the above expectation is Oðn�2Þ because ~yya can be

expressed as a function of V ¼ n1=2ðS � S0Þ which has an asymptotic normality

and general cumulants of elements of V may be expanded as a power series

in n�1 (see e.g., Hall, 1992, p. 46). Indeed, an n�3=2 term of the stochastic

expansion of trfS�1
~yya
ðS0 � SÞg can be expressed as the third-order polynomial

of elements of V . Since V has an asymptotic normality, an expectation of the

odd-order polynomial of element V becomes Oðn�1=2Þ. Consequently, the

expectation of the n�3=2 term of the stochastic expansion becomes not Oðn�3=2Þ
but Oðn�2Þ. Let Gy ¼ ðS�1

y nS�1
y Þ. From this expression, we obtain

dy� ¼ vec 0fS�1
y�
ðS � S0ÞS�1

y�
gDy� ¼

1ffiffiffi
n

p vec 0ðV ÞGy�Dy� : ðA2Þ
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Since ŷya is the minimizer of F ðSa;SyÞ, qFðSa;SyÞ=qyjy¼ŷya
¼ 0q is satisfied.

Then, under a set of standard regularity conditions, the following equation is

derived.

0q ¼ D 0
ŷya
vecfS�1

ŷya
ðSŷya

� S0 � aIpÞS�1
ŷya
g � 1ffiffiffi

n
p D 0

ŷya
Gŷya

vecðV Þ:

Hence, we obtain

D 0
ŷya
vecfS�1

ŷya
ðSŷya

� S0 � aIpÞS�1
ŷya
g ¼ 1ffiffiffi

n
p D 0

ŷya
Gŷya

vecðV Þ: ðA3Þ

Note that n1=2ðŷya � ya�Þ ¼ Opð1Þ and that both sides of (A3) are functions

of ŷya, where ya� is given by (5). Applying the Taylor expansion to (A3) at

ŷya ¼ ya� and comparing the Opðn�1Þ term on both sides of the resulting

equation, we obtain

ŷya � ya� ¼
1ffiffiffi
n

p G�1
ya�
D 0
ya�
Gya� vecðV Þ þOpðn�1Þ;

where Dy and Gy are given by (7) and (8), respectively. Note that

E½vecðV Þ vec 0ðV Þ� ¼ nE½vecðS � S0Þ vec 0ðS � S0Þ�

¼ nCov½vecðSÞ�

¼ ðIp2 þ KpÞðS0 nS0Þ;

where Kp is the commutation matrix (see Magnus and Neudecker (1999),

p. 48). Therefore,

B ¼ E½dy� ðŷya � ya�Þ� þOðn�2Þ

¼ 1

n
trfGy�Dy�G

�1
ya�
D 0
ya�
Gya� ðI p2 þ KpÞðS0 nS0Þg þOðn�2Þ: ðA4Þ

Consequently, by using the equations KpðAnCÞ ¼ ðC nAÞKp and Kp vecðC Þ
¼ vecðC 0Þ (see Magnus and Neudecker (1999), p. 47), the equation (9) in

Theorem 1 is derived.
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