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Abstract. We give a topological description of orbit spaces and orbits of some flat

Lorentzian G-manifolds.

1. Introduction

One of the important approaches to di¤erential geometry is the di¤erential

geometry of G-manifolds, that is, a manifold M with a group of di¤eomor-

phisms. Of particular importance is the situation when M is a Riemannian

or semi-Riemannian manifold and G is a closed and connected subgroup of

IsoðMÞ, the Lie group of all isometries of M. When the maximum dimension

of the orbits of the action of G on M is dim M � k, then the orbit space

GnM is a topological space of dimension k, and the action is said to be of

cohomogeneity k. Throughout this paper, we use the symbol GðxÞ as the

G-orbit in M through a point x A M. If k ¼ 0 and M is a connected

Riemannian manifold, then there exists x A M such that dim GðxÞ ¼ dim M.

Since GðxÞ is a submanifold without boundary then it is an open submanifold

of M, and since G is closed in IsoðMÞ then GðxÞ is closed in M. Thus, we get

from connectivity of M that GðxÞ ¼ M. So, G acts transitively on M and

M is a homogeneous G-manifold. If M is a homogeneous flat Riemannian

manifold then it is di¤eomorphic to Rn1 � T n2 , n1 þ n2 ¼ dim M [12]. If M is

a connected cohomogeneity one flat Riemannian G-manifold, the orbit space

is homeomorphic to one of the spaces S1, R or ½0; 1Þ [4]. The orbits of

cohomogeneity one complete and connected flat Riemannian manifolds are

studied in [10]. There is a characterization of orbits and orbit spaces of

connected cohomogeneity two flat Riemannian manifolds in the series of papers

[7, 8, 9]. In the present paper, we give similar results for some flat Lorentzian

G-manifolds. Properness of the actions on Riemannian manifolds, plays an

important role in the study of orbits and orbit spaces. In the semi-Riemannian
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case, this properness condition fails, so the situation is much more complicated.

There are some results about homogeneous flat Lorentzian manifolds in [13].

Also, there are some interesting algebraic results about cohomogeneity one

Lorentzian G-manifolds (see [1]). But characterization of orbits and orbit

spaces of Lorentzian G-manifolds of low cohomogeneity is in general an open

problem. In the Theorems 4, 5 and 6 of the present paper, we study the orbits

and orbit spaces of flat cohomogeneity k, k ¼ 1; 2; 3, Lorentzian G-manifolds

under some conditions on G.

2. Preliminaries

Throughout the following, M will denote a connected semi-Riemannian

manifold and we will write CohðG;MÞ ¼ k if M is of cohomogeneity k under

the action of a subgroup G of the isometry group IsoðMÞ. The fixed point set

of the action of G on M will be denoted by

MG ¼ fx A M : GðxÞ ¼ xg:

Collection of all orbits GnM ¼ fGðxÞ : x A Mg endowed with the quotient

topology is called the orbit space.

We will write A ¼ B if A and B are isomorphic groups or homeomorphic

topological spaces.

IsoRn will denote the isometry group of Rn under the scalar product

hðx1; . . . ; xnÞ; ðy1; . . . ; ynÞi ¼ x1 y1 þ � � � þ xn yn:

Lnþ1 will denote the Minkowsky space of dimension nþ 1, that is Rnþ1

endowed with the usual Lorentzian scalar product

hx; yi ¼ �x0 y0 þ
Xn

i¼1

xi yi; x ¼ ðx0; . . . ; xnÞ; y ¼ ðy0; . . . ; ynÞ:

Let SOðn; 1Þ be the special isometry group of Lnþ1. We denote by SO0ðn; 1Þ
the identity component of SOðn; 1Þ. Let G be a subgroup of the isometries

of Lnþ1. The action of G on Lnþ1 is said to be irreducible if G does not

leave invariant any proper subspace of Lnþ1 and the action is called weakly

irreducible if any G-invariant proper subspace has a degenerate induced metric.

Lemma 1 ([10]). Let G be a compact and connected subgroup of IsoðRnÞ
and CohðG;RnÞ ¼ 1. Then

GnRn ¼ ½0;þyÞ:

There is a unique zero dimensional orbit and the other orbits are isometric to

Sn�1ðrÞ, r > 0.
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Lemma 2. If G is a compact and connected subgroup of IsoðRnÞ such that

CohðG;RnÞ ¼ 2, then GnRn ¼ ½0;þyÞ � R and one of the following is true:

(1) ðRnÞG is a one point set and the orbits which are not zero dimensional

are homogeneous hypersurfaces of spheres.

(2) ðRnÞG is isometric to R and the orbits which are not zero dimensional

are isometric to Sn�2ðrÞ, r > 0.

Proof. (1) is proved in [9]. For (2) see the proof of Theorem 2 in [7].

r

Theorem 1 ([5]). If G is a connected subgroup of SOðn; 1Þ and the action

of G on Lnþ1 is irreducible then G ¼ SO0ðn; 1Þ.

Lemma 3. Let m, k be non-negative integers and G be a closed and

connected subgroup of SO0ðm; 1Þ �OðkÞ such that the projection of G on

SO0ðm; 1Þ acts irreducibly on Lmþ1. Then there is a closed and connected

subgroup H of OðkÞ such that G ¼ SO0ðm; 1Þ �H.

Proof. The proof is as like as the proof of Lemma 2.1 in [2], which we

rewrite for facility. We have GH fðg; hÞ : g A SOoðm; 1Þ; h A OðkÞg. Put

G1 ¼ fg : ðg; hÞ A G for some h A OðkÞg

and

H ¼ fh : ðg; hÞ A G for some g A SOoðm; 1Þg:

Since OðRkÞ is compact then G1 is isomorphic to the non-compact semi-

simple Levi factor of G, so there is a homomorphism r : G1 ! OðkÞ such that

fðg; rðgÞÞ : g A G1g is isomorphic to G1. But there is no non-trivial homo-

morphism from a non-compact semi-simple Lie group to a compact group, so

r must be trivial. Then G1 � fIgHG. But, the action of G1 on Lmþ1 is

irreducible. Then by Theorem 1, G1 ¼ SO0ðm; 1Þ and SO0ðm; 1Þ � fIgHG.

Now, it is easy to show that G ¼ SO0ðm; 1Þ �H. r

A vector v A Lnþ1 is called eigenvector for GHSOðn; 1Þ if v is eigenvector

for all g A G.

Remark 1. Let G be a connected subgroup of SOðn; 1Þ. If G does not

have null eigenvector, then by Theorem 1.3 in [5], there is a proper G-invariant

Lorentzian subspace in Lnþ1. Let m be the minimum non-negative integer

number with the property that there is a G-invariant ðmþ 1Þ-dimensional

Lorentzian subspace W of Lnþ1. The action of G on W is irreducible. It

is because, if not, then from minimality of m, the action must be weakly

irreducible, so there must be a null eigenvector.
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3. Results

Theorem 2. If G is a closed and connected subgroup of SOðn; 1Þ without

null eigenvector, then either G ¼ SO0ðn; 1Þ or there is a non-negative integer

m < n and a closed and connected subgroup H of the isometries of Rn�m such

that G ¼ SO0ðm; 1Þ �H.

Proof. If the action of G on Lnþ1 is irreducible then by Theorem 1,

G ¼ SO0ðn; 1Þ. Suppose that the action of G is not irreducible. Then by

Remark 1, there is a G-invariant Lorentzian vector subspace W of Lnþ1

such that the action of G on W is irreducible. Without lose of generality

we can assume that W ¼ Lmþ1, m < n. Consider Lnþ1 as the product

Lnþ1 ¼ Lmþ1 � Rn�m. Since G leaves invariant Lmþ1 and Rn�m then G can

be considered as a subgroup of SOoðm; 1Þ �Oðn�mÞ. Then, by Lemma 3,

there is a subgroup H of Oðn�mÞ such that G ¼ SO0ðm; 1Þ �H. r

Theorem 3. Let G be a closed and connected subgroup of SOðn; 1Þ, which
does not have null eigenvector and suppose that G acts by cohomogeneity k on

Lnþ1. Then, k > 0 and the following assertions are true:

(a) If k ¼ 1 then G ¼ SO0ðn; 1Þ.
(b) If k ¼ 2 then there is a non-negative integer m such that GnLnþ1 is

homeomorphic to SOm;1nLmþ1 � ½0;þyÞ.
(c) If k ¼ 3 then there is a non-negative integer m such that GnLnþ1 is

homeomorphic to SO0ðm; 1ÞnLmþ1 � ½0;þyÞ � R.

Proof. By Theorem 2, either G ¼ SO0ðn; 1Þ or there is a non-negative

integer m and a connected subgroup H of Oðn�mÞ such that GnLnþ1 ¼
SO0ðm; 1ÞnLmþ1 �HnRn�m. H is closed in Oðn�mÞ so it is compact. Since

the action of SO0ðm; 1Þ on Lmþ1 is of cohomogeneity one, then we get the

results from the Lemmas 1 and 2. r

Remark 2. If M is a semi-Riemannian manifold and G is a connected

subgroup of IsoðMÞ, and if ~MM is the universal semi-Riemannian covering mani-

fold of M with the covering map k : ~MM ! M, then there is a connected covering

ĜG of G such that ĜG acts isometrically on ~MM, CohðG;MÞ ¼ CohðĜG; ~MMÞ, and the

following assertions are true:

(1) Each deck transformation d of the covering k : ~MM ! M maps ĜG-orbits

on to ĜG-orbits.

(2) If x A M and ~xx A ~MM such that kð~xxÞ ¼ x, then kðĜGð~xxÞÞ ¼ GðxÞ.
(3) If G has a fixed point in M then ĜG ¼ G and ð ~MMÞG ¼ k�1ðMGÞ.
(4) Following (3), if G has only one fixed point then ~MM ¼ M.

Proof. The group ĜG can be defined in the same way in [4, page 63],

and the proofs of (1), (2) and (3) are as like as the proof of Theorem 9.1 in
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[4, page 64]. For the proof of (4) note that if x0 is a fixed point of G in M

then by (3), k�1ðx0Þ is a set consisting of fixed points of the action of ĜG on
~MM. By assumption of (4), k�1ðx0Þ must be a one point set. So, k is one to

one and ~MM ¼ M. r

If GH IsoðMÞ and g is a null curve in M such that GðgÞ ¼ g then g is

called a null G-curve.

Theorem 4. Let M be a flat Lorentzian manifold which is of cohomo-

geneity one under the action of a closed and connected Lie subgroup G of

isometries. Let us assume that there exists no null G-curve and MG 0q.

Then M ¼ Lnþ1 and G ¼ SO0ðn; 1Þ.

Proof. Lnþ1 is the universal covering of M. According to Remark 2,

let ĜG be the connected covering of G, which acts by cohomogeneity one on

Lnþ1. Since MG 0q then by Remark 2 (3), ðLnþ1ÞĜG 0q. Without lose

of generality we can assume that the origin of Lnþ1 is a fixed point of ĜG, so

ĜG can be considered as a connected subgroup of SO0ðn; 1Þ. Since there is

no null G-curve in M then ĜG does not have null eigenvector. The action of

ĜG on Lnþ1 is of cohomogeneity one. Then by Theorem 3 (a), ĜG ¼ SO0ðn; 1Þ
and k�1ðMGÞ is a one point set. So, by Remark 2 (4), M ¼ Lnþ1 and G ¼
ĜG ¼ SO0ðnþ 1Þ. r

Remark 3. Following Remark 2, if ~MMĜG is di¤eomorphic to R then

p1ðMÞ ¼ Z.

Proof. Let D be the deck transformation group related to the covering

map k : ~MM ! M. Each member of D maps ĜG-orbits of ~MM on to ĜG-orbits.

Thus, by dimensional reasons, if d A D then dð ~MMĜGÞ ¼ ~MMĜG. Then, D can be

viewed as a discrete subgroup of ðR;þÞ, so it is isomorphic to ðZ;þÞ. r

Theorem 5. Let M be a flat Lorentzian manifold which is of cohomo-

geneity two under the action of a closed and connected subgroup G of isometries

and let us assume that there exists no null G-curve and MG 0q. Then one of

the following is true:

(a) M ¼ Lnþ1 and there is a non-negative integer m < n and a connected

and closed subgroup H of SOðn�mÞ such that G ¼ SO0ðm; 1Þ �H. There

is one zero dimensional orbit and the other orbits are isometric to D or

D� Sn�m�1ðrÞ, where D is a SO0ðm; 1Þ-orbit in Lmþ1, r > 0.

(b) M ¼ ZnLnþ1. MG ¼ ZnR ¼ S1. The orbits which are not zero di-

mensional are covered by Sn�1ðrÞ, r > 0.

Proof. Following Remark 2, let ĜG be the connected covering of G

which acts by cohomogeneity two on Lnþ1, the universal covering of M. Since
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CohðĜG;Lnþ1Þ ¼ 2 then ĜG is not isomorphic to SO0ðn; 1Þ, so by Theorem 2,

there is a non-negative integer m and a closed and connected subgroup H of

Oðn�mÞ such that ĜG ¼ SO0ðm; 1Þ �H. Consider Lnþ1 as the product Lnþ1 ¼
Lmþ1 � Rn�m. Since the action of SOðm; 1Þ on Lmþ1 is of cohomogeneity one

then the action of H on Rn�m must be of cohomogeneity one. Now, consider

two cases m > 0 and m ¼ 0 separately.

If m > 0 then the origin of Lmþ1 is the unique fixed point of the action

of SO0ðm; 1Þ and by Lemma 1, the action of H on Rn�m has a unique fixed

point. So, ĜG has a unique fixed point in Lnþ1. Then by Remark 2 (4),

M ¼ Lnþ1 and G ¼ ĜG ¼ SO0ðmþ 1Þ �H. By Lemma 1, non-zero dimensional

H-orbits of Rn�m are isometric to Sn�m�1ðrÞ, r > 0. Thus we get part (a).

If m ¼ 0 then ĜG ¼ fIg �H, where I is the identity map on L1. Thus,

ðLnþ1ÞĜG is di¤eomorphic to R and by Remark 3, D ¼ Z. So M ¼ ZnLnþ1

and MG ¼ ZnR ¼ S1. By Remark 2 (3), G ¼ ĜG ¼ fIg �HFH. Thus, ĜG-

orbits are isometric to H-orbits, so by Lemma 1, G-orbits which are not zero

dimensional are covered by Sn�1ðrÞ, r > 0. This is part (b). r

Theorem 6. Let M be a flat Lorentzian manifold which is of cohomo-

geneity three under the action of a closed and connected subgroup G of isometries

and let us assume that there is no null G-orbit and MG 0q. Then one of the

following is true:

(a) M ¼ Lnþ1, there is a non-negative integer m such that the orbits of

positive dimension are isometric to D� E, where D is a SO0ðm; 1Þ-orbit in Lmþ1

and E is a homogeneous hypersurface of Sn�m�1ðrÞ, r > 0. MG is a one point

set.

(b) M ¼ ZnLnþ1, there is a non-negative integer m such that the orbits of

positive dimension are covered by D� Sn�m�2ðrÞ, where D is a SO0ðm; 1Þ-orbit
in Lmþ1. MG is di¤eomorphic to S1.

(c) M ¼ ZnLnþ1. Each orbit is covered by a homogeneous hypersurface

of Sn�1ðrÞ, r > 0, and MG ¼ S1.

(d) M ¼ DnLnþ1, where D is a discrete subgroup of the isometries of R2.

MG ¼ S1 � R or T 2, and positive dimensional orbits are covered by Sn�2ðrÞ,
r > 0.

Proof. In the same way as the proof of previous theorems, there is a

non-negative integer m such that M̂M ¼ Lnþ1 and ĜG ¼ SO0ðm; 1Þ �H, where

H is a connected and closed subgroup of SOðn�mÞ. Since the action of

SO0ðm; 1Þ on Lmþ1 is of cohomogeneity one then the action of H on Rn�m is of

cohomogeneity two. We study two cases m > 0 and m ¼ 0 separately.

Case 1: m > 0.

By Lemma 2, either ðRn�mÞH is a one point set or it is di¤eomorphic

to R. If ðRn�mÞH is a one point set then ðLnþ1ÞĜG must be a one point set,
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so by Remark 2, M ¼ Lnþ1 and G ¼ ĜG ¼ SO0ðm; 1Þ �H. By Lemma 2, all

H-orbits of Rn�m which have positive dimensions are included in spheres of

Rn�m. Then the G-orbits of positive dimension are isometric to the product

of SO0ðm; 1Þ-orbits of Lmþ1 and homogeneous hypersurfaces of Sn�m�1ðrÞ,
r > 0. This is part (a). If ðRn�mÞH is di¤eomorphic to R then ðLnþ1ÞG ¼
fog � RFR, so D ¼ Z and M ¼ ZnLnþ1 and MG ¼ ZnR ¼ S1. By Lemma

2, H-orbits of positive dimension in Rn�m are isometric to Sn�m�2ðrÞ, r > 0,

so G-orbits of positive dimension in M are covered by the product of

SO0ðm; 1Þ-orbits of Lmþ1 and the spheres Sn�m�2ðrÞ. Thus, we get part (b).

Case 2: m ¼ 0.

As like as the proof of Theorem 5, G ¼ fIg �H, where H is a closed

and connected subgroup of SOðnÞ. By Lemma 2, ðLnþ1ÞĜG ¼ R� fogFR or

ðLnþ1ÞĜG ¼ R� R ¼ R2. Since each d A D maps ĜG orbits on to ĜG-orbits then

by dimensional reasons DðLnþ1ÞĜG ¼ ðLnþ1ÞĜG. So, D can be considered as a

discrete group acting on R or R2. In the first case we get that M ¼ ZnLnþ1,

and positive dimensional orbits are covered by H-orbits of Rn which are

homogeneous hypersurfaces of Sn�1ðrÞ, r > 0. This is part (c). In the second

case, since D is a discrete subgroup of the isometries of R2. MG ¼ DnR2 ¼
S1 � R or MG ¼ T 2. G-orbits of positive dimension are covered by Sn�2ðrÞ,
r > 0. So, we get part (d). r
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