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Abstract. In our previous study, the author and Tamaru proved that a left-invariant

Riemannian metric on a three-dimensional simply-connected solvable Lie group is a

solvsoliton if and only if the corresponding submanifold is minimal. In this paper,

we study the minimality of the corresponding submanifolds to solvsolitons on four-

dimensional cases. In four-dimensional nilpotent cases, we prove that a left-invariant

Riemannian metric is a nilsoliton if and only if the corresponding submanifold is

minimal. On the other hand, there exists a four-dimensional simply-connected solvable

Lie group so that the above correspondence dose not hold. More precisely, there exists

a solvsoliton whose corresponding submanifold is not minimal, and a left-invariant

Riemannian metric which is not solvsoliton and whose corresponding submanifold is

minimal.

1. Introduction

A left-invariant Riemannian metric h ; i on a simply-connected solvable

Lie group G is called a solvsoliton if the following holds for some c A R and

D A DerðgÞ:

Rich ;i ¼ cI þD:

Here Rich ;i is the Ricci operator of h ; i, g is the Lie algebra of G, and DerðgÞ
is the algebra of derivations of g. When G is nilpotent, a solvsoliton on G

is called a nilsoliton. Solvsolitons have been introduced by Lauret [9, 14].

Solvsolitons have been studied very actively and played a key role in the

study of homogeneous Ricci solitons (See, for instance, [4, 5, 6, 7, 9, 12, 13, 14,

15, 18, 19]). In particular, every solvsoliton on a simply-connected solvable

Lie group is a Ricci soliton ([14]), and every left-invariant Ricci soliton on a

solvable Lie group is isometric to a solvsoliton ([7]).
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Let n be the dimension of G. Note that the set of all left-invariant

Riemannian metrics on G can be naturally identify with the set of all inner

products on g. We define

~MM :¼ fh ; i j an inner product on ggGGLnðRÞ=OðnÞ; ð1:1Þ

and an equivalence relation ‘‘isometric up to scaling’’ on ~MM. For any inner

product, we call its equivalence class the corresponding submanifold. As we see

in Section 2, the corresponding submanifolds are R� AutðgÞ-homogeneous sub-

manifolds of the noncompact Riemannian symmetric space GLnðRÞ=OðnÞ.
Since solvsolitons are preserved by the action of R� AutðgÞ, it would be

natural to ask the following question.

Question 1. Is it possible to characterize solvsolitons by properties of the

corresponding submanifolds?

The author and Tamaru ([4]) proved that the answer to Question 1 is

a‰rmative in the case of three-dimensional simply-connected solvable Lie

groups. More precisely, we proved that a left-invariant Riemannian metric

on a three-dimensional simply-connected solvable Lie group is a solvsoliton if

and only if the corresponding submanifold is minimal. This result makes us

interested in the minimality of the corresponding submanifolds.

The aim of this paper is to study the following question:

Question 2. Is it true that a left-invariant Riemannian metric is a

solvsoliton if and only if the corresponding submanifold is minimal?

In this paper, we examine the minimality of the corresponding submani-

folds to solvsolitons on four-dimensional simply-connected solvable Lie groups.

As a result, we show that the answer to Question 2 is a‰rmative in four-

dimensional nilpotent cases.

Theorem 1.1. A left-invariant Riemannian metric on a four-dimensional

simply-connected nilpotent Lie group is a nilsoliton if and only if the corre-

sponding submanifold is minimal.

On the other hand, we construct examples which show that the answer to

Question 2 is negative in general.

Theorem 1.2. There exists a four-dimensional simply-connected solvable

Lie group G which satisfies the following:

(1) There exists a left-invariant Riemannian metric on G such that it is not

a solvsoliton, and the corresponding submanifold is minimal.

(2) There exists a left-invariant Riemannian metric on G such that it is a

solvsoliton, and the corresponding submanifold is not minimal.
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However we know many examples so that the corresponding submanifold

to a solvsoliton is minimal. For example, in four-dimensional cases, if the

nilradical is abelian, then the corresponding submanifold to a solvsoliton is

minimal. We expect that Question 2 has a positive answer under certain

additional conditions, which will be studied in the forthcoming papers.

The contents of this paper is as follows. In Section 2, we recall the notion

of the corresponding submanifolds to left-invariant Riemannian metrics, and

some necessary facts on reductive homogeneous spaces. In Sections 3 and 4,

we prove Theorems 1.1 and 1.2 respectively.

The author wishes to express his thanks to Hiroshi Tamaru for valuable

comments and discussions. The author would like to thank Yoshio Agaoka,

Kazuhiro Shibuya, Akira Kubo and Yuichiro Taketomi for useful comments

and some discussions. The author is also grateful to Christopher Khoshaba

for useful comments. Finally, the author would like to thank the referee for

valuable comments and helpful suggestions.

2. Preliminaries

We recall the notion of the corresponding submanifolds in Subsection 2.1.

In Subsection 2.2, we also recall some necessary facts on reductive homoge-

neous spaces which we need to study the minimality of the corresponding

submanifolds.

2.1. The corresponding submanifolds. In this subsection, we recall the notion

of the corresponding submanifolds to left-invariant Riemannian metrics. For

details we refer to [4, 8].

First of all, we recall the space of left-invariant Riemannian metrics, which

will be the ambient space of the corresponding submanifolds. Let G be an

n-dimensional simply-connected Lie group and g be the Lie algebra of G. We

consider the set of all left-invariant Riemannian metrics on G, which can

naturally be identified with

~MM :¼ fh ; i j an inner product on gg:

We identify g with Rn from now on. Then, since GLnðRÞ acts transitively on
~MM by

g:h� ; �i :¼ hg�1�; g�1 � i ðfor g A GLnðRÞ; h ; i A ~MMÞ;

we have an identification

~MM ¼ GLnðRÞ=OðnÞ:
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Note that ~MM equipped with the natural GLnðRÞ-invariant Riemannian

metric is a noncompact Riemannian symmetric space. In order to describe

this natural metric, we recall a general theory of reductive homogeneous

spaces. Let U=K be a reductive homogeneous space, that is, there exists an

AdK -invariant subspace m of u satisfying

u ¼ klm: ð2:1Þ

Note that u and k are the Lie algebras of U and K , respectively, and l denotes

the direct sum as vector spaces. The decomposition (2.1) is called a reductive

decomposition. Let us denote by p : U ! U=K the natural projection, and by

o :¼ pðeÞ the origin of U=K . We identify m with the tangent space ToðU=KÞ
at o by the isomorphism

dpejm : m ! ToðU=KÞ:

This identification induces a one-to-one correspondence between the set of

U-invariant Riemannian metrics on U=K and the set of AdK -invariant inner

products on m.

Now one can see that ~MM ¼ GLnðRÞ=OðnÞ is a reductive homogeneous

space, whose reductive decomposition is given by the subspace

symðnÞ :¼ fX A glnðRÞ jX ¼ tXg:

Here glnðRÞ is the Lie algebra of GLnðRÞ. We define the AdOðnÞ-invariant

inner product on symðnÞ by

hX ;Yi :¼ trðXY Þ ðfor X ;Y A symðnÞÞ:

We call the GLnðRÞ-invariant Riemannian metric corresponding to the above

AdOðnÞ-invariant inner product the natural Riemannian metric.

Next, we recall the notion of ‘‘isometric up to scaling’’ on ~MM. This gives

an equivalence relation on ~MM.

Definition 2.1. Two inner products h ; i1 and h ; i2 on g are said to be

isometric up to scaling if there exist k > 0 and an automorphism j : g ! g such

that h� ; �i1 ¼ khjð�Þ; jð�Þi2.

Note that above equivalence relation gives the equivalence relation of

left-invariant Riemannian metrics on Lie groups. Assume that inner products

h ; i1 and h ; i2 on g are isometric up to scaling. Then, the corresponding left-

invariant Riemannian metrics on G are isometric up to scaling as Riemannian

metrics.

Definition 2.2. For each inner product h ; i on g, we call its equivalence

class ½h ; i� the corresponding submanifold to h ; i.
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Note that

½h ; i� :¼ fh ; i 0 A ~MM j h ; i 0 @ h ; ig;

where h ; i 0 @ h ; i means that h ; i 0 and h ; i are isometric up to scaling. Let

us denote by

R� :¼ fc � id : g ! g j c A Rnf0gg;

AutðgÞ :¼ fj : g ! g j an automorphismg:

Then, the subgroup R� AutðgÞ of GLnðRÞ acts naturally on ~MM. Let us denote

by R� AutðgÞ:h ; i the R� AutðgÞ-orbit through h ; i.

Proposition 2.3 ([8], Theorem 2.5). Let h ; i be an inner product on g.

Then, the corresponding submanifold ½h ; i� is a homogeneous submanifold with

respect to R� AutðgÞ, that is,

½h ; i� ¼ R� AutðgÞ:h ; i:

Next we recall the ‘‘moduli space’’ PM. We need PM to examine the

minimality of the corresponding submanifolds.

Definition 2.4. For a Lie algebra g, the quotient space of ~MM by the

equivalence relation in Definition 2.1 is called the moduli space of left-invariant

Riemannian metrics on g, and denoted by

PM :¼ f½h ; i� j h ; i A ~MMg:

To determine PM explicitly, we will use the following expression as a

double coset space.

Proposition 2.5 ([8], Theorem 2.5). If dim g ¼ n, then we have

PM ¼ R� AutðgÞnGLnðRÞ=OðnÞ:

Let ½½g�� denote the double coset of g A GLnðRÞ, that is,

½½g�� :¼ R� AutðgÞ � g �OðnÞ:

Denote by h ; i0 A ~MM ¼ GLnðRÞ=OðnÞ the origin. Then, the map

R� AutðgÞnGLnðRÞ=OðnÞ ! PM : ½½g�� 7! ½g:h ; i0�;

gives a bijection.

A subset UHGLnðRÞ is called a system of representatives of PM if

PM ¼ f½g:h ; i0� j g A Ug:

One can easily see the following.
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Lemma 2.6. Let g be an n-dimensional Lie algebra. Then UHGLnðRÞ is

a system of representatives of PM if and only if for each g A GLnðRÞ, there

exists g 0 A U such that g 0 A ½½g��.

2.2. Standard facts on reductive homogeneous spaces. In this subsection, we

review some of the standard facts on reductive homogeneous spaces and their

homogeneous submanifolds. We refer to [1, 3].

Let U=K be a reductive homogeneous space with a reductive decompo-

sition

u ¼ klm:

Recall that m is identified with the tangent space ToðU=KÞ. In the following,

we equip a U-invariant Riemannian metric g on U=K .

We here recall a formula for the Levi-Civita connection ‘ of g. For any

X A u, we define the fundamental vector field X � on U=K by

X �
p ¼ d

dt
ðexp tXÞ:pjt¼0 ðfor p A U=KÞ:

Let X ;Y ;Z A u. Then one knows (see [3]):

X �
o ¼ dpeðX Þ;

½X �;Y �� ¼ �½X ;Y ��;

2gð‘X �Y �;Z�Þ ¼ gð½X �;Y ��;Z �Þ þ gð½X �;Z ��;Y �Þ þ gðX �; ½Y �;Z ��Þ:

ð2:2Þ

We now consider homogeneous submanifolds in ðU=K; gÞ. Let U 0 be a Lie

subgroup of U , and consider the orbit U 0:o through the origin o. Let u 0 be

the Lie algebra of U 0, and denote by h ; i the inner product on m correspond-

ing to g. We define

m 0 :¼ dpeðu 0ÞGToðU 0:oÞ:

Denote by mmm 0 the orthogonal complement of m 0 in m with respect to

h ; i. Then, the second fundamental form h : m 0 �m 0 ! mmm 0 of U 0:o at o

is defined by

hðX �
o ;Y

�
o Þ :¼ ð‘X �Y � � ‘ 0

X �Y
�Þo ðfor X ;Y A u 0Þ;

where ‘ 0 is the Levi-Civita connection of U 0:o with respect to the induced

metric. Take Z A u satisfying Z �
o A mmm 0. From (2.2), one obtains

2hhðX �
o ;Y

�
o Þ;Z �

oi ¼ h½Z;X ��o ;Y �
o iþ hX �

o ; ½Z;Y ��oi: ð2:3Þ
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The mean curvature vector of U 0:o at o is defined by

H :¼ �ð1=kÞ trðhÞ ¼ �ð1=kÞ
X

hðE 0
i ;E

0
i Þ;

where fE 0
i g is an orthonormal basis of m 0, and k is the dimension of U 0:o.

We call U 0:o minimal if its mean curvature vector H is equal to zero. Note

that we also call U 0:o minimal when the codimension of U 0:o is equal to

zero. Let lð0 0Þ be the codimension of U 0:o, and fx 0
1; . . . ; x

0
lg be the basis of

mmm 0. Then U 0:o is minimal if and only if

X
hhðE 0

i ;E
0
i Þ; x 0

ji ¼ 0 ð2:4Þ

for each j ¼ 1; . . . ; l.

3. Four-dimensional nilsolitons

Our goal of this section is to prove Theorem 1.1. We first recall that all

four-dimensional simply-connected nilpotent Lie groups admit nilsolitons ([10]).

After that we examine the minimality of the corresponding submanifold to each

left-invariant Riemannian metric.

We discuss solvsolitons in the Lie algebra. First of all, let us recall the

definition of a solvsoliton.

Definition 3.1. An inner product h ; i on a solvable Lie algebra g is

called a solvsoliton if the Ricci operator satisfies

Rich ;i ¼ cI þD ðfor some c A R and D A DerðgÞÞ:

If g is nilpotent, then a solvsoliton on g is called a nilsoliton. We also

recall a classification of four-dimensional nilpotent Lie algebras.

Proposition 3.2 ([16]). Let g be a four-dimensional nilpotent real Lie

algebra. Then g is isomorphic to one of the following Lie algebras:
� R4, an abelian Lie algebra,
� h3 lR :¼ spanfe1; . . . ; e4 j ½e1; e2� ¼ e3g,
� n4 :¼ spanfe1; . . . ; e4 j ½e1; e2� ¼ e3; ½e1; e3� ¼ e4g.

Note that h3 ¼ spanfe1; e2; e3 j ½e1; e2� ¼ e3g is the Heisenberg Lie algebra.

In the abelian case, it is well known that there exists only one left-invariant

Riemannian metric up to isometry and scaling, which is flat. Furthermore the

corresponding submanifold coincides with the ambient space ~MM, which is

minimal.
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For g ¼ h3 lR or n4, let us denote by h ; i0 the inner product on g so that

the above basis fe1; . . . ; e4g is orthonormal. By Lauret, nilsolitons on four-

dimensional Lie algebras have been classified.

Proposition 3.3 ([10]). Let g ¼ h3 lR or n4, and h ; i be an inner

product on g. Then the inner product h ; i is a nilsoliton if and only if

h ; i A ½h ; i0�.

Proposition 3.3 follows from the arguments about N4 in [10, Section 5].

Note that N4 is the set of all nilpotent Lie brackets on a four-dimensional real

vector space. We also refer to [19, Table 2], a classification table of nilsolitons

in four-dimensional cases.

Next we study the minimality of the corresponding submanifolds to

nilsolitons on h3 lR and n4. In the case of g ¼ h3 lR, it is known that

PM ¼ fptg ([8, 11]). Then the corresponding submanifold ½h ; i0� coincides

with the ambient space ~MM, which is minimal.

Therefore we only need to consider the case of g ¼ n4. We first calculate

DerðgÞ and AutðgÞ. Recall that they are defined by

DerðgÞ ¼ fD A glðgÞ jD½� ; �� ¼ ½Dð�Þ; �� þ ½�;Dð�Þ�g;

AutðgÞ ¼ fj A GLðgÞ j j½� ; �� ¼ ½jð�Þ; jð�Þ�g:

By direct calculations, one can obtain matrix expressions of Derðn4Þ and

Autðn4Þ with respect to the basis fe1; . . . ; e4g as follows:

Derðn4Þ ¼

x11 0 0 0

x21 x22 0 0

x31 x43 x11 þ x22 0

x41 x42 x43 2x11 þ x22

0
BBB@

1
CCCA

8>>><
>>>:

9>>>=
>>>;
;

Autðn4Þ ¼

x11 0 0 0

x21 x22 0 0

x31 x32 x11x22 0

x41 x42 x11x32 x2
11x22

0
BBB@

1
CCCA

���������
x11; x22 0 0

8>>><
>>>:

9>>>=
>>>;
: ð3:1Þ

Lemma 3.4. Let g ¼ n4, Then the following U is a system of representatives

of PM:

U ¼ gðl1;l2Þ ¼

1 0 0 0

0 l1 0 0

0 0 1 0

0 0 l2 1

0
BBB@

1
CCCA

���������
l1 > 0; l2 A R

8>>><
>>>:

9>>>=
>>>;
:
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Proof. Take any g A GL4ðRÞ. By Lemma 2.6, we only need to show

that

bgðl1;l2Þ A U : gðl1;l2Þ A ½½g��:

First of all, there exists k A Oð4Þ such that

gk ¼

a1 0 0 0

a2 a3 0 0

a4 a5 a6 0

a7 a8 a9 a10

0
BBB@

1
CCCA; a1; a3; a6; a10 > 0:

By (3.1), one has

j1 ¼

1 0 0 0

�a2=a1 1 0 0

�a4=a1 0 1 0

ða2a8 � a3a7Þ=ða1a3Þ �a8=a3 0 1

0
BBB@

1
CCCA A Autðn4Þ:

This yields that

½½g�� C j1gk ¼

a1 0 0 0

0 a3 0 0

0 a5 a6 0

0 0 a9 a10

0
BBB@

1
CCCA:

By (3.1), one can take

j2 ¼ a10=ða1a6Þ

a6=a10 0 0 0

0 a1=a6 0 0

0 0 a1=a10 0

0 0 0 a1a6=a
2
10

0
BBB@

1
CCCA A R� Autðn4Þ:

This yields that

½½g�� C j2j1gk ¼

1 0 0 0

0 ða3a10Þ=a26 0 0

0 a5=a6 1 0

0 0 a9=a10 1

0
BBB@

1
CCCA:

By (3.1), one has

j3 ¼

1 0 0 0

0 1 0 0

0 �ða5a6Þ=ða3a10Þ 1 0

0 ða25a26Þ=ða23a210Þ �ða5a6Þ=ða3a10Þ 1

0
BBB@

1
CCCA A Autðn4Þ:
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This gives

½½g�� C j3j2j1gk ¼

1 0 0 0

0 ða3a10Þ=a26 0 0

0 0 1 0

0 0 a 0
9 1

0
BBB@

1
CCCA:

By putting l1 :¼ ða3a10Þ=a26 > 0, and l2 :¼ a 0
9, we complete the proof. r

Proposition 3.5. Let g ¼ n4. Then R� Autðn4Þ:h ; i0 is the unique min-

imal orbit.

Proof. Take any h ; i. By Lemma 3.4, there exist l1 > 0, and l2 A R

such that

R� Autðn4Þ:h ; i ¼ R� Autðn4Þ:ðgðl1;l2Þ:h ; i0Þ:

Let us define

U 0 :¼ g�1
ðl1;l2ÞðR

� Autðn4ÞÞgðl1;l2Þ:

Then, since g�1
ðl1;l2Þ gives an isometry of the space ~MM, one has an isometric

congruence

R� Autðn4Þ:ðgðl1;l2Þ:h ; i0ÞGU 0:h ; i0:

Hence we have only to study U 0:h ; i0. Let u 0 be the Lie algebra of U 0. By

the expression of RlDerðn4Þ, one can directly calculate

u 0 ¼ g�1
ðl1;l2ÞðRlDerðn4ÞÞgðl1;l2Þ

¼

rþ x11 0 0 0

ð1=l1Þx21 rþ x22 0 0

x31 l1x43 rþ x11 þ x22 0

�l2x31 þ x41 l1ð�l2x43 þ x42Þ l2x11 þ x43 rþ 2x11 þ x22

0
BBB@

1
CCCA

8>>><
>>>:

9>>>=
>>>;

¼

r 0 0 0 0

x 0
21 �x11 þ x 0

22 0 0

x31 l1x43 x 0
22 0

x 0
41 x 0

42 l2x11 þ x43 x11 þ x 0
22

0
BBB@

1
CCCA

8>>><
>>>:

9>>>=
>>>;
:

Let us denote by Eij the matrix whose ði; jÞ-entry is 1 and others are 0. It is

easy to see that fE1; . . . ;E8g given by the following is a basis of u 0:

E1 :¼ E11; E2 :¼ E22 þ E33 þ E44; E3 :¼ E21;

E4 :¼ E31; E5 :¼ E41; E6 :¼ E42;

E7 :¼ l1E32 þ E43; E8 :¼ �E22 þ l2E43 þ E44:

ð3:2Þ
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Let us put

E 0
i :¼ ðEiÞ�o ¼ ð1=2ÞðEi þ tEiÞ ði ¼ 1; . . . ; 8Þ:

Then fE 0
1; . . . ;E

0
8g is a basis of m 0 :¼ dpeðu 0Þ ¼ fð1=2ÞðX þ tXÞ jX A u 0g. We

also define

x1 :¼ �E22 þ 2E33 � E44;

x2 :¼ l1l2ðE22 � E44Þ � 4E32 þ 4l1E43;

and put

x 0
j :¼ ðxjÞ�0 ¼ ð1=2Þðxj þ txiÞ ð j ¼ 1; 2Þ:

As mentioned in Section 2, the inner product on m :¼ symðnÞ is given

by

hX ;Yi :¼ trðXY Þ ðfor X ;Y A mÞ:

Hence, one can see that fx 0
1; x

0
2g is a basis of mmm 0. Here we take an

orthonormal basis of m 0. Let us put

X1 :¼ E1; X2 :¼ ð1=
ffiffiffi
3

p
ÞE2; X3 :¼

ffiffiffi
2

p
E3; X4 :¼

ffiffiffi
2

p
E4;

X5 :¼
ffiffiffi
2

p
E5; X6 :¼

ffiffiffi
2

p
E6; X7 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1þ l21Þ

q
E7;

X8 :¼ Tð�ðl2=ð1þ l21ÞÞE7 þ E8Þ;

where T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ l21Þ=ðl

2
1l

2
2 þ 4ð1þ l21ÞÞ

q
. Furthermore we also put

X 0
i :¼ ðXiÞ�o ¼ ð1=2ÞðXi þ tXiÞ ði ¼ 1; . . . ; 8Þ:

Since

hE 0
7;E

0
7i ¼ ð1þ l21Þ=2; hE 0

7;E
0
8i ¼ l2=2; hE 0

8;E
0
8i ¼ ð4þ l22Þ=2;

one can see that fX 0
1; . . . ;X

0
8g is an orthonormal basis of m 0.

We show that U 0:h ; i0 is minimal if and only if ðl1; l2Þ ¼ ð1; 0Þ. By (2.4),

U 0:h ; i0 is minimal if and only if

P
hhðX 0

i ;X
0
i Þ; x 0

1i ¼ 0;P
hhðX 0

i ;X
0
i Þ; x 0

2i ¼ 0:

�

Our first claim is that

X
hhðX 0

i ;X
0
i Þ; x

0
1i ¼ 0 if and only if l1 ¼ 1: ð3:3Þ
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We calculate
P

hhðX 0
i ;X

0
i Þ; x

0
1i. By direct calculations, one has

½x1;E7� ¼ 3ðl1E32 � E43Þ; ½x1;E8� ¼ �3l2E43:

Then, we obtain the bracket products ½x1;Xi� as follows:

½x1;X3� ¼ �X3; ½x1;X4� ¼ 2X4; ½x1;X5� ¼ �X5;

½x1;X7� ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1þ l21Þ

q
ðl1E32 � E43Þ;

½x1;X8� ¼ ð�3l1l2T=ð1þ l21ÞÞðE32 þ l1E43Þ;

and others are equal to zero. These yield that

h½x1;X3��o ; ðX3Þ�oi ¼ h�X 0
3;X

0
3i ¼ �1;

h½x1;X4��o ; ðX4Þ�oi ¼ h2X 0
4;X

0
4i ¼ 2;

h½x1;X5��o ; ðX5Þ�oi ¼ h�X 0
5;X

0
5i ¼ �1;

h½x1;X7��o ; ðX7Þ�oi ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1þ l21Þ

q
hl1ðE32Þ�o � ðE43Þ�o ;X 0

7i

¼ 3ðl21 � 1Þ=ð1þ l21Þ;

h½x1;X8��o ; ðX8Þ�oi ¼ ð�3l1l2T=ð1þ l21ÞÞhðE32Þ�o þ l1ðE43Þ�o ;X 0
8i

¼ �3l21l
2
2ðl

2
1 � 1Þ=ðð1þ l21Þðl

2
1l

2
2 þ 4ð1þ l21ÞÞÞ:

Therefore, by (2.3), we obtain

X
hhðX 0

i ;X
0
i Þ; x

0
1i ¼ 12ðl21 � 1Þ

l21l
2
2 þ 4ð1þ l21Þ

:

Since l1 > 0, this yields our first claim (3.3).

Our second claim is, under the assumption l1 ¼ 1, that

X
hhðX 0

i ;X
0
i Þ; x

0
2i ¼ 0 if and only if l2 ¼ 0: ð3:4Þ

From now on we assume l1 ¼ 1. Then, note that

X7 ¼ E7 ¼ E32 þ E43;

X8 ¼ 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 þ 8

q
ðð�l2=2ÞE7 þ E8Þ;

x2 ¼ l2ðE22 � E44Þ � 4E32 þ 4E43:

We calculate
P

hhðX 0
i ;X

0
i Þ; x 0

2i. By direct calculations, we have
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½x2;X3� ¼ l2X3 � 4X4; ½x2;X4� ¼ 4X5;

½x2;X5� ¼ �l2X5; ½x2;X6� ¼ �2l2X6;

½x2;X7� ¼ 8E6 � l2E7 ¼ 4
ffiffiffi
2

p
X6 � l2X7;

½x2;X8� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 þ 8

q
ðE32 � E43Þ;

and others are equal to zero. These yield that

h½x2;X3��o ; ðX3Þ�oi ¼ hl2X
0
3 � 4X 0

4;X
0
3i ¼ l2;

h½x2;X4��o ; ðX4Þ�oi ¼ h4X 0
5;X

0
4i ¼ 0;

h½x2;X5��o ; ðX5Þ�oi ¼ h�l2X
0
5;X

0
5i ¼ �l2;

h½x2;X6��o ; ðX6Þ�oi ¼ h�2l2X
0
6;X

0
6i ¼ �2l2;

h½x2;X7��o ; ðX7Þ�oi ¼ h4
ffiffiffi
2

p
X 0

6 � l2X
0
7 ;X

0
7i ¼ �l2;

h½x2;X8��o ; ðX8Þ�oi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 þ 8

q
hðE32Þ�o � ðE43Þ�o ;X 0

8i

¼ 2hðE32Þ�o � ðE43Þ�o ; ð�l2=2ÞE 0
7 þ E 0

8i ¼ �l2:

We thus obtain
P

hhðX 0
i ;X

0
i Þ; x 0

2i ¼ �4l2. This yields our second claim (3.4).

This completes the proof of (2). r

By (3.2), all orbits of the action of R� Autðn4Þ have dimension eight.

Hence this action is of cohomogeneity two, and has no singular orbits.

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Let us consider the four-

dimensional solvable Lie algebra

s4 :¼ spanfe1; . . . ; e4 j ½e1; e2� ¼ e2; ½e1; e3� ¼ �e3; ½e2; e3� ¼ e4g:

We will write h ; i0 the inner product on s4 so that the above basis is

orthonormal.

We first study Derðs4Þ and Autðs4Þ with respect to the above basis

fe1; . . . ; e4g. By direct calculations, we have

Derðs4Þ ¼

0 0 0 0

�x43 x22 0 0

�x42 0 x33 0

x41 x42 x43 x22 þ x33

0
BBB@

1
CCCA

8>>><
>>>:

9>>>=
>>>;
; ð4:1Þ

185On the minimality of the corresponding submanifolds



Autðs4ÞI

1 0 0 0

x21 x22 0 0

x31 0 x33 0

x41 �x31x22 �x21x33 x22x33

0
BBB@

1
CCCA

���������
x22; x33 0 0

8>>><
>>>:

9>>>=
>>>;
: ð4:2Þ

Proposition 4.1. Let g ¼ s4, Then the following U is a system of

representatives of PM:

U ¼ gðl1;l2;l3;l4Þ ¼

l1 0 0 0

0 1 0 0

0 l2 1 0

0 l3 l4 1

0
BBB@

1
CCCA

���������
l1 > 0; l2; l3; l4 A R

8>>><
>>>:

9>>>=
>>>;
:

Proof. Take any g A GL4ðRÞ. By Lemma 2.6, we only need to show

that

bgðl1;l2;l3;l4Þ A U : gðl1;l2;l3;l4Þ A ½½g��:

One knows there exists k A Oð4Þ such that

gk ¼

a1 0 0 0

a2 a3 0 0

a4 a5 a6 0

a7 a8 a9 a10

0
BBB@

1
CCCA; a1; a3; a6; a10 > 0:

By (4.2), we can take

j1 ¼

1 0 0 0

�a2=a1 1 0 0

�a4=a1 0 1 0

A a4=a1 a2=a1 1

0
BBB@

1
CCCA A Autðs4Þ;

where A ¼ ð�a1a7 � 2a2a4Þ=a21 . This yields that

½½g�� C j1gk ¼

a1 0 0 0

0 a3 0 0

0 a5 a6 0

0 a 0
8 a 0

9 a10

0
BBB@

1
CCCA:

Furthermore, from (4.2), one can take

j2 ¼ a10=ða3a6Þ

1 0 0 0
0 a6=a10 0 0

0 0 a3=a10 0

0 0 0 ða3a6Þ=a210

0
BBB@

1
CCCA A R� Autðs4Þ:
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This gives us that

½½g�� C j2j1gk ¼

ða1a10Þ=ða3a6Þ 0 0 0

0 1 0 0

0 a5=a6 1 0

0 a 0
8=a10 a 0

9=a10 1

0
BBB@

1
CCCA:

By putting l1 :¼ ða1a10Þ=ða3a6Þ > 0, l2 ¼ a5=a6, l3 ¼ a 0
8=a10, and l4 ¼ a 0

9=a10,

we complete the proof. r

By Lauret [14], solvsolitons on four-dimensional simply-connected solv-

able Lie groups have been classified, and it is known that s4 admits a

solvsoliton.

Proposition 4.2. An inner product h ; i on s4 is a solvsoliton if and only if

½h ; i� ¼ ½gð ffiffi
3

p
=2;0;0;0Þ:h ; i0�.

Proof. It has been proved by Lauret that a given solvable Lie algebra can

admit at most one solvsoliton up to isometry and scaling ([14, Theorem 5.1]).

Hence it is su‰cient to show that gð
ffiffi
3

p
=2;0;0;0Þ:h ; i0 is a solvsoliton. Here,

recall that gð
ffiffi
3

p
=2;0;0;0Þ:h ; i0 is an inner product so that fð

ffiffiffi
3

p
=2Þe1; e2; e3; e4g is

orthonormal. Note that the nilradical of s4 coincides with the Heisenberg

Lie algebra h3 ¼ spanfe2; e3; e4g, and s4 ¼ Re1 l h3 is the orthogonal decom-

position with respect to gð
ffiffi
3

p
=2;0;0;0Þ:h ; i0. Then, by Lauret’s theorem ([14,

Theorem 4.8]), we only need to show that gð
ffiffi
3

p
=2;0;0;0Þ:h ; i0 satisfies the

following conditions:

(1) (h3; gð
ffiffi
3

p
=2;0;0;0Þ:h ; i0jh3�h3

) is a nilsoliton with Ricci operator Ric ¼
cI þD, for some c < 0 and D A Derðh3Þ.

(2) ½e1; e1� ¼ 0.

(3) tðad e1Þ A Derðs4Þ.
(4) gð

ffiffi
3

p
=2;0;0;0Þ:he1; e1i0 ¼ �ð1=cÞ trfð1=2Þðad e1 þ tðad e1ÞÞg2.

By direct calculations, we obtain that gð
ffiffi
3

p
=2;0;0;0Þ:h ; i0jh3�h3

is a nilsoliton on h3
with c ¼ �3=2, namely Condition (1) holds. It is obvious that Conditions (2)

and (3) hold. By direct calculations, we obtain Condition (4). r

To prove Theorem 1.2, we consider gðt;0;0;0Þ:h ; i0 for t > 0, which is a

curve through h ; i0 and gð
ffiffi
3

p
=2;0;0;0Þ:h ; i0.

Proposition 4.3. Let g ¼ s4, and t > 0. Then ½gðt;0;0;0Þ:h ; i0� is minimal

if and only if t ¼ 1.

Proof. Let us define

U 0 :¼ g�1
ðt;0;0;0ÞðR� Autðs4ÞÞgðt;0;0;0Þ:
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Then, since g�1
ðt;0;0;0Þ gives an isometry, we have an isometric congruence

½gðt;0;0;0Þ:h ; i0� ¼ R� Autðs4Þ:ðgðt;0;0;0Þ:h ; i0ÞGU 0:h ; i0:

Hence we have only to study U 0:h ; i0. Let u 0 be the Lie algebra of U 0. By

(4.1), we have

u 0 :¼

r 0 0 0

�tx43 rþ x22 0 0

�tx42 0 rþ x33 0

tx41 x42 x43 rþ x22 þ x33

0
BBB@

1
CCCA

8>>><
>>>:

9>>>=
>>>;
:

We take a basis fX1; . . . ;X6g of u 0 as follows:

X1 :¼ ð1=2ÞðE11 þ E22 þ E33 þ E44Þ; X2 :¼ ð1=2ÞðE11 þ E22 � E33 � E44Þ;

X3 :¼ ð1=2ÞðE11 � E22 þ E33 � E44Þ; X4 :¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðt2 þ 1Þ

q
Þð�tE21 þ E43Þ;

X5 :¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðt2 þ 1Þ

q
Þð�tE31 þ E42Þ; X6 :¼

ffiffiffi
2

p
E41:

Let us put

X 0
i :¼ ðXiÞ�o ¼ ð1=2ÞðXi þ tXiÞ ði ¼ 1; . . . ; 6Þ:

Then fX 0
1; . . . ;X

0
6g is an orthonormal basis of m 0 ¼ dpeðu 0Þ. Furthermore we

take

x1 :¼ E11 � E22 � E33 þ E44; x2 :¼ E21 þ tE43;

x3 :¼ E31 þ tE42; x4 :¼ E32;

and put

x 0
j :¼ ðxjÞ�o ¼ ð1=2Þðxj þ txjÞ ð j ¼ 1; . . . ; 4Þ:

Then fx 0
1; . . . ; x

0
4g is a basis of mmm 0.

We prove that ½gðt;0;0;0Þ:h ; i0� is minimal if and only if t ¼ 1. By (2.4),

recall that ½gðt;0;0;0Þ:h ; i0� is minimal if and only if

X
hhðX 0

i ;X
0
i Þ; x

0
ji ¼ 0

for each j ¼ 1; . . . ; 4.

Our claim is

X
hhðX 0

i ;X
0
i Þ; x

0
1i ¼ 0 if and only if t ¼ 1: ð4:3Þ
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We calculate
P

hhðX 0
i ;X

0
i Þ; x

0
1i. By direct calculations, we have

½x1;X4� ¼ ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðt2 þ 1Þ

q
ÞðtE21 þ E43Þ;

½x1;X5� ¼ ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðt2 þ 1Þ

q
ÞðtE31 þ E42Þ;

and others are equal to zero. Therefore, we have

h½x1;X4��o ; ðX4Þ�oi ¼ ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðt2 þ 1Þ

q
ÞhtðE21Þ�o þ ðE43Þ�o ;X 0

4i

¼ 2ð1� t2Þ=ð1þ t2Þ;

h½x1;X5��o ; ðX5Þ�oi ¼ ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðt2 þ 1Þ

q
ÞhtðE31Þ�o þ ðE42Þ�o ;X 0

5i

¼ 2ð1� t2Þ=ð1þ t2Þ:

We thus obtain

X
hhðX 0

i ;X
0
i Þ; x 0

1i ¼ 4ð1� t2Þ=ð1þ t2Þ:

Since t > 0, this yields (4.3).

We assume t ¼ 1 from now on. Then, it is su‰cient to show that

X
hhðX 0

i ;X
0
i Þ; x

0
ji ¼ 0 ð4:4Þ

for each j ¼ 2; 3; 4. Note that, when t ¼ 1,

X4 ¼ �E21 þ E43; X5 ¼ �E31 þ E42;

x2 ¼ E21 þ E43; x3 ¼ E31 þ E42:

We calculate
P

hhðX 0
i ;X

0
i Þ; x 0

ji for j ¼ 2; 3; 4. The bracket products are given

by

½x2;X3� ¼ x2; ½x2;X5� ¼ �
ffiffiffi
2

p
X6;

½x3;X2� ¼ x3; ½x3;X4� ¼ �
ffiffiffi
2

p
X6;

½x4;X2� ¼ x4; ½x4;X3� ¼ �x4; ½x4;X4� ¼ �x3;

and others are equal to zero. We thus obtain that

h½xj;Xi��o ; ðXiÞ�oi ¼ 0;
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for any i ¼ 1; . . . ; 6 and j ¼ 2; 3; 4. These yield (4.4), and we complete the

proof. r

The next theorem follows from Propositions 4.2 and 4.3, immediately.

Theorem 4.4. We have the following:

(1) Let h ; i ¼ h ; i0. Then h ; i is not a solvsoliton, and the corresponding

submanifold ½h ; i� is minimal.

(2) Let h ; i ¼ gðð
ffiffi
3

p
=2;0;0;0ÞÞh ; i0. Then h ; i is a solvsoliton, and the

corresponding submanifold ½h ; i� is not minimal.
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