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ABSTRACT. One of the generalizations of McShane’s identities by Tan, Wong and
Zhang is an identity concerning lengths of simple closed geodesics which pass through
two Weierstrass points on a hyperbolic one-holed torus. The Fuchsian groups which
uniformize the surface are purely hyperbolic and free of rank two. Another type of
Fuchsian groups of the same property is of type (0,3) corresponding to hyperbolic
three-holed spheres. In this paper we show a McShane-type identity which holds for
all Fuchsian groups of type (0,3).

1. Introduction

The group PSL(2,R) acts on the hyperbolic plane H={z=x+iy:

y >0} by
a b az+b
A—<c d>HA<Z>—m-

It is identified with the group of conformal isometries of H. An element g of
PSL(2,R) is hyperbolic if its trace satisfies |tr g| > 2. A Fuchsian group G of
type (0,3) is a purely hyperbolic discrete subgroup of PSL(2,R) such that the
factor surface H/G is a sphere with three holes. The group G is a free group
of rank two generated by elements ¢ and » which correspond to two boundary
components of H/G (see Section 3.2.) Each element g is written as a word in
the letters of I" = {a,a™!,b,b'}:

g =a"bPa=pP . a*bP

where o; and f; are integers. Since G is free, the exponent sums n,(g) =
>oi—1%, mp(g) =D B; are well defined.

For an element g of G, let Cl(g) denote the set of elements of G conjugate
to either g or g~!. An element of G is called primitive if, along with another
group element, it generates G. Let 2CI denote the set of all classes Cl(g) of
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primitive elements g of G. We denote by Q the set of all rationals to which
we include co = 1/0. Unless otherwise specified we express a rational by p/q
in lowest terms with ¢ > 0. Let ¢ : Cl — Q be the map defined by &(Cl(g)) =
ny(g)/na(g). By using the representative system {E,,} . g of #Cl produced
by the Gilman-Keen enumeration scheme [3, Theorem 2.1] (see Section 1), we
see that ¢ is bijective. Note that the absolute trace |tr g| depends only on the
class Cl(g) of g. Our main result is to prove a McShane-type identity (see [3]
for the original McShane identity):

THEOREM 1. Let (a,b) be a canonical generating pair of a Fuchsian group
G of type (0,3). Let D =tr(aba™'b~"') —2. Then it holds

\J(trg)? —4+vD 2_ 0 V(trg)? =4+ VD 2

Cl(g) e &+ (tl” g)2 —4 — \/5 Cl(g)eé- (tr g)2 — 4 — \/E

_tr(ab)| + |tr(ab™")| +2v/D
 te(ab)| + |tr(ab=1)| = 2v/D’

where & is the set of Cl(g) € 2Cl with n,(g)ny(g) odd and positive for the plus
sign and negative for the minus sign.

(1)

As in the case of other McShane-type identities, (1) is obtained by the follow-
ing manner. Let J(a,b) denote the shortest segment between the axes ax(a)
and ax(b) of a and b. Except for a subset E of linear measure zero, J(a,b)
is covered by disjoint subsegments called gaps. To each ge &, one gap is
associated. Then the length |J(a,b)| of the segment J(a,b) equals the sum
of the lengths of gaps, and this equation can be described as (1). The case for
&_ is similar. We include an elementary proof of that the exceptional set E
has linear measure zero. The identity (1) is different from the one given in
[12, (17)] which also holds for hyperbolic three holed sphere. But there may
be some relation between them.

The author thanks Hirotaka Akiyoshi and Makoto Sakuma for many
valuable suggestions. He also thanks the referee for many comments and
corrections.

2. Rank two free group

2.1. An enumeration scheme by Keen and Gilman. Let F = {a,b) be an
abstract free group of rank two. Each non-trivial element g of F can be
expressed by a unique reduced word in letters of I = {a,a”',b,b™'}:

g = X1X2...Xpn, (2)
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where x; e I” and x;x;.1 #1 for j=1,...,n—1. Let /(g) =n be the word
length of g. Let R be the boundary of the hyperbolic plane H in the Riemann
sphere. For two distinct points x and y of R, let L(x, y) denote the hyperbolic
line between x and y. The decomposition of H by all L(p/g,r/s) with
rationals p/q and r/s satisfying |ps — rq| = 1 is called the Farey tessellation. Tt
is an ideal triangulation of H. We introduce the Gilman-Keen enumeration
scheme for a representative system of #CI given in [3]. We set

EO/I =da, El/O =b.

For other positive rationals p/q, let m/n and r/s be the positive rationals such
that

m __r r
:—G—)—)<— and ms—im= —1,
n s

q n—+s

m
_<£_m+r(
n N

where @ means the Farey sum. We define

{EI‘/SEm/n if pPq is Odd,
/4 =

E E,nE, ;s if pq is even.

» (3)
We see by induction on p + ¢ that E,, is a primitive word in {a, b}, /(E,,) =
p+4q, ny(E,),) = p and n,(E,,,) = ¢, and m/n, p/q and r/s are vertices of a
Farey triangle. We call m/n and r/s the parents of p/q. For negative p/q,
define E,/, by replacing b in the word for E_,/, by b~'. Theorems 2.1 and 2.2
in [3] state

THEOREM 2. If g is a primitive element in G, then either g or g~ is

conjugate to a unique element in {Ep/q}p/qe()- If p/q and r/s are such that
|ps —rq| =1, then (E,;,, E,) is a generating pair of F.

From this theorem, each class Cl(g) in 2Cl contains a unique E,,,. We
remark that the enumeration scheme is slightly modified in this paper; The
word for E,,, is different from the one in [3], but only in that b is replaced
by b7

2.2. A family tree of rationals. Let (g,/4) be a pair of elements in F. For
n=1,2,... we define

an(g.h) = (g(hg)" "' g(hg)"),  o_u(g,h) = ((hg)"h, (hg)""'h).

Let Z* be the set of non-zero integers. Let #y = {(a,b)} and define induc-
tively 2 to be the collection of {o,(g,/)},.z- for all (g,h) € Z,_;, and let

o0
2=\J #.
k=0
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If (g1,Mm) = 04(g,h) for some neZ*, then the commutator gikg;y'hy! is
conjugate to ghg—'h~!. Hence
tr(ghg~'h~") = tr(aba~'b7") for all (g,h) e 2. 4)

If p/q and r/s are positive rationals, then ps—gr= —1 means p/q <r/s.
Let 2={(E,/y,E;):ps—rq=—1,pg=rs=0 mod2}. We will show that
P =2 If (E,yE,) €2, then (p+7r)(qg+s) must be odd. The Gilman-
Keen scheme yields

Epir)/(g+s) = ErjsEpyq-
Let

2
a=(Pem s DT ) CgraR), (5)
—(g+s) pq+rs+2qr

As a Mobius transformation, A4 fixes (p+r)/(q +s), sends r/s to p/q, and

(n+1)p+nr
(n+1)g+ns’

_np+(n+1)r

A" (r/s) = Ain*l(P/CI) = ng+ (n+1)s

A"(p/q)= A" (r]s) =

for n=1,2,.... Since ((n+ 1)p+nr)(n+1)g+ns)=nn+1)(ps+4qr)=0
mod 2 for all integers n, the Gilman-Keen scheme and induction on n =
1,2,... yield

E(wrn)pinn /(4 1)g4ns) = Enpt(n-1)0)/(ng+(n-1)9) E(pq)/(r+9)
= Ewpin-1)r)/tng+-1)9) (ErfsEpjg) = Eptg(ErssEpyq)",
Epet1)0) /0 +(0+1)5) = E(pr) (a9 E (1) ptnr) /(0= 1) grms)
= (Ev/sEpjg) E(n=1yp+m) f((n=1ygns) = (ErjsEprq)"Erys;
and hence
n(Ep/gs Erfs) = (Earteys), Earp/g)); (6)
for neZ*. Since

np+m—0r (n+1)p+nr
ng+(n—1)s (n+1)qg+ns

np+n+Dr (n—1)p+nr
ng+m+1)s (n—1)q+ns

equals ps —qr = —1, 0,(E,),, E./s) € 2 for all ne Z*. Starting with (a,b) =
(Eoj1,E1)0) € N2 we can show that 2 < 2.

For each (E,,, E,/) € 2—{(a,b)}, choose the positive rational z/u
outside the interval (p/q,r/s) so that t/u, p/q and r/s are vertices of a Farey
triangle. We assume, say, that ¢/u < p/q. Then t/u= (p—r)/(q—3s). Let
A e SL(2,R) be the parabolic transformation which fixes ¢/u and sends r/s
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to p/q:

pq+rs—2ps —p—r2 0 1
A= ; ( ) E<1 0 mod 2. (7
(g —s) —pq —rs+2qr

Let n be the integer such that p;/q; = A"(r/s) < t/u <ri/s; = A"(p/q). Since
Ae SL(2,Z), A preserves the Farey tessellation. Hence f/u= (p+r1)/
(g1 +s1) and pis; —qirp = —1. (Therefore A is also of the form (5) with
p, ¢, r and s replaced by pi, ¢q1, r1 and s;, respectively.) From (7) p1q; and
ris; are even. Thus (E, ., E, /) € 2. By using 4 as in (6) we see that
(Epjq-Ers) = 0-n(Ep jg5 Erjsy)- We define an operation t on {(p/q,r/s):
ps—rqg=—1,pg=rs=0 mod 2} by (pi/qi,r/s1) =<(p/q,r/s) if (p/q.r/s)
#(0/1,1/0) and 7(0/1,1/0) = (0/1,1/0). When r/s < t/u we can find in the
same way (p1/qi,r1/s1) =1t(p/q,r/s) such that (E,, E, /) = 0.(Ep g, Er/s)
for some neZ*. By a finite number of operations 7, we reach (a,b) =
(Eopn, Erpo) from  (E, ), E,s). Thus (E,,, E/)€?. Now we conclude
P = 2.

Lemvma 1. The two sets {E,,:m/n>0 and mn is odd} and
{hg : (g,h) € P} are the same.

Proor. If m/n > 0 is such that mn is odd, let p/q and r/s be the parents
of m/n with p/q <m/n<r/s. Then (E,, E /)€ 2=2 and the Gilman-
Keen scheme yields E,,), = E,/E,),. This concludes the lemma. O

3. Fuchsian groups of type (0,3)

3.1. A pair of hyperbolic elements in SL(2,R). For a hyperbolic element A4,
let p4 and g4 denote the repelling and attracting fixed points of A, respectively.
The axis ax(A) of A is the hyperbolic line L(p4,q4) and the extended axis
is ax(A)U{p4,q4}. We will find hyperbolic X and Y € SL(2,R) with the
following properties:

(1) The extended axes of X and Y are disjoint in H.

(2) The common orthogonal L; of ax(X) and ax(Y) separates the pair

{gx.qv} from {px,pr}.
B) x=trX>2 y=trY>2and z=tr XY.

If L, is the imaginary axis and gy = —py = 1 < ¢qy, then there is a unique pair
{X, Y} of such matrices. This pair consists of
X x2—4 ¥ 2z — xy + 2+/D
b) 2 2 _
Y — 2 2 v = 2Vvx* —4 . ®)
x2—4 X 2z —xy—2vD Y
2 2 2Vx2—4 2
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where
D=x’+y*+z22—xyz—d4=tr XYX 'y ' -2
Since 0 < 1/qy <1 < gy we must have 2z — xy — 2¢/D > 0 and hence

V=424  2z—xy+2VD  2z—xy+2VD o)
. T -2D  Jo-a(7-4 \2z—w_2vD

Therefore, if X and Y are matrices as above, then they necessarily satisfy
D >0 and

22— xy+2VD > \/(x2 —4)()2 —4) > 2z — xy — 2v/D > 0.

By adding the first term and the third term, we have z > (2z — xy)/2 > 0 and
hence from the definition of D,

Z:Xy+\/(x2—42)(y2—4)+4D. (10)

By using the matrices (8) we have

a4+ VD) _VE VRS- VD)
Ty = 2y — xz+xvD 7 e 2y —xz+xvVD .

3.2. Canonical generators. Let pi, ¢, p2, ¢2, p3 and g3 be distinct points
lying on R in this order. Then L; = L(p1,q1), Ly = L(p>,q>) and L3 =
L(ps,q3) are disjoint hyperbolic lines none of which separates the other
two. Let r; denote the refection in the line L; for k=1,2,3. Then
a=ryr; and b =ryr; give a canonical generating pair of a Fuchsian group
G of type (3,0). We identify G with the free group F = {a,b). If we assume
that p; = o0, ¢ =0 < p and pagy =1, then a = X and b= Y ! (see (8)) for
some x >2, y > 2 and z. The configuration of L;, L, and L3 implies that the
axes of a and b are orthogonal to L; and

‘1b<%u<l7ba<l7u=—1<0<qa:1<qab<pab<pb:_qb.

Let w=tr(ab) =tr XY~'. Then w=xy—z and vx2—4(vVw2 -4+ D)/
(=2y+xw+xvD) is a fixed point of ab=XY~'. Thus we have
=2y 4+ xw+ xv'D >0 and since 0 < qab < Dab,

VX2 —4(VD— Vw2 —4) VX2 —4(VD+ Vw2 —4)
fab = 2y+xw+xvD Pab = 2y+xw+xvD

Since x=tra>0and y=trb >0, w=xy—z=tr(ab) < —2 (see [13, Lemma
33.4)).
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Fig. 1. Canonial generators

3.3. Palindrome words in the group. Let g be an element of G and g =
eies...e. be the expression by a reduced word in {a,a=!,b,b='}. Then the
axis ax(g) is orthogonal to L; if and only if g is a palindrome, that is,
ei=em1-, i=1,2,...,r. To see this, we assume that L; is the imaginary
axis. Then a hyperbolic element 4 € SL(2,R) has an axis orthogonal to L;
if and only if A* = A, where

A*—<S q) forA—(P q>'
Fop ros

If e e {a,a”!,b,b~'}, then ¢* =e. Now ax(g) is orthogonal to L; if and only
if g=ejey...e, 1s a palindrome, because

* * * %k
(erer...e))" =e’...ejef =e ...eze1.

This fact has interesting applications. See, for example, [4] and [10].

If (g,h) is a pair in G=F, then g(hg)" and (hg)"h are palindrome
in {g,h} forn=1,2,.... By induction on the index k of Z; (see Section 2.2),
we see that if g belongs to a pair in 2, then g is palindrome as a word in a
and b.

4. Proof of the identity

In what follows, we consider G = {a,b) as in Figure 1. We define the
intervals [a] = (p2,q2), [b7 = (p3,q3), [a '] =ri]a] and [b] =ri[b~"], where
ry is the reflection in the imaginary axis L;. Then a sends R\[z"!] onto [d]
and b sends R\[p7!] onto [b]. For a reduced word W =eje;...e,e,41 of
letters of I" = {a,a™',b,b~'}, let [W]=e...e[e,11]. If e,y1 = a, since W is
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orientation-preserving, the subintervals [Wa], [Wb] and [Wh~!] of [W] are
located in this order. Similar results hold when e..; is one of other letters
(see (i) in Lemma 2 below). If W e G is a non-trivial cyclically reduced
word, then {[W"]}~, is a decreasing sequence of intervals and their limit is
the attracting fixed point gy of W. This observation leads to the following
lemma. (See also [2].)

LemMA 2. Let W) and W, be cyclically reduced words for non-trivial
elements in G with disjoint axes. Let n and m be positive integers such that
(W) = £(Wh) and L(W3) = (W), Let W" =ejey... and W3 = fifa....
Then qw, < qw, if and only if either

(i) (e1, fi) equals (b,a™"), (b,a), (b,b~1), (a™',a), (a™',b7") or (a,b7}),

or
(i) There is a positive integer r such that e; = f; for each i =1,2,... r and
either
(a) e =a and (eyi1, fr41) = (a, ), (a,b) or (b',b), or
(b) e, =b"" and (e;41, fr11) :( ,a), (a=',b7Y) or (a,b™"), or
() e.=a! and (ey1, fr11) = (b~ ) ,b), (b7',a™Y) or (b,a™"), or
(d) e, =b and (er1, fri1) = (b,a™Y), (b,a) or (a™!,a).

We prove (1) for the product over &.. If g€ G is palindrome, then the

axis ax(g) is orthogonal to the imaginary axis L; and hence p, = —q,.

Lemma 3. If (g,h) € P(a,b), then for n=1,2,...,

|(1(gh)”*‘g| < |q(gh)"g| < “1(hg)"h| < |(1(}1g)”*‘h|' (12)

Proor. For the pair (a,b), (12) follows from Lemma 2 and that (ab)"a
is palindrome:

qa < 4aba < q(ab)n—lh < q(a/))”b < p(ba)”a < p(ba)lklb < Pb-

for n=1,2,... and ppy = —qpars- Let (g,h) € Z(a,b) —{(a,b)}. Note
that the first letters in the words of g and /& are the same. We consider
the case where a is the first letter. In this case ¢, and ¢, belong to the
interval [a]. We assume that ¢, < ¢g,. We remark that the inequality
4y < qu is true for (g,h) = ((ab)" 'a, (ab)"a) for n=1. 1If /(g) < /(h), then
let the reduced word expressions for g and & be g=e;...€,¢p41...¢, and
h=g" el ...e,fpi1... [, for some v>1 where e,.1 # f,41. From Lemma 2
(ep,eps1, fp41) is either (a,a,b) or (b,b,a). If n=1, then

g =g'er...epep 1 W, ghg =g'er...epfp1 W,

hgh = hg" ‘e, o.epep 1 Wi, h? = hg' e ooy for1 Wa,
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for some words W;, j=1,2,3,4, and hence by Lemma 2 ¢, < g,y and
Gngh < gn. If n>2, then

((gh)"'9)* = (gh)"'g"e1 . ..epeps Wi, (gh)"g = (gh)"'g"e1 ... epfri1 W5,
(hg)"h = (hg)" 'hey .. .epe, 1 Wi, ((hg)"'h)* = (hg)" " hey ... epfys1 Wa,

with some words W; for j=1,2,3,4. Then Lemma 2 yields

0< 9igmy™g < Yghy"g < dhg)"n < 9(hg)" " h-

The case of /(g) > /(h) can be treated in a similar way. We also proved that
the property ¢, < ¢, holds if the pair (g,h) is replaced by o,(g,h) for all
neZ*. By induction on the index k of #; we conclude (12) when the reduced
words for g and & start with a. The other case proceeds in a similar way.

O

For (g,h) € ?(a,b), let J(g,h) be the interval on the imaginary axis L,
between the axes of g and #.  We compute the hyperbolic length |J(g, /)| of
J(g,h). To this end, by taking their conjugates in SL(2,R) we may assume
that g and & are the matrices X and Y in (8), respectively, if (g,h) # (a,b).
For (a,b), q, and ¢, are in the same side of L;. So we let a =X and
b= Y~!. Since ax(g) and ax(h) are orthogonal to L; and ¢, = 1, |J(g,h)| =
log(|gnl/|q4]) = loglgn|. We may assume that x =trg, y=trh are positive.
If (g9,h) # (a,b), then z=trgh>0 and xy —z=trgh™! <0, and if (g9,h) =
(a,b), z=trab' >0, and xy —z=trab < 0. From (9) and (4)

(g, )| =

22—xy—2\/5 2

We remark that exp 2|J(a,b)| is the right hand side of (1). Since (gh)"g and
(hg)"h are palindrome when expressed by words in {a,b}, their axes cut
L, orhogonally. By Lemma 3, the axes ax((gh)" 'g) and ax((gh)"g) bound
the interval J(a,(g,h)), and ax((hg)"h) and ax((hg)" 'h) bound J(o_,(g,h)).
Therefore these axes decompose J(g, /) into the subintervals J(a,(g,h)), n € Z",
and an interval I(g,h) called a gap for (g,h). Since

_ -1
1 10g<22 xy+2\/l_)> 1 o |tr gh| + |tr gh~'| +2/D Ca3)
2 |tr gh| + |tr gh=1| — 2+/D

;}Lnolo dgn)"g = 4gh> nanOlC (hg)"h = hgs
the gap I(g,h) is the interval between |g.|v—1 and |g;,|vV—1. Again we
use the matrices in (8) and set (g,/n) = (X,Y) for (g,h) # (a,b) and (a,b) =
(X,Y~1). Then from (11) (for (a,b) we use also (8) to compute g, and gp,)
its hyperbolic length is
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(trgh)> —4+vD\
log if (g,h) # (a,b)
(tr gh)> —4— /D
(g, h)| = (14)
VD + 4/ (tr ab)* — )
log if (g,h) = (a,b).
VD — \/(tr ab)?

We define E| = J(a,b) — I(a,b) and define inductively

En+1 =E, - U I(g7h) U < U J(ak(gah))>
(9,h) € Z(a,b)

(g9,h)e?,(a,b) keZ”

= U Jghn.

(9,h) € Ppi1(a,b)

Then E,,| = E, and

0

J(a7 b) - U I(gah) = ﬂ En~
(g.h)e?(a,b) n=1
Let |-| denote also the linear measure on L;. If we show that
. o0
Jim £ = () £1|=0, (15)

then, since two distinct gaps are disjoint,
(k) = > g,h),
(g9,h)e2?(a,b)
or

1 (lr(ab)] +]r(ab™)| + 20D
2 %\ |te(ab)| + [tr(ab )| - 2v/D

og

VD — 1/ (tr ab)? h)e2{ab)—{(a,b)} (trgh)> =4 — D

= log

and from this and Lemma 1 follows the desired product (1) for the plus sign.
Although (15) follows from a general theorem, we will give an elementary
proof. We need
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LemMMA 4. There exists a positive constant ¢ <1 satisfying for all
(9,h) € Z(a,b)
(g, )| > c|J(g,h)]- (16)

If this lemma is true, then (15) follows, because

Evil= > (g, 0| = 1(g, )

(9,n) €2,

<(l=¢) 3 Wig.h)

(9. ey
= (1= o)Ea| < (1= )"|En].

Proor oF LEMMA 4. Since G is discrete, the sequence {|tr g|: g € G} has
no accumulation points in R (see, for example, [1, Section 2.2]). Moreover G
is purely hyperbolic group. Therefore there exists a positive constant ¢y such
that |(tr g)|* > ¢ > 4 for all g€ G — {1}, and for any positive constant m > 2

max{|tr g|, |tr A} > m (17)

for all (g,h) e #(a,b) but a finite number of pairs. Let (g,h) e P(a,b) —
{(a,b)}. Let x=trg, y=trh. We may assume that x,y >2 and since
(g,h) # (a,b), by taking conjugates in SL(2,R), assume also that g = X and
h=Y with X and Y as in (8). If z=tr gh, then (10) shows z > m if (17)
holds. Since
tim 10205
x—+0 2x

:17

if a constant ¢; with 0 < ¢; <1 is fixed, then from (13), (14) and (17)

[1(g,h)| 2z — xy V(x2—4)(y>—4)+4D
> (1 = (]
|J(g,h)] 224 224

X
> (1 —4/00)?y

except for a finite number of pairs (g,/4) in #(a,b). Again except for a finite
number of pairs (g,%), 4D < x?y?> and hence

V(1 —4/x%)(1 —4/y?) +4D/(x%?)
2

z=2Xy < Xxp.

Therefore, except for pairs in a finite subset & of 2(a,b)

[1(g,h)]
17 (g,h)l

> Cl(l - 4/60).



168 Toshihiro NAKANISHI

Any constant ¢ will do if ¢ satisfies ¢ < ¢;(1 —4/¢y) and
0 <c¢<min{|I(g,h)|/|J(g,h)| : (g9,h) € &}. O

The proof of (1) for the negative sign is similar.

5. A characterization of generating pairs

Characterizations of primitive elements in the free group F of rank two
are found in many literatures, see, for example, [3], [8] and [9]. In this section
we introduce a simple method of finding generating pairs of F. This method
is given in [8], but we consider it with its relation to palindrome words. Let
w=eie,...e, be a word of I' ={a,a”',b,b~'}. We denote by M(w) the
central subword of length one if # is odd or of length 2 if n is even. Thus
M(w) = e(ui1)2 if nis odd and M (w) = e,2€(,42))2 if n is even. Let T(w) be
the word w with M(w) removed. Thus

T(w) _ { €1---€(n-1)26(n+3)/2---€n lf n %S Odd,

€1 Cna_1€n/242 -y if n is even.
We consider the following conditions for a pair (V, W) of elements in F: If V
and W are represented by reduced words, then 1) Their lengths p = /(V") and
q=1{¢(W) are relatively prime. 2) No cancellation occur in VW and hence
((VW)=p+gq. 3) T(V), T(W) and T(VW) are palindrome. 4) From (1)
and (2) there is a unique element of even length among V, W and VW. 1If U
is such an element, M(U) consists of two different letters.

THEOREM 3. If (V, W) satisfies (1)—(4) above, then it is a generating pair
of F.

The theorem is clear if p = ¢ =1. We prove the theorem by induction on
p+q. Let

V:e182...ep, W:e,,+1ep+2...e,,+q,

be the reduced words for V' and W, where ¢; eI, j=1,...,p+q. We define
order-reversing substitution of indices of the first p letters and that of the last ¢
letters:

—j+p+1 for j=1,...,p

(ﬂl(]):{_j+2p+q+1 for j=p+1,....,p+¢q

and the order-reversing substitution on all indices:

p(j)=—-j+p+q+1
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Case 1. pq is odd. 1In this case V' and W are palindrome. By conditions
(3) and (4) ¢; = e, (;) for all j and e; = e,,(; if and only if j < (p+¢)/2 or
j>(p+4q)/2+1, and M(VW) is a product of two different letters. Without
loss of generality we assume that M (VW) = e(,.q)/2€(p+q)/2+1 = ab. Let

p(j) =000 (j)=j+q=j—p modp+gq.

We consider the indices modulo p +¢. Then

: . N _Ptyq ~ Ptq

ey(j) # € if and only if (p(]):T or ¢(j)= 5 +1
if and only if (pl(j):pT—w or (P1(j)=p—2i_q+1
if and only ifj:g'p% or j:3p;-q+1

Since p and ¢ are relatively prime, ¢ acts transitively on {1,2,...,p+ ¢}.
Hence ¥ and W are words containing no a~'’s and 5~!’s. Let x = n,(¥) and
y=n4W). The g-orbit of indices shows

C(p+a)/2 €pta) 240> - > E(p+a) 2+ (xy-1)g ATE the letter a
C(p+a)/2+15 (pa) /24144 - - - €(prq)/2+(p+q-1)g AT€ the letter b

Here e(p1q)/2+1 = €(p+q)/2+(x+y)q> and hence (x+ y)g =1 mod p+g¢. Since

+ 3p+
%JF(XJFJ/*UC]E pz q+l mod p + ¢,
we have
(%) —l=p+(1-x—p)g=yp—qx mod p + g¢.

We consider only the case p < ¢, because the other case is treated in a similar
way just by reversing the order of the indices. We shall show

(1) er...ep=epi1...e€.

(i) T(expt1--.ep+q) 18 palindrome.

(i) €2+ (g—p)/2€2p+(g-p)/2+1 = ba.
Suppose that these are true. Let U =ey41...¢p4. By (i) W =VU and
(V, U) satisfies conditions (1)—(4). By induction, (¥, U) and hence (V, W) are
generating pairs of F.

PrROOF OF (i). Since 2p < 3p+q)/2, epij = eppij) =¢ for j=1,...,p.

ProoF oF (ii). Let y(j)=—j+3p+q+1for j=2p+1,..., p+¢, which
is the order-reversing substitution of the indices of U. If j# (3p+¢)/2 and
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J#Bp+a9)/2+1,
€ =€) T CHa+l = Co(—j+3ptatl) T Cojdptgrl = €Y
Hence T(exp1...€p14) is palindrome.
PRrROOF OF (iii).
€2p+(g-0)/2 7 Co((p+a)/2) = E(pra)/2 = A F b= €(prg) o
= €p((3p+9)/2+1) 7 €2p(g-p)/2+1-

Hence ey, (4—p)2€2p+(g-p) /241 = ba.

ExampLE. If p =5 and ¢ = 7, then ¢, e, e, e3, ejp es5 and e, are a, and
e7, e, e9, ¢4 and ey are b. Hence V = ababa and W = abababa.

Case 2: pq is even. We consider the case where p is even and ¢ is odd and
€p/2y/2+1 = ab.  From condition (3), T(V), W and VW are palindrome (since
/(V) and /(VW) are odd). By condition (4)
€y (j) = € if and only if j< p/2 or j>p/2+1
and
€y (j) = € for all j=1,2,...,p+q.

In this case let ¢(j) =@, 0p,(j)=j+p=j—¢q mod p+gq. Again ¢ acts
transitively on {1,2,...,p+ ¢} and

e # ¢ if and only if p(/) =2 or g(j)=2+1
. . . _p p
if and only if ¢,()) =5 or 0,()) _§+1
2 2
ifandonlyifj:p—;q r _P‘; 1,

Let x =n,(V), y =n,(W) again. The g-orbit of indices shows the following:
€p)2,€p/24py -+ €p/2+(x+y—1)p are the letter a;

€p/2+15€p/2+14ps - - - > €p)24+(p+g—1)p are the letter b.

Here e,/511 = €,/24(x+y)p» and hence (x+ y)p =1 mod p+¢q. Since

Pt (et y-1p=

> +qg+1 mod p + ¢,

(SIS

we have

() =—q+(x+y-lp=yp—gx modp+gq.
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Note that (*) means x is odd, because p is even. We first show that if p < ¢,
then

(i) er...ep=epi1...e.

(if) expt1...€prq and hence T'(eyi1...e€p44) are palindrome.
If these are true, we can write W as VU and, as in Case 1, conclude that
(V,U) and hence (V, W) are generating pairs of F. We show also

(lll) M(€p+1 .. .ep+q) =€y (gr1)/2 F €(piqrl))2 = M(€2p+] . €p+q).
PROOF OF (i). Since p < p/2+4q, ¢j=e,j =ep; for j=1,...,p.

ProoF OF (ii). Let y(j)=—j+3p+q+1for j=2p+1,....p+q. If
j = 2p+1, then

€ = Cpi(j) = C=jt2ptatl = Cop(—jt2ptq+l) = €—jt3ptatl = €y ())-
Hence ey,1...€,4 is palindrome.
Proor oF (iii). If x+ y is even, then p+ ¢ — x— y is odd.

2p+q+1 +
PrT9T7 §+w mod p+¢q  hence ewpigin)n = a

[\

3p+qg+1 tg—x—y+1
p+4q Eg+1+(pq y+1)p

2 2 2

mod p+gq hence e, 4i1)2 =b.

If x+ y is odd, then p+¢— x— y is even.

+q—x—
= §+ 1+ (Pt 5 »)p mod p + ¢ hence e(piq4+i1)/2 = b.

2p+q+1
2

3p+qg+1 x+y+1
% g‘F% mod p +¢ hence €(3p+q+1)/2 = 4.

Thus (iii) holds. If p > ¢, we can show

(i) er...eq=epr1-..€pq.
(ii) egy1...€, and hence T'(e,i...e,) are palindrome.

(111) M(eq+1 e ep+q) = €44p/2€q+p/2+1 = ba.
PROOF OF (i). Since g < p/2+q, ¢j=e,jy=¢,.; for j=1,...,q.
Proor oF (ii). Since VW is palindrome, (ii) is obvious.

PROOF OF (iii).  €41p/2 # €pqip/2) = €pj2 = s Cqip/241 # Colgip/2+1) = €pj2+1
=b. Thus (iii) follows. Again we can write ¥V as WU and conclude by
induction that (¥, W) is a generating pair of F.

ExampLE. If p =6 and ¢ =5, then e; and eg are a, and eq4, ej9, es, €11, ¢,
er, e7, ep and eg are b. Hence V = bbabbb and W = bbabb.
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ReEMARK. From W = VU in the above argument, n,(W)=n,(V)+

n(U) and ny(W)=mnp(V)+mny(U). By induction we can show that

yp —

gx =—1 (or yp—gx=1) in (*) (or in (*x)).
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