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ABSTRACT. It is shown that an application of the theory of regular variation (in
the sense of Karamata) gives the possibility of determining the existence and precise
asymptotic behavior of positive solutions of the third-order nonlinear differential
equation (|x”|*"'x")’ + q(£)|x|®x = 0, where « > >0 are constants and ¢ : [a, 0) —
(0,00) is a continuous regularly varying function.

1. Introduction

We consider the third order nonlinear differential equation
(X"17'x") + g(0)]x" ' x = 0, (A)

where o and f§ are positive constants such that o > f and ¢ : [, ©0) — (0, 00) is
a continuous function, a > 0.

By a solution of (A) we mean a function x : [Ty, 00) — R, Ty > a, which
satisfies (A) (so that |x”|*"'x” is continuously differentiable) for all sufficiently
large ¢ and is nontrivial (proper) in the sense that

sup{|x(#)| : t =T} >0 for any T > Ty.

Such a solution is called oscillatory if it has an infinite sequence of zeros
clustering at infinity, and nonoscillatory otherwise.

Our first goal in this paper is to obtain necessary and sufficient conditions
for all proper solutions of (A) to be oscillatory or satisfying

xO()] 10 as T o0,i=0,1,2 (1)

(the so-called Property A of equation (A)). It will be shown in Section 2, that
the above property of equation (A) generalizing the known result for sublinear
Emden-Fowler equation of the third order with « =1 is characterized by the
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condition
J Pq(t)dt = oo. (2)

With regard to this result it is natural to ask the following two questions:

(i) If (2) holds, does equation (A) really possess nonoscillatory solutions
satisfying (1)? And if the answer is “Yes”, is it possible to describe asymptotic
behavior of such solutions at infinity explicitly and precisely?

(ii) If (2) does not hold, is it possible to characterize the existence of
nonoscillatory solutions of (A) which do not satisfy (1) and obtain accurate
asymptotic formulas governing their behavior at infinity?

In looking for the answers to the above questions, a combination of
methods of the theory of regular variation with a fixed point technique has
been utilized. Such an approach has shown to be very effective and powerful,
and produced a series of new interesting results recently (see [3], [4] and [5]).

To obtain the desired detailed information, we begin with classifying the
set of all possible nonoscillatory (or equivalently positive) solutions of (A) into
five disjoint subclasses. It suffices to restrict our consideration to positive
solutions of (A), since if x(¢) is a solution of (A), then so is —x(¢).

Let x(¢) be an eventually positive solution of equation (A). Then, there
are two possibilities for x’(¢#) and x”(¢): either

x'(t)>0 and x"(r)>0  for all large ¢ (3)
or
x'(t) <0 and x"(r)>0  for all large ¢ (4)

If (3) holds, then the limit x”(o0) = lim,_ ., x"(f) = 2 lim,_.,, x(¢)/t* exists
and is either zero or a finite positive number. If x”(o0) =0, then x'(¢)
increases to a positive limit x’'(c0), finite or infinite, as ¢ — oo, implying that
lim, .o, x(¢)/t = x'(00). If (4) holds, then x(z) is an eventually decreasing
function and x(o0) = lim,, x(#) is either zero or a strict positive finite
value. In both cases x”(o0) =0. Summarizing the above observations, we
see that eventually positive solutions of (A) fall into the following five types:

. x(1)
}Ln% 7= const > 0 D
im X0 o gim X0 (1)
t—oo f —owo f

lim @
t

—o0

= const > 0 (111)
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Ilim x(f) = const > 0 (IV)
tlim x(t) = 0. (V)

Note that the functions {?,,1} are particular solutions of the unperturbed
differential equation

(|x//|a.71xu)/ —0.

The solutions of (A) which are asymptotic to constant multiples of 2, ¢ or 1 as
t — oo, i.e., the solutions satisfying (I), (III) or (IV), respectively, are referred
to as primitive solutions of equation (A). If we use the symbol ~ to denote the
asymptotic equivalence of two positive functions f(¢) and g¢(¢), i.e.
(¢
0,

f(t)~g(t) ast— © & ,ll,nyl Fo)

(5)
then a primitive solution x(¢) of (A) satisfies x(z) ~ ct?, x(¢) ~ ¢t or x(t) ~ ¢ as
t — oo for some constant ¢ > 0.

In Section 2 we show via the Schauder-Tychonoff fixed point theorem that
the existence of primitive solutions of all three types for (A) can be completely
characterized. Our efforts in the subsequent sections will be focused on
proving the existence of non-primitive solutions of equation (A), that is, positive
solutions satisfying either (II) or (V) and analyzing their asymptotic behavior at
infinity as accurately as possible.

If (A) has a type (II)-solution x(#) defined on [T, c0), then integrating (A)
once on [t,00), using that x”(o0) =0, raising to the power 1/o and then
integrating twice from 7' to ¢, we obtain

x(t)=co+a(t—T)+ J[ JS “v q(u)x(u)ﬂdu}l/adrds

TJT LJr

=co+e(t—T)+ J' (1—>5) UL q(r)x(r)ﬂdr}l/ads, t>T, (6

T s

where ¢g = x(7T) > 0 and ¢; = x'(T) > 0. In what follows we will often make
use of the integral asymptotic relation

x(t) ~ Jt Js U% q(u)x(u)ﬂdu}l/adrds, t — o0, (AR),

TJT LJr

which can be considered as an “approximation” of (6). If x(¢) is a non-
primitive solution of type (V) for (A), then x”(o0) = x'(0) = x(o0) =0 and
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the triple integration of (A) on [f,00) leads to

x(t) = Jm Jw UOC q(u)x(u)ﬂdu]l/ldrds, t>T, (7)

t s r

which can be approximated by the integral asymptotic relation

0 (OO T (OO 1/o
x(1) ~J J U q(u)x(u)ﬂdu] drds, t — oo. (AR),
t s r

If the coefficient ¢(7) is a general continuous positive function, then it is
a very difficult task to extract the information about the existence and precise
asymptotic behavior of non-primitive solutions directly from (A) or from the
corresponding integral equations (6) and (7). But if we restrict ourselves to the
case of ¢(¢) which is a regularly varying function (in the sense of definition given
below) and consider only the regularly varying solutions, then the asymptotic
analysis of (A) can be made quite easily in two subsequent steps. First, in
Section 3, we establish the existence of regularly varying solutions of the
integral asymptotic relations (AR); (resp. (AR);) and next, in Section 4, we
show that these solutions of relations (AR); (resp. (AR);) can be used to define
suitable subsets of the locally convex space C[T,o0) so that the Schauder-
Tychonoff fixed point theorem is effectively applicable to certain integral
operators generated by (6) (resp. (7)) defined on these subsets.

For the reader’s benefit we recall here the definition and some properties
of regularly varying functions. A measurable function f : (0,00) — (0,00) is
called regularly varying of index p € R if it satisfies

. f(4)
lim =% = }* for V. >0,
=0 f(1)

or, equivalently, it is expressed in the form

f(t) =c(1) exp{Jl (@ ds}, t>t,

fo

for some #) > 0 and some measurable functions c(¢) and J(¢) such that

lim ¢(¢) = ¢ € (0, 0) and lim J(z) = p.
t— o0 — o0
If ¢(f) = ¢y, then f(r) is referred to as a mormalized regularly varying
function of index p.
The totality of regularly varying functions of index p is denoted by
RV(p). We often use the symbol SV instead of RV(0) and call members of
SV slowly varying functions. By definition any function f(z) € RV(p) is written
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as f (1) =t"g(¢) with g(r) e SV. So, the class SV of slowly varying functions
is of fundamental importance in theory of regular variation. Typical examples
of slowly varying functions are: all functions tending to positive constants as
1 — 00,

N N

H(logn 0H™, a, eR, and exp{H(logn t)ﬁ"}, B, (0,1),

n=1 n=1

where log, ¢ denotes the n-th iteration of the logarithm. It is known that the
function

L(¢t) = exp{(log ?) 13 cos(log 1)'/3}
is a slowly varying function which is oscillating in the sense that

limsup L(¢) = oo and liminf L(z) = 0.
t—o0 =0

A function f(f) e RV(p) is called a trivial regularly varying function of
index p if it is expressed in the form f(¢) = #’L(¢r) with L(z) € SV satistying
lim,_,,, L(t) =const > 0. Otherwise f(¢) is called a nontrivial regularly vary-
ing function of index p. The symbol tr-RV(p) (or ntr-RV(p)) is used to denote
the set of all trivial RV(p)-functions (or the set of all nontrivial RV(p)-
functions). According to this definition a primitive solution x(z) of (A) such
that x(¢) ~ c¢t/, t — oo, for some ¢ >0 and je {0,1,2}, is a trivial regularly
varying function of index j, i.e. x(¢) € tr-RV(}).

The following proposition known as Karamata’s integration theorem, is
particularly useful in handling slowly and regularly varying functions analyti-
cally and is often used throughout the paper.

ProposITION 1. Let L(t) e SV. Then
(l) lf o> _lJ

I3
1
L s*L(s)ds ~ ml"“L(Z)7 t — o0;

(i) if o< —1,

*© 1
Jl SaL(S)dS ~ 7m[“+1L(I), t— 003

(i) if o=—1,

L(t
(1)

~—

t
(1) = J @ dseSV  and lim =0,

a t— 00

~
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and

0
m(t) = J & ds e SV and lim ﬂ =0.
PR = m(t)

The reader is referred to Bingham et al. [1] for the most complete
exposition of theory of regular variation and its applications and to Mari¢
[6] for the comprehensive survey of results up to 2000 on the asymptotic
analysis of second order linear and nonlinear ordinary differential equations in
the framework of regular variation.

2. Existence of primitive solutions of (A)

In this section we establish necessary and sufficient conditions for the
existence of trivial regularly varying solutions of indices 2, 1 and 0 of equation
(A), that is, positive solutions of types (I), (III) and (IV), respectively.

THEOREM 1. Equation (A) has positive solutions x(t) such that

fim <)

lim =5~ = const > 0 (8)
if and only if
J Pq(t)dt < oo. (9)

Proor. (The “only if” part.) Let x(z) be an eventually positive solution
of (A) satisfying (8). Then, there exist positive constants ¢, ¢, and #) > a such
that

at? < x(f) < et (10)
for 1 >#. An integration of (A) yields

quﬂMm<m, (11)

Io

which combined with (10) implies (9).
(The “if” part.) Let (9) hold and ¢ > 0 be any given constant. Choose
to > a large enough so that

r Pa(t)ydr < (2% — 1) P, (12)

0
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Let X = Clty, ) and F: X — C[ty,0) be defined as follows:

(1= 10)* < x(0) < et = 10)*,1 = IO}a

NN

X:{xe Clto, 0) :

t s °s} 1/a
Fx(1) = J J {c“ —I—J q(u)x(u)’gdu] drds, t>b.
to J1o r

Clearly, X is a closed convex subset of the Fréchet space Clty, 00) with the
topology of uniform convergence on compact subintervals of [f, c0). It can be
shown routinely that the integral operator F is a continuous self-map on X and
sends X into a relatively compact subset of C[fy, c0). Hence by the Schauder-
Tychonoff fixed point theorem there exists a function x(¢#) € X such that
x(t) = Fx(t), t = ty, that is,

x(1) = Jz JS {c“ + J}OC q(u)x(u)ﬂdu}l/adrds, t> 1. (13)

o J1o
Differentiation of (13) shows that x(¢) is a solution of (A) that satisfies (8).

THEOREM 2. Equation (A) has positive solutions x(t) such that

tlim @ = const > 0 (14)
if and only if
0T oo 1/o
J U sﬂq(s)ds] dt < 0. (15)
a t

Proor. (The “only if” part.) Suppose that (A) has a positive solution
x(¢) which satisfies (14). Integrating (A) from ¢ to oo, we have
o0
@) = g o=

t

or, equivalently,

Integrating this equation again and using the inequality x(¢) > ¢;z holding
for t > 1 and some constant ¢; >0 (a consequence of (14)), we conclude

that
o0 o0 1/0(
J U sﬂq(s)ds] dt < .
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(The “if” part.) If (15) holds, then for any given constant ¢ > 0 we can

choose 7y > a so that
8 K SR
s"q(s)ds| dt < 3¢ .

Iy t

Then, as in the proof of Theorem 1, we can show that the integral operator G
defined by

Gx(1) = J: <c - r Ux q(u)x(u)ﬂdu]]/adr> ds, t>t1,

has a fixed point x(7) in the set

N o

X = {x(t) € Cltg, o) : = (t—ty) < x(t) < c(t—19),t = to},

which gives birth to a solutions of (A) satisfying (14).

THEOREM 3. Egquation (A) has positive solutions x(t) such that

tlim x(t) = const > 0 (16)
if and only if
0 0 1/a
J ZU q(s)ds] dt < oo. (17)
a t

ProoOF. (The “only if” part.) Suppose that (A) has a solution x(¢) which
is positive for ¢ >ty and such that (16) holds. Repeated integration of (A)
shows that

Jw t“OC q(s)x(s)ﬁds]l/adt < o0

N t

which together with the inequality x(¢#) > ¢; holding for some constant ¢; > 0
and all sufficiently large ¢ implies (17).

(The ““if” part.) Let ¢ >0 be an arbitrary constant and choose #) > a
large enough so that

0 o0 1/a
J t“ q(s)ds} dr < 27V/2c1=h/2,

to t
This is possible because of (17). Define

X ={x(t) e Clty, 0) : ¢ < x(t) < 2¢c,t =19}
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and

t S r

Hx(f) =c+ Jm JOO UQC q(u)x(u)'gdu]l/“drds, 1> 1.

It is easy to verify that H is continuous and maps X into a compact subset
of X, and hence the operator H has a fixed element x in X, which gives the
desired solution of equation (A).

LeEmMMA 1. Let x(t) be an eventually positive solution of (A) which satisfies
(3). Then there exist L >0 and T > a such that

x(1) = L*x"(1), t>T. (18)
Proor. Since x”(¢) is positive and nonincreasing on [fp, c0) for some

to > a, it follows that

x'(1) = x'(1) + JI x"(s)ds > (t — to)x"(t)  for t > 1. (19)

to
Inequality (19) yields

t

t _ 2
x'(s)ds > J (s — 10)x" (s)ds > MX”

x(t) = x(to) + J . 3

4]

and so (18) holds for some constant L >0 and T > .

LEMMA 2. Assume that (A) has a positive solution which satisfies (3).
Then the integral condition (9) holds.

PROOF. An integration of (A) gives

O ONE S ¥ (20)

t

Denote the right-hand side of (20) by p(¢). Then, by (18) from Lemma 1,
x(1) > L*y()"*, 1>T, 1)
where L is a positive constant. The inequality (21) implies
(1) = —q(0x(t)’ < —LPq()y()’*, 1=,

from which it follows that

t / t
J J (Sj) ds < —LBJ s q(s)ds
T y(s)P* T



10 Jaroslav JarOS, TakaSi Kusano and Tomoyuki TANIGAWA

and hence

t
{y() PPy < F JT s?q(s)ds, t>T.

04
x—p

Since o > ff, we obtain

t
%y(T) =/ > LﬂJ s?q(s)ds, t>T,
x—p T

which implies (9).

The proof of the following lemma is patterned after the proof of Naito
et al. [7, Lemma 8§].

Lemma 3. If a > f, then the integral condition (17) implies (9).

Proor. From (17) it follows that there exists an M > 0 such that
t

I
a

t o0 1/0(
Jsds-“ q(r)dr} <M, t>a,

a t

o0 1/0{
J q(r)dr] ds <M

s

for t > a. Then

and so there exists an M; such that
o0 1/0(
r U q(r)dr] <M, t>aq,
t
or, equivalently,

Jw q(r)dr < Mf‘t’z“ (22)

t
for t > a. Multiplying (22) by +~'*?/ and integrating from a to ¢, we find that
[2/5' Jw aZﬂ J~DC 1 (! t
— rdr — — rdr—&——J s sdsSM“J sTI72 28 g,
25{61() 2ﬁgq() %) q(s) v
This gives
t o] t
J s%q(s)ds < azﬂJ q(r)dr + 2[5’M1°‘J sT1722428 g (23)
a a a

Since the assumption o > f implies —1 — 20+ 28 < —1, the last integral
in (23) (and consequently also the integral on the left-hand side) converges as
t — oo. Thus, we get (9) and the proof is complete.
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As a consequence of Lemmas 1-3 we obtain the following result.
THEOREM 4. Any proper solution x(t) of (A) is oscillatory or satisfies
XD 10 ast]o00,i=0,1,2, (24)
if and only if

Joo Pq(t)dt = 0. (25)

ProOF. The necessity of the condition (25) follows from Theorem 1. To
prove the sufficiency part, note that the existence of eventually positive
solutions satisfying (3) is impossible due to Lemma 2. On the other hand,
by Lemma 3 the only possible positive solutions which satisfy (4) are those of
type (V).

Nonexistence of eventually negative solutions other than those satisfying
(24) follows from the fact that if x(z) is a solution of (A), then so is —x().

3. Integral asymptotic relations for non-primitive solutions of (A)

3.1. Asymptotic relations for moderately growing solutions. We begin by
considering positive solutions of the integral asymptotic relation (AR); with
regularly varying ¢(z) which satisfy
t t
im X o gim Y,

- 3

— 00 14 —o0 [2

(26)

All such solutions tend to infinity as #— oo and are often referred to as
moderately growing. The set of all moderately growing positive solutions of
(AR); consists of three disjoint subclasses which follows from the observation
that a regularly varying function x(7r) = #"&(z), where &(7) € SV, can satisfy
(AR); and (26) only if p=2 and &(¢r) — 0 as 1t — oo (i.e. x(¢) € ntr-RV(2)),
or pe(1,2) (i.e. x(f) e RV(p)), or p=1 and &(t) — o0 as t — oo (i.e. x(¢) €
ntr-RV(1)).

THEOREM 5. Let q(t) be regularly varying of index a. Relation (AR),
possesses nontrivial regularly varying solutions of index 2 if and only if ¢ =
=26 — 1 and (9) holds, in which case any such solution x(t) enjoys one and the
same asymptotic behavior

o 1/(a=$)
x(1) ~ 12 {oc —_ ﬂJ sz/}q(s)ds] , t— 0. (27)

2% ),

THEOREM 6. Let q(t) be regularly varying of index a. Relation (AR),
possesses regularly varying solutions of index pe (1,2) if and only if o€
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(—a—p—1,-2p—1), in which case p is given by
o+ 20+ 1

28
g (28)
and any such solution x(t) enjoys one and the same asymptotic behavior
l2a+1q(l) ]1/(15)
x(1) ~ = , t — 0. 29
0~ @)

THEOREM 7. Let ¢(t) be regularly varying of index o. Relation (AR);
possesses nontrivial regularly varying solutions of index 1 if and only if ¢ =
—o—f—1 and

Jw(tﬁﬂq(t))l/“dl = o, (30)

a

in which case any such solution x(t) enjoys one and the same asymptotic behavior

%—f t . 1 a/(a—p)
x(t) ~1 gtz (S CI(S)) ds

) t— 0. (31)

PROOF OF THEOREMS 5, 6 AND 7. (The “only if” part.) Suppose that
(AR); has a solution x(¢) € RV(p) on [fy, c0) satisfying (26) and express it as
x(1) = tP&(t), £(r) € SV.  Because of (26), we must have p € [1,2] and &(r) —
or &(f) - 0 as t— oo according as p =1 or p =2, respectively. Using the
expression ¢(7) = t°I(z), I(r) € SV, we obtain

JOO q(s)x(s)Pds = JOO sTHPI(5)E(s) ds, 1> 1. (32)

The convergence of the integral on the right-hand side of (32) implies that
o+ ppf < —1. First consider the case where g+ pff = —1. Then (32) reduces
to

J% Q(S)X(S)ﬂds = Jw Sill(s)é(s)ﬁds e SV.

t t

Raising the above to 1/o and integrating twice on [z, c0), we see from (AR);
that

x~ 5 { Jf sll(s)f(s)ﬁds}l/l ERV(2). (33)

This shows that the regularity index of x(7) is p =2 and hence o = -2 — 1.
Note that (33) is equivalent to

£(1)* lrs-lz(s)as)ﬁds, f o, (34)

~ —
o
2% )i
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Denoting the right-hand side of (34) by #(¢), from (34) we obtain the following
differential asymptotic relation for #(z):
—Bla I 1
() @) ~ ) = 50, 1 e (35)
Since #(f) — 0 as t — oo, the left-hand side of (35) is integrable on [z, o),
which shows that (9) is satisfied. Integration of (35) from ¢ to oo gives

o[ o/ (a=p)
w0~ 2] awa] -

and hence

B[ }l/wm

) =20 ~ o ~ 2% F

Next consider the case where o+ pf < —1. In this case from (32) we
have

Bae o _ a+pp+1 B
Jt q(s)x(s)"ds Py t (&), t— o0, (36)
or, equivalently,

© 1/o 1/a
{Lq“”“wm} ”[‘;Iﬁﬁi} (I (37)

Observe that (37) is not integrable over [fy, 00), which means that

o+pf+1 S

-1, ie, o+ pf=>—o—1.
o

We distinguish the two cases:

(@ o+pf>—-a—1,(b) o+pf=—-a—1.

If (a) holds, then integrating (37) twice from #, to ¢ and using Karamata’s
integration theorem ((i) of Proposition 1), we obtain

oczt(”/’ﬁ”“ﬂ)/“l(t) 1/aé(t)/f/fx

x<t)~ 1/ )
[—(e+pp+1)] " (c+pf+1+a)(o+pf+1+20a)

t— oo, (38)
which shows that x(f) e RV((c +pf+20+1)/0) with (6+pf+20+1)/a€e
(1,2). Therefore,

o+ pf+20+1 N o+ 2a+1
p= o p= a—p
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Notice that p € (1,2) determines the range of 6 to be 6 € (—a —f— 1, -2 —1).
Using the fact that the numerator and the denominator of the right-hand side
of (38) can be rewritten, respectively, as

[(a+pﬂ+21+l)/al(l) l/océ(l)/)’/oc _ Z(2a+l)/ocq(t)l/ocx(t)[i/oc
and

[—(c+pp+ 1) (0 +pp+1+a)(o+pB+1+2)0

=plp—1)(2—p)" ',
we obtain from (38) the following asymptotic expression for x():

20+1 q(t) 1/(o—p)
2-p)p— 1)“P“]

If (b) holds, then integrating (37) twice from fy to 7, we get

t — 00.

)

x(t) ~ [oc

oo 1/a t
J U q(r)x(r)ﬁdr} ds~oc*1/“J sV (s) e (s) P ds, t — o0,

IO N 0]
t ops T oo 1/a t
J J U q(u)x(u)ﬁdu] drds ~ fx—l/“tj s7H(s) V7 E ()P ds, t— o0, (39)
ty J1p r 1
which, in view of (AR);, gives
t
x(t) ~ oc_l/“lJ s~ (s)V*E(s)P*ds e RV (1), t— o0, (40)
1

(cf. (iii) of Proposition 1). This implies that x(#) e RV(1), so that p =1 and
o =—o—f—1. Relation (40) is equivalent to

E(t) ~ ocl/“Jt s~HU(s) Ve s, 1t — 0. (41)

lo

Let #7(z) denote the right-hand side of (41). Then, we can convert (41) into the
differential asymptotic relation

n(t)fﬂ/otn/(t) ~ a—l/at—ll(t)l/a _ a—]/oct(/)’-kl)/ocq(t)l/oc’ f— o0, (42)

Integrating (42) from 7, to ¢, we see that (30) must hold and obtain the
asymptotic formula
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which combined with (AR), gives

_ t o/ (a—p)
50 = €0 ~ o) ~ (| S0 | e

a

This completes the proof of the “only if” parts of Theorems 5, 6 and 7.
(The “if” parts.) We show that the function X(7) defined by
1/(a=B)
—p oo
t? {% ) szﬂq(s)ds}

|: IZ’Hq(Z) :| 1/(a—p)

if c=-2f—1 and (9) holds;

= —p)(p—1)%p= if O'E(—OC—ﬂ—l,—Zﬁ—l),
X(1) =4 2017 where = 222221 (43)
a—p ! 1 1/a w(a=p) .
I[MI [(sP+1g(s)) ds} if 9= —o—f—1 and (30) holds
satisfies for any b > a the integral asymptotic relation
tpsT foo 1/a
J J U q(u)X(u)'Bdu} drds ~ X(1),  {— . (44)
bJb LJr
Let = —-2f—1 and (9) hold. Then, we have
] 0 o — ﬁ 0 B/ (2—P)
J q(s)X(s)ﬂds = J szﬁq(s) { oy J rzﬁq(r)dr] ds
t t s

a— B [* a/(a—p)
:2“{ 2% J szﬁq(s)dS] =2TX()", (45)
t

which, raised to the power 1/ and integrated twice on [b,1], gives via
application of Karamata’s integration theorem

JI JS UOr Q(u)X(u)ﬁduT/adrds ~ 7 r B ﬂJ” Szﬂq(s)ds]lmﬂ) =X(1), 11— .

bJbLJr 2%, t

Next, let € (—a—f—1,-2f — 1) and define p by (28). Expressing X (¢)
as

t) = t— 00,

12 = p)(p = 1)*p) /P

and using Karamata’s integration theorem, we get

© 0 So:p—Zo:—ll(S) “/(“‘ﬂ)ds
J q(s)X () ds = J u_1B/(@p)
‘ [2(2=p)(p—1)"p?]
Zo:(p—Z)l(l) «/(a—p)

2(2 = p)[a(2 = p)(p — 1)*px)f/ =P’

~
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and
t (ST [oo 1/a P 1/(a=pB)
u) X (u)Pdu rds ~ i) =
ijb |:J; q( )X( ) d:| drd [OC(Z—p)(p_ 1)“pa]1/(“*ﬂ) X([)
for t — oo.

Finally, let 6 = —a2— ff — 1 and (30) hold. Then, we have

.y B/ (=)

Jjo q(s)X (s)ds = J, sPq(s) [W J:(r/m (M) dr] s

- étq(l)X(l)/}, I — 0. (46)

Integrating the above (raised to the power 1/a) twice on [b,#] we conclude
that

Jt“j q(r)X(r)ﬁdr]l/ads - L?l%lﬁ J t(sﬂ“q(s))‘/“ds]w_m

b a
=t'X(1)

and

JI JS Uw q(u)X(u)/”du}l/xdrds ~ t{%JI(S/M(](S))1/1ds]2/(“_ﬂ)

a

= X(7). (47)
This completes the proof of Theorems 5, 6 and 7.

3.2. Asymptotic relations for strongly decaying solutions. We now turn to
studying positive solutions of the asymptotic integral relation (AR), with
regularly varying coefficient ¢(z). Clearly, all solutions of (AR), tend to 0
as t — oo and are often referred to as strongly decaying. There are only two
possible types of strongly decaying solutions of (AR),. In fact, a regularly
varying function x(¢), which is expressed as x(¢) = t*&(r), &(¢) € SV, can satisfy
(AR); if p < 0, in which case x(¢#) e RV(p), orif p =0 and &(r) — 0 as t — oo,
in which case x(¢) € ntr-SV = ntr-RV(0).
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THEOREM 8. Let q(t) be regularly varying of index o. Relation (AR);
possesses nontrivial slowly varying solutions if and only if ¢ = —20— 1 and

Jw(t““q(t))l/‘“dt < oo, (48)

in which case any such solution x(t) has the unique asymptotic behavior

. #/(x—p)
*() ~ [ij <s““q<s>>‘/“ds] L i (49)
a(20)"* )

THEOREM 9. Let ¢(t) be regularly varying of index o. Relation (AR),
possesses regularly varying solutions of index p < 0 if and only if 6 < =20 — 1,
in which case p is given by (28) and any such solution x(t) has the unique

asymptotic behavior

) t— 0. (50)

2041 q(?) ] 1/(a—=p)

22 =p)(1 = p)*(=p)”
PrOOF OF THEOREMS 8 AND 9. (The “only if” part.) Let x(z) be

a regularly varying solution of index p of (AR), defined on [f, o0) which

is strongly decaying. Clearly, p <0. Using the expressions ¢(7) = 17/(1),
x(1) = tP&(e), 1(1),&(r) € SV, we obtain

ro Jw UOC Q(u)x(u)ﬁdu}l/“drds = Jw Jv U% W) () P du Wdrds

t N r t A r

x(1) ~ [

for t > t;. The convergence of the integral on the right-hand side implies that
o+ pf < —20— 1. First consider the case where o + pf = —20 — 1. Then, in
view of (iii) of Proposition 1, we have

o0 OO o0 1/0( l/oz o0
J J U ‘I(M)X(u)ﬁdu} drds~<%> J s7U(s) *E)Pds e SV, t— oo,

t N r t

which means that p =0 (i.e., x(f) = &(¢)) and 0 = =22 — 1. Then, from (AR),
we obtain

w0~ )/r ) () ds, 1 o, (s1)

2) ),

Denoting the right-hand side of (51) by y(¢), from (51) we get the
following differential asymptotic relation for y(¢):

1 1/a 1 1/a
. —Blau_ .1 o -1 l/oc: L (o41) fex 1/a
KO0~ (55) 0= (5) O e ()
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The left-hand side of (52) is integrable on [f), o0) (note that y(z) — 0 as
t — o), and so is (1**¢(z))"/*, that is, (48) must hold. An integration of (52)
on [t,00) yields

_ 1/a poo /(a—p)
x(t) ~ y(t) ~ [a b (21—0() J (s““q(s))l/“dS] , [ — 0.

o ¢

Next consider the case where ¢ + pf < —2a — 1. Repeated application of
Karamata’s integration theorem ((ii) of Proposition 1) yields

Jw JOO UOC q(u)x(u)ﬁdu} 1/‘yya’rds

t s r

“2Z(a+pﬁ+2a+1)/xl(t)1/15([)ﬂ/“ .
—(@+pB+ D)o+ 1+ a)l—(o+pf+ 1+ 22)] ”

which, combined with (AR),, gives
a2t(a+pﬁ+2m+1)/al(t)1/“50)#/“
[~(o+pB+ D) [=(0+pp+ 1 +2)|[~(c + pB+ 1+ 22)]
t— o0. (53)

x(t) ~

This means that x(7) e RV((o + pf + 2a+ 1)/a) with o+ pf+ 20+ 1 < 0, and
hence

o+ pf+20+1 N o+ 2a+1
,0_ o p_ OC_ﬁ N

The requirement p < 0 implies ¢ < —2¢ — 1. Taking into account the fact
that

Z(U+/)ﬂ+29c+1)/0(](t)1/1§(t)ﬁ/ac _ 1(2m+1>/aq([)1/(196(1)/,»/(x
and
[—(o+pB+ D]V [=(c+pB+1+a)][—(c+pB+1+20)]
= (=p)(1 = p)(2 = p)" /#2212

we can rewrite (53) as

29+1 q(t 1/(a—p)
a(—=p)* (1 =p)*(2—-p) ’

(The “if” part.) Define the function Y (¢) by

t — 00.

x(1) ~
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»
Fec I 1/“‘ds} TP

a(20) /%
, ( and (48) holds; “
(1) = { 224 (1) T/(“*/}) if o< —2u—1 (54)
a(2=p)(1=-p)*(=p)* J

where p = —"*oi’ﬁ* L

and verify that it satisfies the integral asymptotic relation
0 (OO [ (OO 1/o
J J U q(u)Y(u)/fdu} ~Y(), (- (55)
t N r

If 0 = —2a — 1 and (48) holds, then repeated use of Karamata’s integration
theorem gives

J% q(s) Y (s)Pds = Jw s~ (s) Y (5)Pds ~ 2iz-2°<1(t) Y (1),

! ¢ <

[]] a0 Y(r)ﬁdr]l/ads -

A

N ORS (O (56)

(2a) i

and hence

T q(u)Y(u)ﬁdu 1/mdm’s ~ 11/“ 711( )1/1 Y(s)ﬂ/ads
(221)

t s r

. e
a?z;)lﬁ/“ J, oo st]

= Y(1), t — 0.
If 0 < —200— 1, then we use the expression

()P o+ 20+1

Y - ) - b)
) [06(2—p)(1 —p)“(_p)“]l/(“*ﬁ) p o—f

and compute

0 © X J+/Jﬂl “/(“*ﬁ)dl
J q(s) Y(s)ﬁds = Ji s (S)oc o ;/(afﬁ)
‘ (2= p)(1 = p)"(=p)"]
[1(/)72)1(2«) o/ (a—p)

22 = p)[a(2 = p)(1 = p)*(=p)" /P

~




20 Jaroslav JarOS, TakaSi Kusano and Tomoyuki TANIGAWA

as t — oo. Raising to the power 1/ and continuing to integrate the above
twice on [f,00), we obtain

[ 1]
[/}l(l) 1/(a—p)

- [06(2 —/))(] _p)x(_p)a]l/(x—/)’) = Y(l)a t — 00.

This completes the proof of Theorems § and 9.

Jw q(u) Y(u)ﬂdu] 1/O(dra’s

r

4. Existence of non-primitive positive solutions for equations (A)

We now turn our attention to the existence of moderately growing and
strongly decaying positive solutions of the differential equation (A). In what
follows, the following notation will be used extensively.

Let f(¢f) and g(¢#) be two positive continuous functions defined in a
neighborhood of infinity, say for t> 7. We use the notation f(7) = g(¢),
t — oo, to denote that there exists positive constants m and M such that

myg(t) < f(t) < My(1) for t>T.

If f(¢) satisfies f(f) <g(t), t — oo, for some ¢g(z) which is regularly
varying of index p, then f(¢) is called a nearly regularly varying function of
index p.

Our purpose in this section is to show that equation (A) with nearly
regularly varying coefficient ¢(f) can have nearly regularly varying positive
solutions of types (II) and (V), which behave for r — oo like the regularly
varying solutions of the asymptotic relations (AR); and (AR), whose existence
was established in Theorems 5-9.

4.1. Existence of moderately growing non-primitive solutions of (A).

THEOREM 10. Let q(t) be nearly regularly varying of index o, that is,
q(t) < q4(t), t — o0, for some q,(t) € RV(c). Suppose that o = -2 —1 and
(9) holds. Then, equation (A) possesses a nearly regularly varying solution x(t)
of index p =2 such that

_ o 1/(a—p)
xtxtz{OC ﬁJ szﬁ(,sds}
=252 | (o

, t — 0. (57)

THEOREM 11. Let ¢q(t) be nearly regularly varying of index o, that is,
q(t) < q,(1), t — oo, for some q,(t) € RV(a). Suppose that o€ (—oa—f—1,
—2f — 1). Then, equation (A) possesses a nearly regularly varying solution x(t)
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of index p=(o+20+1)/(0—f) e (1,2) such that

£29+1 4(1) 1/(a=p)

x(1) < )
® (2= p)(p—1)"p

THEOREM 12. Let q(t) be nearly regularly varying of index o, that is,
q(t) < ¢4(1), t — o0, for some q,(t) € RV(c). Suppose that 6 = —o— f — 1 and
(30) holds.  Then, equation (A) possesses a nearly regularly varying solution x(t)
of index p =1 such that

t — o0. (58)

OC—ﬁ t " 1/7 “/(“‘ﬁ)
x(r)x{am/xj(s’* 4o(5)) ~ds] S (59)

a

PrOOF OF THEOREMS 10, 11 AND 12. We give a simultaneous proof of all
three theorems on the basis of Theorems 5-7 concerning moderately growing
regularly varying solutions of the integral asymptotic relation (AR);.

By hypothesis, there are positive constants k¥ and K such that
kq, (1) < q(1) < Kq,(1), t>a. (60)
Define X(7) by

[

1/(2=p)
2%y :|

if 6 =-2f—1 and (9) holds;

ifoe(—a—f—-1,-2—-1),
g+20+1 .,
o—p !

if o =—a—f—1 and (30) holds

tZ“Hqﬁ(t) 1/(e—p)
X = | [t (61)
where p =

(e [ g () ds

o117z

r/ (a=p)

Then, X () satisfies for any b > a the asymptotic relation
tpsST foo 1/a
J J U qg(u)X(u)'Bdu] drds ~ X(1), 1 — oo. (62)
bJb LJr
Choose Ty > a so that
t s 0 1/a
J J U qU(u)X(u)ﬁdu} drds <2X(1), 1> To. (63)
TU TO r
We may assume that X(7) is increasing for 7> Ty. Since by (62) with

b=Tp

J[ JS [r ¢ (U)X (u)ﬁdu}l/adrds ~X(1), t— oo,

Ty
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there exists 77 > Ty such that

J;ﬂ J;} U}v o (u) X (u)” du]l/adrds > %t), 1> T. (64)

One may choose positive constants m and M so that

k

o—f
m < ﬁ,

M* P >4k and mX(T)) < %MX(TO). (65)
Let the integral operator F be defined by

Fx(t) = xo + Jl r Um q(u)x(u)ﬁdu}l/“drds, t > To, (66)

T() T() r

where xy is a positive constant such that
1
mX (T1) < x0 < 5 MX(To), (67)
and let it act on the set

Xy = {x(t) € C[To, OO) : mX(t) < x(t) < MX(I), > To}

which is a closed convex subset of C[T), ).
(i) F(Xo) = Xo. Let x(z) € Xo. Then, we obtain

Fx(t) = xo = mX(Ty) = mX(t) for Ty <t < T,

Fx(1)

\Y

J | J s U " kapla)omX (u))ﬂdu} " s

To J Ty LIr

Y

1
2’k1/°‘m5/“X(t) > mX (1) for 1= T,
and

1 t s
Fx(f) < = MX(Ty) + K'/“Mﬂ/“J J
2 T() T()

JOO qg(u)X(u)ﬁdu] 1/aa’rds

r

—

MX (1) + %MX(t)

NI =

%MX(t) + 2KV MPIX (1) <

IA

= MX(1) for t > T.

This implies that Fx(¢) € Xj.
(i) F(Xo) is relatively compact. The local uniform boundedness of
F(X)) is a consequence of the inclusion F(Xy) = Xp. The local equicontinuity
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of F(X,) follows from the inequality

1

0 1/a
0 < (Fx)'(1) < Kl/“M/’)/“J “ qo(r)X(r)’gdr] ds, t>1T

Ty
which holds for all x(¢) € Xp. The Arzela-Ascoli lemma then ensures the
relative compactness of F(Xj).

(iii) F is continuous. Let {x,(¢)} be a sequence in X, converging to
x(7) € Xo uniformly on compact subintervals of [Ty, c0). Then, by (66) we
have

t s
|Fx,(t) — Fx(1)] < J J F,(r)drds, t > Ty, (68)
Ty J Ty

where

r r

Fu(r) = ’ | q(u)xnw)ﬂdu]w [ q(u)x(u)ﬁdu}l/“ .

To evaluate F,(r) the two cases « > 1 and « < 1 must be distinguished.
If o > 1, then applying the inequality |47 — B”| < |4 — B|” (4 >0, B> 0,
0<y<1), we see that

Fulr) < [r ()| () x<u>”|du}l/a,

r

which combined with (68) gives

(Fx (1) — Fx(1)] < Jt J [r () en(0) — x(u)” du}l/“a’rds.

To J Ty

This implies

(1—Tp)?

2 U“ a(s)|n ()’ - X(S)ﬁlds}l/%, [>T,

Ty

|Fxa(t) = Fx(1)] <

and so the Lebesgue dominated convergence theorem ensures that Fx,(f) —
Fx(t), n — oo, uniformly on compact subintervals of [z, o).
If & <1, then using the mean value theorem, we find

0 (I—a) /ot poo
r < ([ awonwa) | awin” - x
which implies that

_ 2 w0 (1-a)/2 poo
|Fx(£) — Fx(1)] < ﬂ(] q(s)(MX(s))/‘ds) J 4(8)[xen(5)” — x(5)"|ds.

20 To To
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From this it follows via the Lebesgue dominated convergence theorem that
Fx, (1) — Fx(t) as n — oo uniformly on compact subintervals of [Ty, c0).

Thus, by the Schauder-Tychonoff fixed point theorem F has a fixed ele-
ment x(¢) € Xp which satisfies the integral equation

t s © 1/a
x(t) = xo —l—J J U q(u)x(u)ﬂdu] drds, t > Tp. (69)
To JTy LIr

Differentiating (69), we conclude that x(z) is a positive solutions of
equation (A) such that mX(¢) < x(z) < MX(¢) for ¢t > T, which means that
x(?) is a nearly regularly varying function of index 2, p = (6 +2a+1)/(a — )
€(1,2) or 1 according to whether 6 = -2 -1, e (—a—f—1,-26—1) or
o=—o—f—1. This completes the proof of Theorems 10, 11 and 12.

REMARK 1. If 0 = —a—f — 1, (30) is equivalent to the negation of (15),
ie.,

Jm(lﬁ“q(t))l/“dl =0 & Jm “% sﬁq(s)ds}l/“dt = 0.

a a t
4.2. Existence of strongly decaying non-primitive solutions of (A).

THEOREM 13. Let ¢q(t) be nearly regularly varying of index o, that is,
q(t) < q,(t), t — oo, for some q,(t) € RV(o). Suppose that ¢ = —20—1 and
(48) holds.  Then, equation (A) possesses a nearly slowly varying solution x(t)
such that

g 2/ (o)
x(1) = | — J, (s gq(s)) "/ “dS] , t— oo, (70)

o(20) /"

THEOREM 14. Let q(t) be nearly regularly varying of index o, that is,
q(t) < q5(t), t— oo, for some ¢,(t) e RV (o). Suppose that o< —2a—1.
Then, equation (A) possesses a nearly regularly varying solution x(t) of index
p=(c+20+1)/(e—p) <0 such that

[2a+1q0(t) :|1/(1/3)
22— p)(1—p)*(=p)*

PROOF OF THEOREMS 13 AND 14. Define the function Y () by

, t— 0. (71)

x(1) < [

) o/(a—p)
[ “74/1 " (s‘“’lqg(s))l/“ds} ifo=—20—1

2
. (20) and (48) holds; 7
()= [%]w—m ifo<—20—1 )
%(2=p)(1=p)*(—=p)* h (T-;-zOH'l
where p = ==
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Since Y (7) satisfies the relation
0 oo [ o0 1/
Y(z)~J J U qg(u)Y(u)ﬁdu] drds (73)
t s r

as t — oo, there exists T > a such that

%l) < f r [r qg(u)Y(u)ﬂdu]l/adrds <2Y(),  =T. (14)

Choose positive constants m and M so that
o—p k o—f o
m” P < M*F =>2°K, (75)
A

which is possible because of o« > f, and consider the set X, and the integral
operator G defined, respectively, by

X, ={x(t) e C[T,0) :mY(t) <x(t) < MY(t),t > T} (76)
and

Gx(1) = JOC J% Ux q(u)x(u)ﬂdu]l/xdrds, t>T. (77)

t s r

It is clear that X, is a closed convex subset of the locally convex space
C[T, ). It can be shown that G is a continuous self-map on X, and sends X>
into a relatively compact subset of C[T, ).

(i) G(X2) € X. If x(¢) € X, then using (74)—(77), we see that

Gx(1) = k'/* JOO Jw Uw qo(u)(m Y(u))ﬁdu}l/xdrds

t N r

kl/oc
> Tmﬂ/“Y(t) >mY(t),

and
00 OO OO 1/a
Gx(1) < K”“J J U qg(u)(mY(u))ﬁdu} drds
t N r
<2K'Y*MPIPY (1) < MY (1),
for t > T. This implies that Gx(¢) € X>.

(i) G(X>) is relatively compact. The inclusion G(X32) = X, shows that
G(X>) is uniformly bounded on [T,00). The inequality

0> (Gx)(1) = —MP* J ’ [ J e Y(r)ﬂdr}l/“ds, (> T,

t s
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holding for all x(7) € X, implies that G(X3) is equicontinuous on [T, o). The
relative compactness of G(X;) then follows from the Arzela-Ascoli lemma.

(iii) G is continuous. Letting {x,(¢)} be a sequence in X, converging
as n — oo to x(¢) € X, uniformly on any compact subset of [T, c0), we have
to verify that Gx,(7) — Gx(t) as n — oo uniformly on compact subintervals of
[T,0). To this end we need to distinguish the two cases « > 1 and « < 1 in
the following manner.

Let « > 1. Then, we have

G50~ vl < [ [ ][ atwls o’ - x<u>ﬂ|du}wdrds

t A r

T K

0 00 1/
< J SU q(r)|xn(r)ﬂ—x(r)ﬁdr] ds, 1>T. (78)
Since the function

(o) =s| | a0 - x(r)f‘wr]l/“
satisfies

i <s( [ q(r)(MY(r))ﬂdr)l/“

N

which is integrable over [T, o), and g,(s) — 0 as n — oo for each s > T, we
are able to apply the Lebesgue convergence theorem to (78), concluding that
Gx,(t) — Gx(t), n — oo, uniformly on [T, o).

Let « < 1. The, we have

|Gx, (1) — Gx(1)]

lr r (Jm q(u)(MY(u))ﬁdu>(l_“)/aJw () en ()? — () |duclrdls

<
aJe Js \Jr r
<] q(r)(MY(r))ﬂdr)M/“
<[ a0 = 50 das, 1> (79)

The function

o0

mio ([ q(r)(MY(r))f‘dr)M/“j 49 (1) — x|

N S
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is bounded from above by

(] q(r)(MY(r))ﬂdr)l/a

N

which is integrable on [T, o0), and tends to 0 as n — oo at each s> T, we
conclude via the Lebesgue convergence theorem that Gx,(7) — Gx(f) uniformly
on any compact subinterval of [T, o).

Thus all the hypotheses of the Schauder-Tychonoff fixed point theorem
are fulfilled, and there exists x(z) € X, such that x(¢) = Gx(¢) for 1 > T, that
is,

0 OO [ (OO 1/a
x(t) = J J U q(u)x(u)ﬁdu] drds, t>T. (80)
t s r

Differentiating (80) three times, we conclude that x(z) is a solution of equa-
tion (A) satisfying mY (¢) < x(f) < MY(¢) for t > T. From (72) it follows
that the solution x(¢) is nearly regularly varying function of index 0 or of
index p=(6+2a+1)/(e —f) <0 according to whether 6 = —2a—1 or g <
—20— 1. This completes the proof.

REMARK 2. If 0= —-20—1, (48) is equivalent to (17), i.e.,

Jm(t““q(t))l/“dt <o & Jw z“m q(s)ds]l/adt < .

a a t

5. Regularly varying solutions of (A)

Our purpose in this section is to demonstrate that in the case where
the coefficient ¢(¢f) in (A) is a regularly varying function, the existence of
regularly varying solutions of index pe (—o00,0]U[1,2] can be completely
characterized and, moreover, the exact asymptotic behavior of these solu-
tions can be described explicitly by the unique asymptotic formula. This can
be done with the help of the following generalization of the L’Hospital rule
(see Haupt and Aumann [2]). The use of this lemma was suggested by J.
Manojlovic.

LemMA 4. Let f,ge C'[T, ) and suppose that

lim f(7) = lim g(t) = o0 and ¢'() >0 for all large t,

t— 00 t—0o0
or

lim f(7) = lim g(¢) =0 and g¢'(t) <0  for all large t.

—0o0 t— 00
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Then
/(@) /(@)

i
fim inf < timinf 29 timsup 29 < timsup 2.
= g'(t) —w (1) - g(t —w g'(1)

First we characterize the existence of regularly varying solutions which
grow moderately at infinity.

THEOREM 15. Let ¢(t) be regularly varying of index a. Then, equation (A)
possesses nontrivial regularly varying solutions of index 2 if and only if o=
—2f — 1 and (9) holds, in which case the asymptotic behavior of any such solution
x(t) is governed by the formula (27).

THEOREM 16. Let q(t) be regularly varying of index a. Then, equation (A)
possesses regularly varying solutions of index pe (1,2) if and only if o€
(—o—p—1,-28—1), in which case p is given by (28) and the asymptotic
behavior of any such solution x(t) is governed by (29).

THEOREM 17. Let ¢(t) be regularly varying of index . Then, equation (A)
possesses nontrivial regularly varying solutions of index 1 if and only if ¢ =
—o—f—1 and (30) holds, in which case the asymptotic behavior of any such
solution x(t) is governed by the formula (31).

PROOF OF THEOREMS 15, 16 AND 17. We give a simultaneous proof of these
theorems.

The “only if” parts follow from the ““only if” parts of Theorems 5, 6 and
7, respectively, because all moderately growing solutions of equation (A) satisfy
the asymptotic relation (AR);.

To prove the “if” parts, suppose that ¢ and ¢(7) satisfy the conditions
specified in these theorems. We use the function X (¢) defined by (43). From
Theorems 10, 11 and 12 applied to the special case of (A) where ¢(z) € RV(0o)
(i.e. q(t) = ¢q,(t)) we see that equation (A) possesses nearly regularly varying
solutions x(#) which are obtained as solutions of the integral equation

X(1) = xo+ Jt J Uw q(u)x(u)/}du]l/adrds, 1> T, (81)

TQ T() r
(cf. (69)) satisfying the inequality
mX(t) < x(t) < MX(1), t> Ty, (82)

for some suitably chosen positive constants Ty, xo, m and M. Define J(¢) by

J(1) Jt J UT q(u)X(u)ﬁdu]l/adrds, t =Ty, (83)

To T() r



Asymptotic analysis of positive solutions 29

which satisfies (cf. (44))

J(t) ~ X(1), t — o0. (84)
Put
lzlimglf%7 L:Iirtrlsollp%. (85)

From (81) and (82) it follows that 0 </ < L < c0.
Repeated application of the generalized L’Hospital rule gives

/ ! © /)’d l/xd
lzmmmﬂﬁznmm”ﬁtﬂmmr%%fMM”f%S
e Q) e SN L ()X () i s

v qls)x(s)as]"
“ q(s)X (s)Pds

> liminf
— o0

0 1/a
lim inf AL 4@x(8)ds
= [T q(s)X (5)ds

R 0 L R PO 1) L R 1)) LR
> [h?lglf Wl = {hgglf m} = {hmlnf —)} = [b/",

Note that in the last step we have used (84). Since / > 0 is finite and o > f§ the
inequality /> I#/* implies

1</< . (86)
Similarly, it can be shown that

0<L<l. (87)

From (86) and (87) it follows that /=L =1, that is, lim,.,, x(¢)/J(¢) = 1.
Therefore, in view of (84) we conclude that

x(8) ~ J(t) ~ X(1), t— o0,

which establishes the regularity of x(7) and the validity of the desired precise
asymptotic formula for x(7) simultaneously.

In the next two theorems we characterize the existence of regularly varying
strongly decaying solutions of (A) where ¢(7) € RV(o).

THEOREM 18. Let ¢(t) be regularly varying of index . Then, equation (A)
possesses nontrivial slowly varying solutions if and only if 0 = =20 — 1 and (48)
holds, in which case the asymptotic behavior of any such solution x(t) is governed
by the formula (49).

THEOREM 19.  Let ¢(t) be regularly varying of index . Then, equation (A)
possesses regularly varying solutions of index p < 0 if and only if ¢ < =20 — 1,
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in which case p is given by (28) and the asymptotic behavior of any such solution
x(t) is governed by (50).

PROOF OF THEOREMS 18 AND 19. We give a simultaneous proof of both
theorems.

(The “only if” parts) Notice that all strongly decaying solutions of
equation (A) satisfy the asymptotic relation (AR), and apply the “only if”
parts of Theorems 8 and 9.

(The “if” parts) Suppose that o and ¢(7) satisfy the conditions specified in
the theorems. We use the function Y (7) defined by (72). From Theorems 13
and 14 applied to the special case of (A) where ¢(7) € RV(a) (i.e. ¢(t) = ¢,(?))
we see that equation (A) possesses nearly regularly varying solutions x(z) which
are obtained as solutions of the integral equation

00 OO T (OO 1/o
x(1) :J J U q(u)x(u)ﬂdu] drds, t>T, (88)
t S r
(cf. (80)) satisfying the inequality
mY (1) < x(t) < MY (1), t>T, (89)
where T, m and M are suitably chosen positive constants. Define K(7) by
0 (oo [ o0 1/a
K(1) :J J U q(u)Y(u)ﬁdu} drds, t>T, (90)
t N r
which satisfies (cf. (73))
K(t) ~ Y(1), t— 0. (91)
Put
x(1) - x(1)
A=liminf —=% A =limsup —=. 92
O P K@) 2

From (88) and (89) it follows that 0 < A < A < oo.
Repeated application of the generalized L’Hospital rule gives

i B g.11/0
i—hmmfﬂ > lim x'(1) _ L fs (r)x(r)"dr]""ds

m k= M e IZUE q) Y ()P dr'ds

ﬂd 58] ﬁd 1/a
lim inf J7 als)x(s)as) " liminf J_900)¥()"ds
t—o0 I qs Y ﬁ’ds o

vV

8 1/o
lim inf LX)
= q() Y ()

Y

B Bla
— [lim inf ﬂ] - [nm inf @} — b,
—w Y Z)
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Note that (91) has been used in the last step. Since 4 > 0 is finite and o > f
the inequality 4 > A#/* implies

1 <1< 0. (93)
Similarly, it can be shown that

0<A<1. (94)

From (93) and (94) it follows that 2= A =1, that is, lim, . x(¢)/K(¢) = 1.
Therefore, in view of (91) we conclude that

x(t) ~ K(t) ~ Y (1), t — 0.

This shows that x(¢) is regularly varying and enjoys the precise asymptotic
behavior as formulated in the theorems.

6. Concluding remarks and examples

REMARK 3. We are now able to answer (at least partially) the questions
(i) and (ii) raised in Section I.

(i) Let g(7) be a regularly varying function. According to the results
in Section 3, equation (A) may possess regularly varying solutions which are
strongly decaying only when (2) does not hold. Therefore, if (2) holds, (A)
cannot have nonoscillatory solutions x(¢) such that |x(¢)| is regularly varying
and tending to 0 as t — oo. We are tempted to conjecture that in this case all
proper solutions of equation (A) are oscillatory if and only if (2) holds.

(i) If (2) fails to hold (i.e., the condition (9) is satisfied), then the
existence of trivial regularly varying solutions of indices 0, 1 and 2 of (A) is
completely characterized by Theorems 1, 2 and 3, where the coefficient ¢(¢) is a
general positive continuous function and does not need to be regularly varying.
On the other hand, if we limit ourself to the special case where ¢(¢) is assumed
to vary regularly at infinity, the in-depth analysis carried out in the preceding
sections shows that we can obtain a series of new results on the existence and
precise asymptotic behavior of nontrivial regularly varying solutions of equa-
tion (A). Summarizing and combining these results, we are able to draw fairly
precise and clear picture of the overall structure of the set of positive regularly
varying solutions of equation (A). In particular, we can determine whether or
not the coexistence of trivial and nontrivial regularly varying solutions of index
j€{0,1,2} takes place for (A).

ExampLE 1. Let 0 < f < a and consider the equation

(""" + @ ()" x = 0, (A1)
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where
200

- 122+ (log 1)*(log log 1)** 7’

It is easy to see that the function ¢;(¢#) e RV(—20 — 1) satisfies

q (1) t — 0.

0 1/a
J (s* g (s)) "/ *ds ~ (2:‘) ﬁa(log log )P/ 41— o0,

) _
Hence Theorem 18 ensures the existence of nontrivial slowly varying solutions
x(t) of (A;) all of which have the unique asymptotic behavior

1
log log ¢’

x(1)

t — 00.

ExampLE 2. Let 0 < ff < o and consider the equation

(""" + a0 x = 0,

q2(1)

a
1+5+1(log 1)*(log log 1)’

t — o0. (Az)

The function ¢,(f) e RV(—a — f — 1) satisfies

o/ (00—, a/(“_ﬁ)
- B - a /(e=p) 2—f ds
[l—uj O B | 7

a o Jaslogs(loglog s
~ log log ¢

as t — oo, where a = exp(e), and so from Theorem 17 it follows that equation
(A,) possesses moderately growing solutions which are regularly varying of
index 1. All such solutions x(#) have the unique asymptotic behavior

x(t) ~ tloglog 1, t— 0.
ExampLE 3. Let 0 < f < o and consider the equation

2%

myo—1_m\/ p—1_ ~
(P as O =0 )~ e

t — 0. (A3)

As easily checked, the function ¢3(f) € RV(—2f — 1) satisfies

ke es) » 1/ah)
a=B (" 2 ] J ds
NV ~ (e = Y
[2“06 L s as(5)ds l(a P ¢ s(log s)"‘_/f+l
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and so Theorems 15 ensures the existence of moderately growing solutions
which are regularly varying of index 2. All such solutions x(f) obey the
unique asymptotic formula

ExampPLE 4. Let 0 < ff < o and consider the equation
(X"*%") + qa()|x|"'x =0, qa(t) =1 exp(d(log 1)'* cos(log 1)'?), (Aq)

where ¢ and 0 are constants.
(i) Let o =—20—1—2L which is the regularity index of g4(¢). Note

2041
that 0 < —2¢ — 1 and the constant p defined by (28) is p = and

2%(4o+ 3) (o + 1)

1
20+1°

Q2=p)(1=p)(=p)" =

(20{ + 1)20¢+1
By Theorem 19 there exist strongly decaying solutions x(#) of equation (A4)
which are regularly varying of index —5l'5 and behave like

Qo4+ 12 1P

X(#) ~ [2“0{(40( 3D

0
« 4141 ey [Tﬁ (log 1)!7* cos(log r)‘”] £ — oo.

(i) Let 6 =—20—1+3(x—p) which is the regularity index of gu(7).
Note that oe (—a—f —1,-2f—1) and the constant p defined by (28) is
p=3, and

o o & 3 i
(2 =p)p=1)"p* =3 (4) :

Therefore, Theorem 16 shows that equation (A4) has moderately growing
solutions x(r) which are regularly varying of index 3 and behave like

22%+l 1/(a—p) S
x(t) ~ ( ) % exp [oc—[)’ (log 1)1/3 cos(log t)l/ﬂ , t — 0.
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