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Jaroslav Jaroš, Takaŝi Kusano and Tomoyuki Tanigawa

(Received February 3, 2012)

(Revised September 4, 2012)

Abstract. It is shown that an application of the theory of regular variation (in

the sense of Karamata) gives the possibility of determining the existence and precise

asymptotic behavior of positive solutions of the third-order nonlinear di¤erential

equation ðjx 00ja�1
x 00Þ 0 þ qðtÞjxjbx ¼ 0, where a > b > 0 are constants and q : ½a;yÞ !

ð0;yÞ is a continuous regularly varying function.

1. Introduction

We consider the third order nonlinear di¤erential equation

ðjx 00ja�1
x 00Þ 0 þ qðtÞjxjb�1

x ¼ 0; ðAÞ

where a and b are positive constants such that a > b and q : ½a;yÞ ! ð0;yÞ is

a continuous function, a > 0.

By a solution of (A) we mean a function x : ½Tx;yÞ ! R, Tx b a, which

satisfies (A) (so that jx 00ja�1
x 00 is continuously di¤erentiable) for all su‰ciently

large t and is nontrivial (proper) in the sense that

supfjxðtÞj : tbTg > 0 for any T bTx:

Such a solution is called oscillatory if it has an infinite sequence of zeros

clustering at infinity, and nonoscillatory otherwise.

Our first goal in this paper is to obtain necessary and su‰cient conditions

for all proper solutions of (A) to be oscillatory or satisfying

jxðiÞðtÞj # 0 as t " y; i ¼ 0; 1; 2; ð1Þ

(the so-called Property A of equation (A)). It will be shown in Section 2, that

the above property of equation (A) generalizing the known result for sublinear

Emden-Fowler equation of the third order with a ¼ 1 is characterized by the
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condition ðy
a

t2bqðtÞdt ¼ y: ð2Þ

With regard to this result it is natural to ask the following two questions:

(i) If (2) holds, does equation (A) really possess nonoscillatory solutions

satisfying (1)? And if the answer is ‘‘Yes’’, is it possible to describe asymptotic

behavior of such solutions at infinity explicitly and precisely?

(ii) If (2) does not hold, is it possible to characterize the existence of

nonoscillatory solutions of (A) which do not satisfy (1) and obtain accurate

asymptotic formulas governing their behavior at infinity?

In looking for the answers to the above questions, a combination of

methods of the theory of regular variation with a fixed point technique has

been utilized. Such an approach has shown to be very e¤ective and powerful,

and produced a series of new interesting results recently (see [3], [4] and [5]).

To obtain the desired detailed information, we begin with classifying the

set of all possible nonoscillatory (or equivalently positive) solutions of (A) into

five disjoint subclasses. It su‰ces to restrict our consideration to positive

solutions of (A), since if xðtÞ is a solution of (A), then so is �xðtÞ.
Let xðtÞ be an eventually positive solution of equation (A). Then, there

are two possibilities for x 0ðtÞ and x 00ðtÞ: either

x 0ðtÞ > 0 and x 00ðtÞ > 0 for all large t ð3Þ

or

x 0ðtÞ < 0 and x 00ðtÞ > 0 for all large t: ð4Þ

If (3) holds, then the limit x 00ðyÞ ¼ limt!y x 00ðtÞ ¼ 2 limt!y xðtÞ=t2 exists

and is either zero or a finite positive number. If x 00ðyÞ ¼ 0, then x 0ðtÞ
increases to a positive limit x 0ðyÞ, finite or infinite, as t ! y, implying that

limt!y xðtÞ=t ¼ x 0ðyÞ. If (4) holds, then xðtÞ is an eventually decreasing

function and xðyÞ ¼ limt!y xðtÞ is either zero or a strict positive finite

value. In both cases x 00ðyÞ ¼ 0. Summarizing the above observations, we

see that eventually positive solutions of (A) fall into the following five types:

lim
t!y

xðtÞ
t2

¼ const > 0 ðIÞ

lim
t!y

xðtÞ
t

¼ y; lim
t!y

xðtÞ
t2

¼ 0 ðIIÞ

lim
t!y

xðtÞ
t

¼ const > 0 ðIIIÞ
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lim
t!y

xðtÞ ¼ const > 0 ðIVÞ

lim
t!y

xðtÞ ¼ 0: ðVÞ

Note that the functions ft2; t; 1g are particular solutions of the unperturbed

di¤erential equation

ðjx 00ja�1
x 00Þ 0 ¼ 0:

The solutions of (A) which are asymptotic to constant multiples of t2, t or 1 as

t ! y, i.e., the solutions satisfying (I), (III) or (IV), respectively, are referred

to as primitive solutions of equation (A). If we use the symbol@ to denote the

asymptotic equivalence of two positive functions f ðtÞ and gðtÞ, i.e.

f ðtÞ@ gðtÞ as t ! y , lim
t!y

f ðtÞ
gðtÞ ¼ 1 ð5Þ

then a primitive solution xðtÞ of (A) satisfies xðtÞ@ ct2, xðtÞ@ ct or xðtÞ@ c as

t ! y for some constant c > 0.

In Section 2 we show via the Schauder-Tychono¤ fixed point theorem that

the existence of primitive solutions of all three types for (A) can be completely

characterized. Our e¤orts in the subsequent sections will be focused on

proving the existence of non-primitive solutions of equation (A), that is, positive

solutions satisfying either (II) or (V) and analyzing their asymptotic behavior at

infinity as accurately as possible.

If (A) has a type (II)-solution xðtÞ defined on ½T ;yÞ, then integrating (A)

once on ½t;yÞ, using that x 00ðyÞ ¼ 0, raising to the power 1=a and then

integrating twice from T to t, we obtain

xðtÞ ¼ c0 þ c1ðt� TÞ þ
ð t
T

ð s
T

ðy
r

qðuÞxðuÞbdu
� �1=a

drds

¼ c0 þ c1ðt� TÞ þ
ð t
T

ðt� sÞ
ðy
s

qðrÞxðrÞbdr
� �1=a

ds; tbT ; ð6Þ

where c0 ¼ xðTÞ > 0 and c1 ¼ x 0ðTÞb 0. In what follows we will often make

use of the integral asymptotic relation

xðtÞ@
ð t
T

ð s
T

ðy
r

qðuÞxðuÞbdu
� �1=a

drds; t ! y; ðARÞ1

which can be considered as an ‘‘approximation’’ of (6). If xðtÞ is a non-

primitive solution of type (V) for (A), then x 00ðyÞ ¼ x 0ðyÞ ¼ xðyÞ ¼ 0 and
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the triple integration of (A) on ½t;yÞ leads to

xðtÞ ¼
ðy
t

ðy
s

ðy
r

qðuÞxðuÞbdu
� �1=a

drds; tbT ; ð7Þ

which can be approximated by the integral asymptotic relation

xðtÞ@
ðy
t

ðy
s

ðy
r

qðuÞxðuÞbdu
� �1=a

drds; t ! y: ðARÞ2

If the coe‰cient qðtÞ is a general continuous positive function, then it is

a very di‰cult task to extract the information about the existence and precise

asymptotic behavior of non-primitive solutions directly from (A) or from the

corresponding integral equations (6) and (7). But if we restrict ourselves to the

case of qðtÞ which is a regularly varying function (in the sense of definition given

below) and consider only the regularly varying solutions, then the asymptotic

analysis of (A) can be made quite easily in two subsequent steps. First, in

Section 3, we establish the existence of regularly varying solutions of the

integral asymptotic relations (AR)1 (resp. (AR)2) and next, in Section 4, we

show that these solutions of relations (AR)1 (resp. (AR)2) can be used to define

suitable subsets of the locally convex space C½T ;yÞ so that the Schauder-

Tychono¤ fixed point theorem is e¤ectively applicable to certain integral

operators generated by (6) (resp. (7)) defined on these subsets.

For the reader’s benefit we recall here the definition and some properties

of regularly varying functions. A measurable function f : ð0;yÞ ! ð0;yÞ is

called regularly varying of index r A R if it satisfies

lim
t!y

f ðltÞ
f ðtÞ ¼ lr for El > 0;

or, equivalently, it is expressed in the form

f ðtÞ ¼ cðtÞ exp
ð t
t0

dðsÞ
s

ds

� �
; tb t0;

for some t0 > 0 and some measurable functions cðtÞ and dðtÞ such that

lim
t!y

cðtÞ ¼ c0 A ð0;yÞ and lim
t!y

dðtÞ ¼ r:

If cðtÞ1 c0, then f ðtÞ is referred to as a normalized regularly varying

function of index r.

The totality of regularly varying functions of index r is denoted by

RVðrÞ. We often use the symbol SV instead of RV(0) and call members of

SV slowly varying functions. By definition any function f ðtÞ A RVðrÞ is written
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as f ðtÞ ¼ trgðtÞ with gðtÞ A SV. So, the class SV of slowly varying functions

is of fundamental importance in theory of regular variation. Typical examples

of slowly varying functions are: all functions tending to positive constants as

t ! y,

YN
n¼1

ðlogn tÞ
an ; an A R; and exp

YN
n¼1

ðlogn tÞ
bn

( )
; bn A ð0; 1Þ;

where logn t denotes the n-th iteration of the logarithm. It is known that the

function

LðtÞ ¼ expfðlog tÞ1=3 cosðlog tÞ1=3g

is a slowly varying function which is oscillating in the sense that

lim sup
t!y

LðtÞ ¼ y and lim inf
t!y

LðtÞ ¼ 0:

A function f ðtÞ A RVðrÞ is called a trivial regularly varying function of

index r if it is expressed in the form f ðtÞ ¼ trLðtÞ with LðtÞ A SV satisfying

limt!y LðtÞ ¼ const > 0. Otherwise f ðtÞ is called a nontrivial regularly vary-

ing function of index r. The symbol tr-RVðrÞ (or ntr-RVðrÞ) is used to denote

the set of all trivial RVðrÞ-functions (or the set of all nontrivial RVðrÞ-
functions). According to this definition a primitive solution xðtÞ of (A) such

that xðtÞ@ ct j, t ! y, for some c > 0 and j A f0; 1; 2g, is a trivial regularly

varying function of index j, i.e. xðtÞ A tr-RVð jÞ.
The following proposition known as Karamata’s integration theorem, is

particularly useful in handling slowly and regularly varying functions analyti-

cally and is often used throughout the paper.

Proposition 1. Let LðtÞ A SV. Then

(i) if a > �1,ð t
a

saLðsÞds@ 1

aþ 1
taþ1LðtÞ; t ! y;

(ii) if a < �1,ðy
t

saLðsÞds@� 1

aþ 1
taþ1LðtÞ; t ! y;

(iii) if a ¼ �1,

lðtÞ ¼
ð t
a

LðsÞ
s

ds A SV and lim
t!y

LðtÞ
lðtÞ ¼ 0;
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and

mðtÞ ¼
ðy
t

LðsÞ
s

ds A SV and lim
t!y

LðtÞ
mðtÞ ¼ 0:

The reader is referred to Bingham et al. [1] for the most complete

exposition of theory of regular variation and its applications and to Marić

[6] for the comprehensive survey of results up to 2000 on the asymptotic

analysis of second order linear and nonlinear ordinary di¤erential equations in

the framework of regular variation.

2. Existence of primitive solutions of (A)

In this section we establish necessary and su‰cient conditions for the

existence of trivial regularly varying solutions of indices 2, 1 and 0 of equation

(A), that is, positive solutions of types (I), (III) and (IV), respectively.

Theorem 1. Equation (A) has positive solutions xðtÞ such that

lim
t!y

xðtÞ
t2

¼ const > 0 ð8Þ

if and only if ðy
a

t2bqðtÞdt < y: ð9Þ

Proof. (The ‘‘only if ’’ part.) Let xðtÞ be an eventually positive solution

of (A) satisfying (8). Then, there exist positive constants c1, c2 and t0 b a such

that

c1t
2
a xðtÞa c2t

2 ð10Þ

for tb t0. An integration of (A) yields

ðy
t0

qðtÞxðtÞbdt < y; ð11Þ

which combined with (10) implies (9).

(The ‘‘if ’’ part.) Let (9) hold and c > 0 be any given constant. Choose

t0 b a large enough so that

ðy
t0

t2bqðtÞdta ð2a � 1Þca�b: ð12Þ

6 Jaroslav Jaroš, Takaŝi Kusano and Tomoyuki Tanigawa



Let X HC½t0;yÞ and F : X ! C½t0;yÞ be defined as follows:

X ¼ x A C½t0;yÞ : c
2
ðt� t0Þ2 a xðtÞa cðt� t0Þ2; tb t0

� �
;

FxðtÞ ¼
ð t
t0

ð s
t0

ca þ
ðy
r

qðuÞxðuÞbdu
� �1=a

drds; tb t0:

Clearly, X is a closed convex subset of the Fréchet space C½t0;yÞ with the

topology of uniform convergence on compact subintervals of ½t0;yÞ. It can be

shown routinely that the integral operator F is a continuous self-map on X and

sends X into a relatively compact subset of C½t0;yÞ. Hence by the Schauder-

Tychono¤ fixed point theorem there exists a function xðtÞ A X such that

xðtÞ ¼ FxðtÞ, tb t0, that is,

xðtÞ ¼
ð t
t0

ð s
t0

ca þ
ðy
r

qðuÞxðuÞbdu
� �1=a

drds; tb t0: ð13Þ

Di¤erentiation of (13) shows that xðtÞ is a solution of (A) that satisfies (8).

Theorem 2. Equation (A) has positive solutions xðtÞ such that

lim
t!y

xðtÞ
t

¼ const > 0 ð14Þ

if and only if ðy
a

ðy
t

sbqðsÞds
� �1=a

dt < y: ð15Þ

Proof. (The ‘‘only if ’’ part.) Suppose that (A) has a positive solution

xðtÞ which satisfies (14). Integrating (A) from t to y, we have

ðx 00ðtÞÞa ¼
ðy
t

qðsÞxðsÞbds; tb t0;

or, equivalently,

x 00ðtÞ ¼
ðy
t

qðsÞxðsÞbds
� �1=a

; tb t0:

Integrating this equation again and using the inequality xðtÞb c1t holding

for tb t0 and some constant c1 > 0 (a consequence of (14)), we conclude

that ðy
t0

ðy
t

sbqðsÞds
� �1=a

dt < y:
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(The ‘‘if ’’ part.) If (15) holds, then for any given constant c > 0 we can

choose t0 > a so that ðy
t0

ðy
t

sbqðsÞds
� �1=a

dta
1

2
c1�b=a:

Then, as in the proof of Theorem 1, we can show that the integral operator G

defined by

GxðtÞ ¼
ð t
t0

c�
ðy
s

ðy
r

qðuÞxðuÞbdu
� �1=a

dr

 !
ds; tb t0;

has a fixed point xðtÞ in the set

X ¼ xðtÞ A C½t0;yÞ : c
2
ðt� t0Þa xðtÞa cðt� t0Þ; tb t0

� �
;

which gives birth to a solutions of (A) satisfying (14).

Theorem 3. Equation (A) has positive solutions xðtÞ such that

lim
t!y

xðtÞ ¼ const > 0 ð16Þ

if and only if ðy
a

t

ðy
t

qðsÞds
� �1=a

dt < y: ð17Þ

Proof. (The ‘‘only if ’’ part.) Suppose that (A) has a solution xðtÞ which
is positive for tb t0 and such that (16) holds. Repeated integration of (A)

shows that ðy
t0

t

ðy
t

qðsÞxðsÞbds
� �1=a

dt < y

which together with the inequality xðtÞb c1 holding for some constant c1 > 0

and all su‰ciently large t implies (17).

(The ‘‘if ’’ part.) Let c > 0 be an arbitrary constant and choose t0 b a

large enough so that ðy
t0

t

ðy
t

qðsÞds
� �1=a

dta 2�1=ac1�b=a:

This is possible because of (17). Define

X ¼ fxðtÞ A C½t0;yÞ : ca xðtÞa 2c; tb t0g
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and

HxðtÞ ¼ cþ
ðy
t

ðy
s

ðy
r

qðuÞxðuÞbdu
� �1=a

drds; tb t0:

It is easy to verify that H is continuous and maps X into a compact subset

of X , and hence the operator H has a fixed element x in X , which gives the

desired solution of equation (A).

Lemma 1. Let xðtÞ be an eventually positive solution of (A) which satisfies

(3). Then there exist L > 0 and T > a such that

xðtÞbLt2x 00ðtÞ; tbT : ð18Þ

Proof. Since x 00ðtÞ is positive and nonincreasing on ½t0;yÞ for some

t0 > a, it follows that

x 0ðtÞ ¼ x 0ðt0Þ þ
ð t
t0

x 00ðsÞdsb ðt� t0Þx 00ðtÞ for tb t0: ð19Þ

Inequality (19) yields

xðtÞ ¼ xðt0Þ þ
ð t
t0

x 0ðsÞdsb
ð t
t0

ðs� t0Þx 00ðsÞdsb ðt� t0Þ2

2
x 00ðtÞ; tb t0;

and so (18) holds for some constant L > 0 and T > t0.

Lemma 2. Assume that (A) has a positive solution which satisfies (3).

Then the integral condition (9) holds.

Proof. An integration of (A) gives

ðx 00ðtÞÞa b
ðy
t

qðsÞxðsÞbds; tbT : ð20Þ

Denote the right-hand side of (20) by yðtÞ. Then, by (18) from Lemma 1,

xðtÞbLt2yðtÞ1=a; tbT ; ð21Þ

where L is a positive constant. The inequality (21) implies

y 0ðtÞ ¼ �qðtÞxðtÞb a�LbqðtÞt2byðtÞb=a; tbT ;

from which it follows thatð t
T

y 0ðsÞ
yðsÞb=a

dsa�Lb

ð t
T

s2bqðsÞds
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and hence

a

a� b
fyðtÞða�bÞ=a � yðTÞða�bÞ=aga�Lb

ð t
T

s2bqðsÞds; tbT :

Since a > b, we obtain

a

a� b
yðTÞða�bÞ=a

bLb

ð t
T

s2bqðsÞds; tbT ;

which implies (9).

The proof of the following lemma is patterned after the proof of Naito

et al. [7, Lemma 8].

Lemma 3. If a > b, then the integral condition (17) implies (9).

Proof. From (17) it follows that there exists an M > 0 such thatð t
a

s

ðy
s

qðrÞdr
� �1=a

dsaM

for tb a: Then ð t
a

s ds �
ðy
t

qðrÞdr
� �1=a

aM; tb a;

and so there exists an M1 such that

t2
ðy
t

qðrÞdr
� �1=a

aM1; tb a;

or, equivalently, ðy
t

qðrÞdraM a
1 t

�2a ð22Þ

for tb a. Multiplying (22) by t�1þ2b and integrating from a to t, we find that

t2b

2b

ðy
t

qðrÞdr� a2b

2b

ðy
a

qðrÞdrþ 1

2b

ð t
a

s2bqðsÞdsaM a
1

ð t
a

s�1�2aþ2b ds:

This gives ð t
a

s2bqðsÞdsa a2b
ðy
a

qðrÞdrþ 2bM a
1

ð t
a

s�1�2aþ2b ds: ð23Þ

Since the assumption a > b implies �1� 2aþ 2b < �1, the last integral

in (23) (and consequently also the integral on the left-hand side) converges as

t ! y. Thus, we get (9) and the proof is complete.
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As a consequence of Lemmas 1–3 we obtain the following result.

Theorem 4. Any proper solution xðtÞ of (A) is oscillatory or satisfies

jxðiÞðtÞj # 0 as t " y; i ¼ 0; 1; 2; ð24Þ

if and only if ðy
a

t2bqðtÞdt ¼ y: ð25Þ

Proof. The necessity of the condition (25) follows from Theorem 1. To

prove the su‰ciency part, note that the existence of eventually positive

solutions satisfying (3) is impossible due to Lemma 2. On the other hand,

by Lemma 3 the only possible positive solutions which satisfy (4) are those of

type (V).

Nonexistence of eventually negative solutions other than those satisfying

(24) follows from the fact that if xðtÞ is a solution of (A), then so is �xðtÞ.

3. Integral asymptotic relations for non-primitive solutions of (A)

3.1. Asymptotic relations for moderately growing solutions. We begin by

considering positive solutions of the integral asymptotic relation (AR)1 with

regularly varying qðtÞ which satisfy

lim
t!y

xðtÞ
t

¼ y; lim
t!y

xðtÞ
t2

¼ 0: ð26Þ

All such solutions tend to infinity as t ! y and are often referred to as

moderately growing. The set of all moderately growing positive solutions of

(AR)1 consists of three disjoint subclasses which follows from the observation

that a regularly varying function xðtÞ ¼ trxðtÞ, where xðtÞ A SV, can satisfy

(AR)1 and (26) only if r ¼ 2 and xðtÞ ! 0 as t ! y (i.e. xðtÞ A ntr-RV(2)),

or r A ð1; 2Þ (i.e. xðtÞ A RVðrÞ), or r ¼ 1 and xðtÞ ! y as t ! y (i.e. xðtÞ A
ntr-RV(1)).

Theorem 5. Let qðtÞ be regularly varying of index s. Relation (AR)1
possesses nontrivial regularly varying solutions of index 2 if and only if s ¼
�2b � 1 and (9) holds, in which case any such solution xðtÞ enjoys one and the

same asymptotic behavior

xðtÞ@ t2
a� b

2aa

ðy
t

s2bqðsÞds
� �1=ða�bÞ

; t ! y: ð27Þ

Theorem 6. Let qðtÞ be regularly varying of index s. Relation (AR)1
possesses regularly varying solutions of index r A ð1; 2Þ if and only if s A
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ð�a� b � 1;�2b � 1Þ, in which case r is given by

r ¼ sþ 2aþ 1

a� b
; ð28Þ

and any such solution xðtÞ enjoys one and the same asymptotic behavior

xðtÞ@ t2aþ1qðtÞ
að2� rÞðr� 1Þara

� �1=ða�bÞ

; t ! y: ð29Þ

Theorem 7. Let qðtÞ be regularly varying of index s. Relation (AR)1
possesses nontrivial regularly varying solutions of index 1 if and only if s ¼
�a� b � 1 and ðy

a

ðtbþ1qðtÞÞ1=adt ¼ y; ð30Þ

in which case any such solution xðtÞ enjoys one and the same asymptotic behavior

xðtÞ@ t
a� b

a1þ1=a

ð t
a

ðsbþ1qðsÞÞ1=ads
� �a=ða�bÞ

; t ! y: ð31Þ

Proof of theorems 5, 6 and 7. (The ‘‘only if ’’ part.) Suppose that

(AR)1 has a solution xðtÞ A RVðrÞ on ½t0;yÞ satisfying (26) and express it as

xðtÞ ¼ trxðtÞ, xðtÞ A SV. Because of (26), we must have r A ½1; 2� and xðtÞ ! y
or xðtÞ ! 0 as t ! y according as r ¼ 1 or r ¼ 2, respectively. Using the

expression qðtÞ ¼ tslðtÞ, lðtÞ A SV, we obtainðy
t

qðsÞxðsÞbds ¼
ðy
s

ssþrblðsÞxðsÞbds; tb t0: ð32Þ

The convergence of the integral on the right-hand side of (32) implies that

sþ rba�1: First consider the case where sþ rb ¼ �1. Then (32) reduces

to ðy
t

qðsÞxðsÞbds ¼
ðy
t

s�1lðsÞxðsÞbds A SV:

Raising the above to 1=a and integrating twice on ½t0;yÞ, we see from (AR)1
that

xðtÞ@ t2

2

ðy
t

s�1lðsÞxðsÞbds
� �1=a

A RVð2Þ: ð33Þ

This shows that the regularity index of xðtÞ is r ¼ 2 and hence s ¼ �2b � 1.

Note that (33) is equivalent to

xðtÞa @ 1

2a

ðy
t

s�1lðsÞxðsÞbds; t ! y: ð34Þ
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Denoting the right-hand side of (34) by hðtÞ, from (34) we obtain the following

di¤erential asymptotic relation for hðtÞ:

�hðtÞ�b=ah 0ðtÞ@ 1

2a
t�1lðtÞ ¼ 1

2a
t2bqðtÞ; t ! y: ð35Þ

Since hðtÞ ! 0 as t ! y, the left-hand side of (35) is integrable on ½t0;yÞ,
which shows that (9) is satisfied. Integration of (35) from t to y gives

hðtÞ@ a� b

2aa

ðy
t

s2bqðsÞds
� �a=ða�bÞ

; t ! y;

and hence

xðtÞ ¼ t2xðtÞ@ t2hðtÞ1=a @ t2
a� b

2aa

ðy
t

s2bqðsÞ
� �1=ða�bÞ

; t ! y:

Next consider the case where sþ rb < �1. In this case from (32) we

have ðy
t

qðsÞxðsÞbds@� 1

sþ rb þ 1
tsþrbþ1lðtÞxðtÞb; t ! y; ð36Þ

or, equivalently,

ðy
t

qðsÞxðsÞbds
� �1=a

@ � 1

sþ rb þ 1

� �1=a
tðsþrbþ1ÞalðtÞ1=axðtÞb=a; t ! y: ð37Þ

Observe that (37) is not integrable over ½t0;yÞ, which means that

sþ rb þ 1

a
b�1; i:e:; sþ rbb�a� 1:

We distinguish the two cases:

(a) sþ rb > �a� 1, (b) sþ rb ¼ �a� 1:

If (a) holds, then integrating (37) twice from t0 to t and using Karamata’s

integration theorem ((i) of Proposition 1), we obtain

xðtÞ@ a2tðsþrbþ2aþ1Þ=alðtÞ1=axðtÞb=a

½�ðsþ rb þ 1Þ�1=aðsþ rb þ 1þ aÞðsþ rb þ 1þ 2aÞ
; t ! y; ð38Þ

which shows that xðtÞ A RVððsþ rb þ 2aþ 1Þ=aÞ with ðsþ rb þ 2aþ 1Þ=a A
ð1; 2Þ. Therefore,

r ¼ sþ rb þ 2aþ 1

a
) r ¼ sþ 2aþ 1

a� b
:
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Notice that r A ð1; 2Þ determines the range of s to be s A ð�a� b � 1;�2b � 1Þ.
Using the fact that the numerator and the denominator of the right-hand side

of (38) can be rewritten, respectively, as

tðsþrbþ2aþ1Þ=alðtÞ1=axðtÞb=a ¼ tð2aþ1Þ=aqðtÞ1=axðtÞb=a

and

½�ðsþ rb þ 1Þ�1=aðsþ rb þ 1þ aÞðsþ rb þ 1þ 2aÞa�2

¼ rðr� 1Þð2� rÞ1=aa1=a;

we obtain from (38) the following asymptotic expression for xðtÞ:

xðtÞ@ t2aþ1qðtÞ
að2� rÞðr� 1Þara

� �1=ða�bÞ

; t ! y:

If (b) holds, then integrating (37) twice from t0 to t, we getð t
t0

ðy
s

qðrÞxðrÞbdr
� �1=a

ds@ a�1=a

ð t
t0

s�1lðsÞ1=axðsÞb=ads; t ! y;

ð t
t0

ð s
t0

ðy
r

qðuÞxðuÞbdu
� �1=a

drds@ a�1=at

ð t
t0

s�1lðsÞ1=axðsÞb=ads; t ! y; ð39Þ

which, in view of (AR)1, gives

xðtÞ@ a�1=at

ð t
t0

s�1lðsÞ1=axðsÞb=ads A RVð1Þ; t ! y; ð40Þ

(cf. (iii) of Proposition 1). This implies that xðtÞ A RVð1Þ, so that r ¼ 1 and

s ¼ �a� b � 1. Relation (40) is equivalent to

xðtÞ@ a�1=a

ð t
t0

s�1lðsÞ1=axðsÞb=ads; t ! y: ð41Þ

Let hðtÞ denote the right-hand side of (41). Then, we can convert (41) into the

di¤erential asymptotic relation

hðtÞ�b=ah 0ðtÞ@ a�1=at�1lðtÞ1=a ¼ a�1=atðbþ1Þ=aqðtÞ1=a; t ! y: ð42Þ

Integrating (42) from t0 to t, we see that (30) must hold and obtain the

asymptotic formula

hðtÞ@ a� b

a1þ1=a

ð t
t0

ðsbþ1qðsÞÞ1=ads
� �a=ða�bÞ

@
a� b

a1þ1=a

ð t
a

ðsbþ1qðsÞÞ1=ads
� �a=ða�bÞ

; t ! y;
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which combined with (AR)1 gives

xðtÞ ¼ txðtÞ@ thðtÞ@ t
a� b

a1þ1=a

ð t
a

ðsbþ1qðsÞÞ1=ads
� �a=ða�bÞ

; t ! y:

This completes the proof of the ‘‘only if ’’ parts of Theorems 5, 6 and 7.

(The ‘‘if ’’ parts.) We show that the function XðtÞ defined by

XðtÞ ¼

t2
a�b
2 aa

Ðy
t
s2bqðsÞds

h i1=ða�bÞ
if s ¼ �2b � 1 and ð9Þ holds;

t2aþ1qðtÞ
að2�rÞðr�1Þ ara

h i1=ða�bÞ
if s A ð�a� b � 1;�2b � 1Þ;

where r ¼ sþ2aþ1
a�b

;

t
a�b

a1þ1=a

Ð t
a
ðsbþ1qðsÞÞ1=ads

h ia=ða�bÞ
if s ¼ �a� b � 1 and ð30Þ holds

8>>>>>>><
>>>>>>>:

ð43Þ

satisfies for any bb a the integral asymptotic relationð t
b

ð s
b

ðy
r

qðuÞX ðuÞbdu
� �1=a

drds@X ðtÞ; t ! y: ð44Þ

Let s ¼ �2b � 1 and (9) hold. Then, we haveðy
t

qðsÞXðsÞbds ¼
ðy
t

s2bqðsÞ a� b

2aa

ðy
s

r2bqðrÞdr
� �b=ða�bÞ

ds

¼ 2a a� b

2aa

ðy
t

s2bqðsÞds
� �a=ða�bÞ

¼ 2at�2aX ðtÞa; ð45Þ

which, raised to the power 1=a and integrated twice on ½b; t�, gives via

application of Karamata’s integration theoremð t
b

ð s
b

ðy
r

qðuÞXðuÞbdu
� �1=a

drds@ t2
a� b

2aa

ðy
t

s2bqðsÞds
� �1=ða�bÞ

¼ XðtÞ; t ! y:

Next, let s A ð�a� b � 1;�2b � 1Þ and define r by (28). Expressing X ðtÞ
as

XðtÞ ¼ trlðtÞ1=ða�bÞ

½að2� rÞðr� 1Þara�1=ða�bÞ ; t ! y;

and using Karamata’s integration theorem, we get

ðy
t

qðsÞXðsÞbds ¼
Ðy
t
sar�2a�1lðsÞa=ða�bÞ

ds

½að2� rÞðr� 1Þara�b=ða�bÞ

@
taðr�2ÞlðtÞa=ða�bÞ

að2� rÞ½að2� rÞðr� 1Þara�b=ða�bÞ ;
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and ð t
b

ð s
b

ðy
r

qðuÞXðuÞbdu
� �1=a

drds@
trlðtÞ1=ða�bÞ

½að2� rÞðr� 1Þara�1=ða�bÞ ¼ XðtÞ

for t ! y.

Finally, let s ¼ �a� b � 1 and (30) hold. Then, we have

ðy
t

qðsÞXðsÞbds ¼
ðy
t

sbqðsÞ a� b

a1þ1=a

ð s
a

ðrbþ1qðrÞÞ1=adr
� �ab=ða�bÞ

ds

¼
ðy
t

s�a�1lðsÞ a� b

a1þ1=a

ð s
a

ðrbþ1qðrÞÞ1=adr
� �ab=ða�bÞ

ds

@
1

a
t�alðtÞ a� b

a1þ1=a

ð t
a

ðsbþ1qðsÞÞ1=ads
� �ab=ða�bÞ

¼ 1

a
tqðtÞX ðtÞb; t ! y: ð46Þ

Integrating the above (raised to the power 1=a) twice on ½b; t� we conclude

that

ð t
b

ðy
s

qðrÞX ðrÞbdr
� �1=a

ds@
a� b

a1þ1=a

ð t
a

ðsbþ1qðsÞÞ1=ads
� �a=ða�bÞ

¼ t�1XðtÞ

and

ð t
b

ð s
b

ðy
r

qðuÞX ðuÞbdu
� �1=a

drds@ t
a� b

a1þ1=a

ð t
a

ðsbþ1qðsÞÞ1=ads
� �a=ða�bÞ

¼ X ðtÞ: ð47Þ

This completes the proof of Theorems 5, 6 and 7.

3.2. Asymptotic relations for strongly decaying solutions. We now turn to

studying positive solutions of the asymptotic integral relation (AR)2 with

regularly varying coe‰cient qðtÞ. Clearly, all solutions of (AR)2 tend to 0

as t ! y and are often referred to as strongly decaying. There are only two

possible types of strongly decaying solutions of (AR)2. In fact, a regularly

varying function xðtÞ, which is expressed as xðtÞ ¼ trxðtÞ, xðtÞ A SV, can satisfy

(AR)2 if r < 0, in which case xðtÞ A RVðrÞ, or if r ¼ 0 and xðtÞ ! 0 as t ! y,

in which case xðtÞ A ntr-SV ¼ ntr-RVð0Þ.
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Theorem 8. Let qðtÞ be regularly varying of index s. Relation (AR)2
possesses nontrivial slowly varying solutions if and only if s ¼ �2a� 1 and

ðy
a

ðtaþ1qðtÞÞ1=adt < y; ð48Þ

in which case any such solution xðtÞ has the unique asymptotic behavior

xðtÞ@ a� b

að2aÞ1=a
ðy
t

ðsaþ1qðsÞÞ1=ads
" #a=ða�bÞ

; t ! y: ð49Þ

Theorem 9. Let qðtÞ be regularly varying of index s. Relation (AR)2
possesses regularly varying solutions of index r < 0 if and only if s < �2a� 1,

in which case r is given by (28) and any such solution xðtÞ has the unique

asymptotic behavior

xðtÞ@ t2aþ1qðtÞ
að2� rÞð1� rÞað�rÞa
� �1=ða�bÞ

; t ! y: ð50Þ

Proof of theorems 8 and 9. (The ‘‘only if ’’ part.) Let xðtÞ be

a regularly varying solution of index r of (AR)2 defined on ½t0;yÞ which

is strongly decaying. Clearly, ra 0. Using the expressions qðtÞ ¼ tslðtÞ,
xðtÞ ¼ trxðtÞ, lðtÞ; xðtÞ A SV, we obtain

ðy
t

ðy
s

ðy
r

qðuÞxðuÞbdu
� �1=a

drds ¼
ðy
t

ðy
s

ðy
r

usþrblðuÞxðuÞbdu
� �1=a

drds

for tb t0. The convergence of the integral on the right-hand side implies that

sþ rba�2a� 1. First consider the case where sþ rb ¼ �2a� 1: Then, in

view of (iii) of Proposition 1, we haveðy
t

ðy
s

ðy
r

qðuÞxðuÞbdu
� �1=a

drds@
1

2a

� �1=aðy
t

s�1lðsÞ1=axðsÞb=ads A SV; t ! y;

which means that r ¼ 0 (i.e., xðtÞ ¼ xðtÞ) and s ¼ �2a� 1. Then, from (AR)2
we obtain

xðtÞ@ 1

2a

� �1=aðy
t

s�1lðsÞ1=axðsÞb=ads; t ! y: ð51Þ

Denoting the right-hand side of (51) by yðtÞ, from (51) we get the

following di¤erential asymptotic relation for yðtÞ:

�yðtÞ�b=a
y 0ðtÞ@ 1

2a

� �1=a
t�1lðtÞ1=a ¼ 1

2a

� �1=a
tðaþ1Þ=aqðtÞ1=a; t ! y: ð52Þ
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The left-hand side of (52) is integrable on ½t0;yÞ (note that yðtÞ ! 0 as

t ! y), and so is ðtaþ1qðtÞÞ1=a, that is, (48) must hold. An integration of (52)

on ½t;yÞ yields

xðtÞ@ yðtÞ@ a� b

a

1

2a

� �1=aðy
t

ðsaþ1qðsÞÞ1=ads
" #a=ða�bÞ

; t ! y:

Next consider the case where sþ rb < �2a� 1. Repeated application of

Karamata’s integration theorem ((ii) of Proposition 1) yields

ðy
t

ðy
s

ðy
r

qðuÞxðuÞbdu
� �1=a

drds

@
a2tðsþrbþ2aþ1Þ=alðtÞ1=axðtÞb=a

½�ðsþ rb þ 1Þ�1=a½�ðsþ rb þ 1þ aÞ�½�ðsþ rb þ 1þ 2aÞ�
; t ! y

which, combined with (AR)2, gives

xðtÞ@ a2tðsþrbþ2aþ1Þ=alðtÞ1=axðtÞb=a

½�ðsþ rb þ 1Þ�1=a½�ðsþ rb þ 1þ aÞ�½�ðsþ rb þ 1þ 2aÞ�
;

t ! y: ð53Þ

This means that xðtÞ A RVððsþ rb þ 2aþ 1Þ=aÞ with sþ rb þ 2aþ 1 < 0, and

hence

r ¼ sþ rb þ 2aþ 1

a
) r ¼ sþ 2aþ 1

a� b
:

The requirement r < 0 implies s < �2a� 1. Taking into account the fact

that

tðsþrbþ2aþ1Þ=alðtÞ1=axðtÞb=a ¼ tð2aþ1Þ=aqðtÞ1=axðtÞb=a

and

½�ðsþ rb þ 1Þ�1=a½�ðsþ rb þ 1þ aÞ�½�ðsþ rb þ 1þ 2aÞ�

¼ ð�rÞð1� rÞð2� rÞ1=aað2aþ1Þ=a;

we can rewrite (53) as

xðtÞ@ t2aþ1qðtÞ
að�rÞað1� rÞað2� rÞ

� �1=ða�bÞ

; t ! y:

(The ‘‘if ’’ part.) Define the function Y ðtÞ by

18 Jaroslav Jaroš, Takaŝi Kusano and Tomoyuki Tanigawa



YðtÞ ¼

a�b

að2aÞ1=a
Ðy
t
ðsaþ1qðsÞÞ1=ads

h ia=ða�bÞ
if s ¼ �2a� 1

and ð48Þ holds;

t2aþ1qðtÞ
að2�rÞð1�rÞað�rÞ a
h i1=ða�bÞ

if s < �2a� 1;

where r ¼ sþ2aþ1
a�b

;

8>>>>><
>>>>>:

ð54Þ

and verify that it satisfies the integral asymptotic relationðy
t

ðy
s

ðy
r

qðuÞY ðuÞbdu
� �1=a

@Y ðtÞ; t ! y: ð55Þ

If s ¼ �2a� 1 and (48) holds, then repeated use of Karamata’s integration

theorem givesðy
t

qðsÞYðsÞbds ¼
ðy
t

s�2a�1lðsÞYðsÞbds@ 1

2a
t�2alðtÞYðtÞb;

ðy
t

ðy
s

qðrÞY ðrÞbdr
� �1=a

ds@
1

ð2aÞ1=a
ðy
t

s�2lðsÞ1=aYðsÞb=ads

@
1

ð2aÞ1=a
t�1lðtÞ1=aYðtÞb=a; ð56Þ

and hence

ðy
t

ðy
s

ðy
r

qðuÞY ðuÞbdu
� �1=a

drds@
1

ð2aÞ1=a
ðy
t

s�1lðsÞ1=aYðsÞb=ads

¼ a� b

að2aÞ1=a
ðy
t

ðsaþ1qðsÞÞ1=ads
" #a=ða�bÞ

¼ Y ðtÞ; t ! y:

If s < �2a� 1, then we use the expression

YðtÞ ¼ trlðtÞ1=ða�bÞ

½að2� rÞð1� rÞað�rÞa�1=ða�bÞ ; r ¼ sþ 2aþ 1

a� b
;

and compute

ðy
t

qðsÞY ðsÞbds ¼
Ðy
t
ssþrblðsÞa=ða�bÞ

ds

½að2� rÞð1� rÞað�rÞa�b=ða�bÞ

@
taðr�2ÞlðtÞa=ða�bÞ

að2� rÞ½að2� rÞð1� rÞað�rÞa�b=ða�bÞ
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as t ! y. Raising to the power 1=a and continuing to integrate the above

twice on ½t;yÞ, we obtain

ðy
t

ðy
s

ðy
r

qðuÞY ðuÞbdu
� �1=a

drds

@
trlðtÞ1=ða�bÞ

½að2� rÞð1� rÞað�rÞa�1=ða�bÞ ¼ Y ðtÞ; t ! y:

This completes the proof of Theorems 8 and 9.

4. Existence of non-primitive positive solutions for equations (A)

We now turn our attention to the existence of moderately growing and

strongly decaying positive solutions of the di¤erential equation (A). In what

follows, the following notation will be used extensively.

Let f ðtÞ and gðtÞ be two positive continuous functions defined in a

neighborhood of infinity, say for tbT . We use the notation f ðtÞ � gðtÞ,
t ! y, to denote that there exists positive constants m and M such that

mgðtÞa f ðtÞaMgðtÞ for tbT :

If f ðtÞ satisfies f ðtÞ � gðtÞ, t ! y, for some gðtÞ which is regularly

varying of index r, then f ðtÞ is called a nearly regularly varying function of

index r.

Our purpose in this section is to show that equation (A) with nearly

regularly varying coe‰cient qðtÞ can have nearly regularly varying positive

solutions of types (II) and (V), which behave for t ! y like the regularly

varying solutions of the asymptotic relations (AR)1 and (AR)2 whose existence

was established in Theorems 5–9.

4.1. Existence of moderately growing non-primitive solutions of (A).

Theorem 10. Let qðtÞ be nearly regularly varying of index s, that is,

qðtÞ � qsðtÞ, t ! y, for some qsðtÞ A RVðsÞ. Suppose that s ¼ �2b � 1 and

(9) holds. Then, equation (A) possesses a nearly regularly varying solution xðtÞ
of index r ¼ 2 such that

xðtÞ � t2
a� b

a2a

ðy
t

s2bqsðsÞds
� �1=ða�bÞ

; t ! y: ð57Þ

Theorem 11. Let qðtÞ be nearly regularly varying of index s, that is,

qðtÞ � qsðtÞ, t ! y, for some qsðtÞ A RVðsÞ. Suppose that s A ð�a� b � 1;

�2b � 1Þ. Then, equation (A) possesses a nearly regularly varying solution xðtÞ
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of index r ¼ ðsþ 2aþ 1Þ=ða� bÞ A ð1; 2Þ such that

xðtÞ � t2aþ1qsðtÞ
að2� rÞðr� 1Þara

� �1=ða�bÞ

; t ! y: ð58Þ

Theorem 12. Let qðtÞ be nearly regularly varying of index s, that is,

qðtÞ � qsðtÞ, t ! y, for some qsðtÞ A RVðsÞ. Suppose that s ¼ �a� b � 1 and

(30) holds. Then, equation (A) possesses a nearly regularly varying solution xðtÞ
of index r ¼ 1 such that

xðtÞ � t
a� b

a1þ1=a

ð t
a

ðsbþ1qsðsÞÞ1=ads
� �a=ða�bÞ

; t ! y: ð59Þ

Proof of theorems 10, 11 and 12. We give a simultaneous proof of all

three theorems on the basis of Theorems 5–7 concerning moderately growing

regularly varying solutions of the integral asymptotic relation (AR)1.

By hypothesis, there are positive constants k and K such that

kqsðtÞa qðtÞaKqsðtÞ; tb a: ð60Þ

Define X ðtÞ by

X ðtÞ ¼

t2
a�b
2 aa

Ðy
t
s2bqsðsÞds

h i1=ða�bÞ
if s ¼ �2b � 1 and ð9Þ holds;

t2aþ1qsðtÞ
að2�rÞðr�1Þara

h i1=ða�bÞ
if s A ð�a� b � 1;�2b � 1Þ;

where r ¼ sþ2aþ1
a�b

;

t
a�b

a1þ1=a

Ð t
a
ðsbþ1qsðsÞÞ1=ads

h ia=ða�bÞ
if s ¼ �a� b � 1 and ð30Þ holds

8>>>>>>>><
>>>>>>>>:

ð61Þ

Then, X ðtÞ satisfies for any bb a the asymptotic relation

ð t
b

ð s
b

ðy
r

qsðuÞXðuÞbdu
� �1=a

drds@XðtÞ; t ! y: ð62Þ

Choose T0 > a so that

ð t
T0

ð s
T0

ðy
r

qsðuÞX ðuÞbdu
� �1=a

drdsa 2X ðtÞ; tbT0: ð63Þ

We may assume that X ðtÞ is increasing for tbT0. Since by (62) with

b ¼ T0 ð t
T0

ð s
T0

ðy
r

qsðuÞXðuÞbdu
� �1=a

drds@XðtÞ; t ! y;
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there exists T1 > T0 such thatð t
T0

ð s
T0

ðy
r

qsðuÞX ðuÞbdu
� �1=a

drdsb
X ðtÞ
2

; tbT1: ð64Þ

One may choose positive constants m and M so that

ma�b
a

k

2a
; M a�b

b 4aK ; and mX ðT1Þa
1

2
MXðT0Þ: ð65Þ

Let the integral operator F be defined by

FxðtÞ ¼ x0 þ
ð t
T0

ð s
T0

ðy
r

qðuÞxðuÞbdu
� �1=a

drds; tbT0; ð66Þ

where x0 is a positive constant such that

mX ðT1Þa x0 a
1

2
MXðT0Þ; ð67Þ

and let it act on the set

X0 ¼ fxðtÞ A C½T0;yÞ : mX ðtÞa xðtÞaMXðtÞ; tbT0g

which is a closed convex subset of C½T0;yÞ.
(i) FðX0ÞHX0. Let xðtÞ A X0. Then, we obtain

FxðtÞb x0 bmX ðT1ÞbmX ðtÞ for T0 a taT1;

FxðtÞb
ð t
T0

ð s
T0

ðy
r

kqsðuÞðmX ðuÞÞbdu
� �1=a

drds

b
1

2
k1=amb=aX ðtÞbmX ðtÞ for tbT1;

and

FxðtÞa 1

2
MXðT0Þ þ K 1=aM b=a

ð t
T0

ð s
T0

ðy
r

qsðuÞXðuÞbdu
� �1=a

drds

a
1

2
MXðtÞ þ 2K 1=aM b=aX ðtÞa 1

2
MXðtÞ þ 1

2
MXðtÞ

¼ MXðtÞ for tbT0:

This implies that FxðtÞ A X0.

(ii) F ðX0Þ is relatively compact. The local uniform boundedness of

FðX0Þ is a consequence of the inclusion F ðX0ÞHX0. The local equicontinuity
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of FðX0Þ follows from the inequality

0a ðFxÞ0ðtÞaK 1=aM b=a

ð t
T0

ðy
s

qsðrÞXðrÞbdr
� �1=a

ds; tbT0

which holds for all xðtÞ A X0. The Arzela-Ascoli lemma then ensures the

relative compactness of FðX0Þ.
(iii) F is continuous. Let fxnðtÞg be a sequence in X0 converging to

xðtÞ A X0 uniformly on compact subintervals of ½T0;yÞ. Then, by (66) we

have

jFxnðtÞ � FxðtÞja
ð t
T0

ð s
T0

FnðrÞdrds; tbT0; ð68Þ

where

FnðrÞ ¼
ðy
r

qðuÞxnðuÞbdu
� �1=a

�
ðy
r

qðuÞxðuÞbdu
� �1=a�����

�����:
To evaluate FnðrÞ the two cases ab 1 and a < 1 must be distinguished.

If ab 1, then applying the inequality jAg � Bgja jA� Bjg ðA > 0; B > 0;

0 < g < 1Þ, we see that

FnðrÞa
ðy
r

qðuÞjxnðuÞb � xðuÞbjdu
� �1=a

;

which combined with (68) gives

jFxnðtÞ � FxðtÞja
ð t
T0

ð s
T0

ðy
r

qðuÞjxnðuÞb � xðuÞbjdu
� �1=a

drds:

This implies

jFxnðtÞ � FxðtÞja ðt� T0Þ2

2

ðy
T0

qðsÞjxnðsÞb � xðsÞbjds
� �1=a

; tbT0;

and so the Lebesgue dominated convergence theorem ensures that FxnðtÞ !
FxðtÞ, n ! y, uniformly on compact subintervals of ½t0;yÞ.

If a < 1, then using the mean value theorem, we find

FnðrÞa
1

a

ðy
r

qðuÞðMXðuÞÞbdu
� �ð1�aÞ=aðy

r

qðuÞjxnðuÞb � xðuÞbjdu;

which implies that

jFxnðtÞ�FxðtÞja ðt�T0Þ2

2a

ðy
T0

qðsÞðMX ðsÞÞbds
� �ð1�aÞ=aðy

T0

qðsÞjxnðsÞb � xðsÞbjds:
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From this it follows via the Lebesgue dominated convergence theorem that

FxnðtÞ ! FxðtÞ as n ! y uniformly on compact subintervals of ½T0;yÞ.
Thus, by the Schauder-Tychono¤ fixed point theorem F has a fixed ele-

ment xðtÞ A X0 which satisfies the integral equation

xðtÞ ¼ x0 þ
ð t
T0

ð s
T0

ðy
r

qðuÞxðuÞbdu
� �1=a

drds; tbT0: ð69Þ

Di¤erentiating (69), we conclude that xðtÞ is a positive solutions of

equation (A) such that mX ðtÞa xðtÞaMX ðtÞ for tbT0, which means that

xðtÞ is a nearly regularly varying function of index 2, r ¼ ðsþ 2aþ 1Þ=ða� bÞ
A ð1; 2Þ or 1 according to whether s ¼ �2b � 1, s A ð�a� b � 1;�2b � 1Þ or

s ¼ �a� b � 1. This completes the proof of Theorems 10, 11 and 12.

Remark 1. If s ¼ �a� b � 1, (30) is equivalent to the negation of (15),

i.e., ðy
a

ðtbþ1qðtÞÞ1=adt ¼ y ,
ðy
a

ðy
t

sbqðsÞds
� �1=a

dt ¼ y:

4.2. Existence of strongly decaying non-primitive solutions of (A).

Theorem 13. Let qðtÞ be nearly regularly varying of index s, that is,

qðtÞ � qsðtÞ, t ! y, for some qsðtÞ A RVðsÞ. Suppose that s ¼ �2a� 1 and

(48) holds. Then, equation (A) possesses a nearly slowly varying solution xðtÞ
such that

xðtÞ � a� b

að2aÞ1=a
ðy
t

ðsaþ1qsðsÞÞ1=ads
" #a=ða�bÞ

; t ! y: ð70Þ

Theorem 14. Let qðtÞ be nearly regularly varying of index s, that is,

qðtÞ � qsðtÞ, t ! y, for some qsðtÞ A RVðsÞ. Suppose that s < �2a� 1.

Then, equation (A) possesses a nearly regularly varying solution xðtÞ of index

r ¼ ðsþ 2aþ 1Þ=ða� bÞ < 0 such that

xðtÞ � t2aþ1qsðtÞ
að2� rÞð1� rÞað�rÞa
� �1=ða�bÞ

; t ! y: ð71Þ

Proof of theorems 13 and 14. Define the function YðtÞ by

YðtÞ ¼

a�b

að2aÞ1=a
Ðy
t
ðsaþ1qsðsÞÞ1=ads

h ia=ða�bÞ
if s ¼ �2a� 1

and ð48Þ holds;

t2aþ1qsðtÞ
að2�rÞð1�rÞað�rÞ a
h i1=ða�bÞ

if s < �2a� 1;

where r ¼ sþ2aþ1
a�b

:

8>>>>><
>>>>>:

ð72Þ

24 Jaroslav Jaroš, Takaŝi Kusano and Tomoyuki Tanigawa



Since Y ðtÞ satisfies the relation

YðtÞ@
ðy
t

ðy
s

ðy
r

qsðuÞYðuÞbdu
� �1=a

drds ð73Þ

as t ! y, there exists T > a such that

YðtÞ
2

a

ðy
t

ðy
s

ðy
r

qsðuÞYðuÞbdu
� �1=a

drdsa 2YðtÞ; tbT : ð74Þ

Choose positive constants m and M so that

ma�b
a

k

2a
; M a�b

b 2aK; ð75Þ

which is possible because of a > b, and consider the set X2 and the integral

operator G defined, respectively, by

X2 ¼ fxðtÞ A C½T ;yÞ : mY ðtÞa xðtÞaMYðtÞ; tbTg ð76Þ

and

GxðtÞ ¼
ðy
t

ðy
s

ðy
r

qðuÞxðuÞbdu
� �1=a

drds; tbT : ð77Þ

It is clear that X2 is a closed convex subset of the locally convex space

C½T ;yÞ. It can be shown that G is a continuous self-map on X2 and sends X2

into a relatively compact subset of C½T ;yÞ.
(i) GðX2ÞHX2. If xðtÞ A X2, then using (74)–(77), we see that

GxðtÞb k1=a

ðy
t

ðy
s

ðy
r

qsðuÞðmY ðuÞÞbdu
� �1=a

drds

b
k1=a

2
mb=aY ðtÞbmY ðtÞ;

and

GxðtÞaK 1=a

ðy
t

ðy
s

ðy
r

qsðuÞðmY ðuÞÞbdu
� �1=a

drds

a 2K 1=aM b=aYðtÞaMY ðtÞ;

for tbT . This implies that GxðtÞ A X2.

(ii) GðX2Þ is relatively compact. The inclusion GðX2ÞHX2 shows that

GðX2Þ is uniformly bounded on ½T ;yÞ. The inequality

0b ðGxÞ0ðtÞb�M b=a

ðy
t

ðy
s

qðrÞYðrÞbdr
� �1=a

ds; tbT ;
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holding for all xðtÞ A X2 implies that GðX2Þ is equicontinuous on ½T ;yÞ. The

relative compactness of GðX2Þ then follows from the Arzela-Ascoli lemma.

(iii) G is continuous. Letting fxnðtÞg be a sequence in X2 converging

as n ! y to xðtÞ A X2 uniformly on any compact subset of ½T ;yÞ, we have

to verify that GxnðtÞ ! GxðtÞ as n ! y uniformly on compact subintervals of

½T ;yÞ. To this end we need to distinguish the two cases ab 1 and a < 1 in

the following manner.

Let ab 1. Then, we have

jGxnðtÞ � GxðtÞja
ðy
t

ðy
s

ðy
r

qðuÞjxnðuÞb � xðuÞbjdu
� �1=a

drds

a

ðy
T

s

ðy
s

qðrÞjxnðrÞb � xðrÞbjdr
� �1=a

ds; tbT : ð78Þ

Since the function

gnðsÞ ¼ s

ðy
s

qðrÞjxnðrÞb � xðrÞbjdr
� �1=a

satisfies

gnðsÞa s

ðy
s

qðrÞðMY ðrÞÞbdr
� �1=a

which is integrable over ½T ;yÞ, and gnðsÞ ! 0 as n ! y for each sbT , we

are able to apply the Lebesgue convergence theorem to (78), concluding that

GxnðtÞ ! GxðtÞ, n ! y, uniformly on ½T ;yÞ.
Let a < 1. The, we have

jGxnðtÞ � GxðtÞj

a
1

a

ðy
t

ðy
s

ðy
r

qðuÞðMY ðuÞÞbdu
� �ð1�aÞ=aðy

r

qðuÞjxnðuÞb � xðuÞbjdudrds

a
1

a

ðy
T

s

ðy
s

qðrÞðMYðrÞÞbdr
� �ð1�aÞ=a

�
ðy
s

qðrÞjxnðrÞb � xðrÞbjdrds; tbT : ð79Þ

The function

hnðtÞ ¼ s

ðy
s

qðrÞðMYðrÞÞbdr
� �ð1�aÞ=aðy

s

qðrÞjxnðrÞb � xðrÞbjdr
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is bounded from above by

s

ðy
s

qðrÞðMYðrÞÞbdr
� �1=a

which is integrable on ½T ;yÞ, and tends to 0 as n ! y at each sbT , we

conclude via the Lebesgue convergence theorem that GxnðtÞ ! GxðtÞ uniformly

on any compact subinterval of ½T ;yÞ.
Thus all the hypotheses of the Schauder-Tychono¤ fixed point theorem

are fulfilled, and there exists xðtÞ A X2 such that xðtÞ ¼ GxðtÞ for tbT , that

is,

xðtÞ ¼
ðy
t

ðy
s

ðy
r

qðuÞxðuÞbdu
� �1=a

drds; tbT : ð80Þ

Di¤erentiating (80) three times, we conclude that xðtÞ is a solution of equa-

tion (A) satisfying mY ðtÞa xðtÞaMY ðtÞ for tbT . From (72) it follows

that the solution xðtÞ is nearly regularly varying function of index 0 or of

index r ¼ ðsþ 2aþ 1Þ=ða� bÞ < 0 according to whether s ¼ �2a� 1 or s <

�2a� 1. This completes the proof.

Remark 2. If s ¼ �2a� 1, (48) is equivalent to (17), i.e.,ðy
a

ðtaþ1qðtÞÞ1=adt < y ,
ðy
a

t

ðy
t

qðsÞds
� �1=a

dt < y:

5. Regularly varying solutions of (A)

Our purpose in this section is to demonstrate that in the case where

the coe‰cient qðtÞ in (A) is a regularly varying function, the existence of

regularly varying solutions of index r A ð�y; 0�U ½1; 2� can be completely

characterized and, moreover, the exact asymptotic behavior of these solu-

tions can be described explicitly by the unique asymptotic formula. This can

be done with the help of the following generalization of the L’Hospital rule

(see Haupt and Aumann [2]). The use of this lemma was suggested by J.

Manojlović.

Lemma 4. Let f ; g A C 1½T ;yÞ and suppose that

lim
t!y

f ðtÞ ¼ lim
t!y

gðtÞ ¼ y and g 0ðtÞ > 0 for all large t;

or

lim
t!y

f ðtÞ ¼ lim
t!y

gðtÞ ¼ 0 and g 0ðtÞ < 0 for all large t:
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Then

lim inf
t!y

f 0ðtÞ
g 0ðtÞ a lim inf

t!y

f ðtÞ
gðtÞ ; lim sup

t!y

f ðtÞ
gðtÞ a lim sup

t!y

f 0ðtÞ
g 0ðtÞ :

First we characterize the existence of regularly varying solutions which

grow moderately at infinity.

Theorem 15. Let qðtÞ be regularly varying of index s. Then, equation (A)

possesses nontrivial regularly varying solutions of index 2 if and only if s ¼
�2b � 1 and (9) holds, in which case the asymptotic behavior of any such solution

xðtÞ is governed by the formula (27).

Theorem 16. Let qðtÞ be regularly varying of index s. Then, equation (A)

possesses regularly varying solutions of index r A ð1; 2Þ if and only if s A
ð�a� b � 1;�2b � 1Þ, in which case r is given by (28) and the asymptotic

behavior of any such solution xðtÞ is governed by (29).

Theorem 17. Let qðtÞ be regularly varying of index s. Then, equation (A)

possesses nontrivial regularly varying solutions of index 1 if and only if s ¼
�a� b � 1 and (30) holds, in which case the asymptotic behavior of any such

solution xðtÞ is governed by the formula (31).

Proof of theorems 15, 16 and 17. We give a simultaneous proof of these

theorems.

The ‘‘only if ’’ parts follow from the ‘‘only if ’’ parts of Theorems 5, 6 and

7, respectively, because all moderately growing solutions of equation (A) satisfy

the asymptotic relation (AR)1.

To prove the ‘‘if ’’ parts, suppose that s and qðtÞ satisfy the conditions

specified in these theorems. We use the function X ðtÞ defined by (43). From

Theorems 10, 11 and 12 applied to the special case of (A) where qðtÞ A RVðsÞ
(i.e. qðtÞ ¼ qsðtÞ) we see that equation (A) possesses nearly regularly varying

solutions xðtÞ which are obtained as solutions of the integral equation

xðtÞ ¼ x0 þ
ð t
T0

ð s
T0

ðy
r

qðuÞxðuÞbdu
� �1=a

drds; tbT0; ð81Þ

(cf. (69)) satisfying the inequality

mX ðtÞa xðtÞaMXðtÞ; tbT0; ð82Þ

for some suitably chosen positive constants T0, x0, m and M. Define JðtÞ by

JðtÞ ¼
ð t
T0

ð s
T0

ðy
r

qðuÞXðuÞbdu
� �1=a

drds; tbT0; ð83Þ
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which satisfies (cf. (44))

JðtÞ@XðtÞ; t ! y: ð84Þ

Put

l ¼ lim inf
t!y

xðtÞ
JðtÞ ; L ¼ lim sup

t!y

xðtÞ
JðtÞ : ð85Þ

From (81) and (82) it follows that 0 < laL < y.

Repeated application of the generalized L’Hospital rule gives

l ¼ lim inf
t!y

xðtÞ
JðtÞ b lim inf

t!y

x 0ðtÞ
J 0ðtÞ ¼ lim inf

t!y

Ð t
T0
½
Ðy
s
qðrÞxðrÞbdr�1=adsÐ t

T0
½
Ðy
s
qðrÞXðrÞbdr�1=ads

b lim inf
t!y

Ðy
t
qðsÞxðsÞbdsÐy

t
qðsÞXðsÞbds

" #1=a
¼ lim inf

t!y

Ðy
t
qðsÞxðsÞbdsÐy

t
qðsÞXðsÞbds

" #1=a

b lim inf
t!y

qðtÞxðtÞb

qðtÞXðtÞb

" #1=a
¼ lim inf

t!y

xðtÞ
X ðtÞ

� �b=a
¼ lim inf

t!y

xðtÞ
JðtÞ

� �b=a
¼ l b=a:

Note that in the last step we have used (84). Since l > 0 is finite and a > b the

inequality lb l b=a implies

1a l < y: ð86Þ

Similarly, it can be shown that

0 < La 1: ð87Þ

From (86) and (87) it follows that l ¼ L ¼ 1, that is, limt!y xðtÞ=JðtÞ ¼ 1.

Therefore, in view of (84) we conclude that

xðtÞ@ JðtÞ@X ðtÞ; t ! y;

which establishes the regularity of xðtÞ and the validity of the desired precise

asymptotic formula for xðtÞ simultaneously.

In the next two theorems we characterize the existence of regularly varying

strongly decaying solutions of (A) where qðtÞ A RVðsÞ.

Theorem 18. Let qðtÞ be regularly varying of index s. Then, equation (A)

possesses nontrivial slowly varying solutions if and only if s ¼ �2a� 1 and (48)

holds, in which case the asymptotic behavior of any such solution xðtÞ is governed
by the formula (49).

Theorem 19. Let qðtÞ be regularly varying of index s. Then, equation (A)

possesses regularly varying solutions of index r < 0 if and only if s < �2a� 1,
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in which case r is given by (28) and the asymptotic behavior of any such solution

xðtÞ is governed by (50).

Proof of theorems 18 and 19. We give a simultaneous proof of both

theorems.

(The ‘‘only if ’’ parts) Notice that all strongly decaying solutions of

equation (A) satisfy the asymptotic relation (AR)2 and apply the ‘‘only if ’’

parts of Theorems 8 and 9.

(The ‘‘if ’’ parts) Suppose that s and qðtÞ satisfy the conditions specified in

the theorems. We use the function YðtÞ defined by (72). From Theorems 13

and 14 applied to the special case of (A) where qðtÞ A RVðsÞ (i.e. qðtÞ ¼ qsðtÞ)
we see that equation (A) possesses nearly regularly varying solutions xðtÞ which
are obtained as solutions of the integral equation

xðtÞ ¼
ðy
t

ðy
s

ðy
r

qðuÞxðuÞbdu
� �1=a

drds; tbT ; ð88Þ

(cf. (80)) satisfying the inequality

mY ðtÞa xðtÞaMYðtÞ; tbT ; ð89Þ

where T , m and M are suitably chosen positive constants. Define KðtÞ by

KðtÞ ¼
ðy
t

ðy
s

ðy
r

qðuÞY ðuÞbdu
� �1=a

drds; tbT ; ð90Þ

which satisfies (cf. (73))

KðtÞ@Y ðtÞ; t ! y: ð91Þ
Put

l ¼ lim inf
t!y

xðtÞ
KðtÞ ; L ¼ lim sup

t!y

xðtÞ
KðtÞ : ð92Þ

From (88) and (89) it follows that 0 < laL < y.

Repeated application of the generalized L’Hospital rule gives

l ¼ lim inf
t!y

xðtÞ
KðtÞ b lim inf

t!y

x 0ðtÞ
K 0ðtÞ ¼ lim inf

t!y

Ðy
t
½
Ðy
s
qðrÞxðrÞbdr�1=adsÐy

t
½
Ðy
s
qðrÞY ðrÞbdr�1=ads

b lim inf
t!y

Ðy
t
qðsÞxðsÞbdsÐy

t
qðsÞY ðsÞbds

" #1=a
¼ lim inf

t!y

Ðy
t
qðsÞxðsÞbdsÐy

t
qðsÞYðsÞbds

" #1=a

b lim inf
t!y

qðtÞxðtÞb

qðtÞYðtÞb

" #1=a
¼ lim inf

t!y

xðtÞ
YðtÞ

� �b=a
¼ lim inf

t!y

xðtÞ
KðtÞ

� �b=a
¼ lb=a:
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Note that (91) has been used in the last step. Since l > 0 is finite and a > b

the inequality lb lb=a implies

1a l < y: ð93Þ

Similarly, it can be shown that

0 < La 1: ð94Þ

From (93) and (94) it follows that l ¼ L ¼ 1, that is, limt!y xðtÞ=KðtÞ ¼ 1.

Therefore, in view of (91) we conclude that

xðtÞ@KðtÞ@YðtÞ; t ! y:

This shows that xðtÞ is regularly varying and enjoys the precise asymptotic

behavior as formulated in the theorems.

6. Concluding remarks and examples

Remark 3. We are now able to answer (at least partially) the questions

(i) and (ii) raised in Section 1.

(i) Let qðtÞ be a regularly varying function. According to the results

in Section 3, equation (A) may possess regularly varying solutions which are

strongly decaying only when (2) does not hold. Therefore, if (2) holds, (A)

cannot have nonoscillatory solutions xðtÞ such that jxðtÞj is regularly varying

and tending to 0 as t ! y. We are tempted to conjecture that in this case all

proper solutions of equation (A) are oscillatory if and only if (2) holds.

(ii) If (2) fails to hold (i.e., the condition (9) is satisfied), then the

existence of trivial regularly varying solutions of indices 0, 1 and 2 of (A) is

completely characterized by Theorems 1, 2 and 3, where the coe‰cient qðtÞ is a
general positive continuous function and does not need to be regularly varying.

On the other hand, if we limit ourself to the special case where qðtÞ is assumed

to vary regularly at infinity, the in-depth analysis carried out in the preceding

sections shows that we can obtain a series of new results on the existence and

precise asymptotic behavior of nontrivial regularly varying solutions of equa-

tion (A). Summarizing and combining these results, we are able to draw fairly

precise and clear picture of the overall structure of the set of positive regularly

varying solutions of equation (A). In particular, we can determine whether or

not the coexistence of trivial and nontrivial regularly varying solutions of index

j A f0; 1; 2g takes place for (A).

Example 1. Let 0 < b < a and consider the equation

ðjx 00ja�1
x 00Þ 0 þ q1ðtÞjxjb�1

x ¼ 0; ðA1Þ
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where

q1ðtÞ@
2a

t2aþ1ðlog tÞaðlog log tÞ2a�b
; t ! y:

It is easy to see that the function q1ðtÞ A RVð�2a� 1Þ satisfiesðy
t

ðsaþ1q1ðsÞÞ1=ads@
ð2aÞ1=aa
a� b

ðlog log tÞðb�aÞ=a; t ! y:

Hence Theorem 18 ensures the existence of nontrivial slowly varying solutions

xðtÞ of (A1) all of which have the unique asymptotic behavior

xðtÞ@ 1

log log t
; t ! y:

Example 2. Let 0 < b < a and consider the equation

ðjx 00ja�1
x 00Þ 0 þ q2ðtÞjxjb�1

x ¼ 0;

q2ðtÞ@
a

taþbþ1ðlog tÞaðlog log tÞb
; t ! y: ðA2Þ

The function q2ðtÞ A RVð�a� b � 1Þ satisfies

a� b

a1þ1=a

ð t
a

ðsbþ1q2ðsÞÞ1=ads
� �a=ða�bÞ

@
a� b

a

ð t
a

ds

s log sðlog log sÞb=a

" #a=ða�bÞ

@ log log t

as t ! y, where a ¼ expðeÞ, and so from Theorem 17 it follows that equation

(A2) possesses moderately growing solutions which are regularly varying of

index 1. All such solutions xðtÞ have the unique asymptotic behavior

xðtÞ@ t log log t; t ! y:

Example 3. Let 0 < b < a and consider the equation

ðjx 00ja�1
x 00Þ 0 þ q3ðtÞjxjb�1

x ¼ 0; q3ðtÞ@
2aa

t2bþ1ðlog tÞa�bþ1
; t ! y: ðA3Þ

As easily checked, the function q3ðtÞ A RVð�2b � 1Þ satisfies

a� b

2aa

ðy
t

s2bq3ðsÞds
� �1=ða�bÞ

@ ða� bÞ
ðy
t

ds

sðlog sÞa�bþ1

" #1=ða�bÞ

@
1

log t
; t ! y;
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and so Theorems 15 ensures the existence of moderately growing solutions

which are regularly varying of index 2. All such solutions xðtÞ obey the

unique asymptotic formula

xðtÞ@ t2

log t
; t ! y:

Example 4. Let 0 < b < a and consider the equation

ðjx 00ja�1
x 00Þ 0 þ q4ðtÞjxjb�1

x¼ 0; q4ðtÞ ¼ ts expðdðlog tÞ1=3 cosðlog tÞ1=3Þ; ðA4Þ

where s and d are constants.

(i) Let s ¼ �2a� 1� a�b

2aþ1
which is the regularity index of q4ðtÞ. Note

that s < �2a� 1 and the constant r defined by (28) is r ¼ � 1
2aþ1

, and

ð2� rÞð1� rÞað�rÞa ¼ 2að4aþ 3Þðaþ 1Þa

ð2aþ 1Þ2aþ1
:

By Theorem 19 there exist strongly decaying solutions xðtÞ of equation (A4)

which are regularly varying of index � 1
2aþ1

and behave like

xðtÞ@ ð2aþ 1Þ2aþ1

2aað4aþ 3Þðaþ 1Þa

" #1=ða�bÞ

� t�1=ð2aþ1Þ exp
d

a� b
ðlog tÞ1=3 cosðlog tÞ1=3

� �
; t ! y:

(ii) Let s ¼ �2a� 1þ 3
2 ða� bÞ which is the regularity index of q4ðtÞ.

Note that s A ð�a� b � 1;�2b � 1Þ and the constant r defined by (28) is

r ¼ 3
2 , and

að2� rÞðr� 1Þara ¼ a

2

3

4

� �a
:

Therefore, Theorem 16 shows that equation (A4) has moderately growing

solutions xðtÞ which are regularly varying of index 3
2 and behave like

xðtÞ@ 22aþ1

3aa

� �1=ða�bÞ

t3=2 exp
d

a� b
ðlog tÞ1=3 cosðlog tÞ1=3

� �
; t ! y:
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