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Abstract. Every simple quadrangulation of the sphere is generated by a graph called

a pseudo-double wheel with two local expansions (Brinkmann et al. ‘‘Generation of

simple quadrangulations of the sphere.’’ Discrete Math., Vol. 305, No. 1–3, pp. 33–54,

2005). So, toward a classification of the spherical tilings by congruent quadrangles, we

propose to classify those with the tiles being convex and the graphs being pseudo-double

wheels. In this paper, we verify that a certain series of assignments of edge-lengths

to pseudo-double wheels does not admit a tiling by congruent convex quadrangles.

Actually, we prove the series admits only one tiling by twelve congruent concave

quadrangles such that the symmetry of the tiling has only three perpendicular 2-fold

rotation axes, and the tiling seems to be new.

1. Introduction

A spherical tiling by congruent polygons is, by definition, a covering of the

unit sphere by congruent spherical polygons such that (i) none of the polygons

share their inner point, (ii) an edge of a spherical polygon matches an edge

of another spherical polygon, and (iii) each vertex is incident to more than two

edges. Each spherical polygon is called a tile.

If there is a spherical tiling by p-gons, then p is either 3, 4 or 5 ([10]),

because of Euler’s formula V � E þ F ¼ 2. In [11], Ueno-Agaoka classified all

the spherical tilings by congruent triangles. By using their classification, we

can complete the classification of all the spherical tilings by congruent quad-

rangles where the quadrangle can be divided into two congruent triangles

[3]. Interestingly, there is a spherical tiling by 24 congruent kites with the

graph being the same as deltoidal icositetrahedron, a Catalan-solid [6], while

there is another spherical tiling by the congruent kites with di¤erent symmetry.

As for spherical tilings by congruent quadrangles, if the quadrangle cannot

be divided into two congruent triangles, then the edge-lengths of the tile is
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necessarily one of two types of Figure 1, because an edge of a tile should match

an edge of another tile with the same length and because Euler’s formula

implies the existence of a 3-valent vertex [10]. Following [10], we call the two

types type 2 and type 4. They gave a somehow unexpected, sporadic, 4-fold

rotational symmetric spherical tiling by 16 congruent quadrangles of type 2

[10, Theorem 2]. As a necessary condition for a spherical quadrangle of type 2

to exist, they provided inequalities involving trigonometric functions, in terms

of the inner angles of the tile ([10, Proposition 3]). In [10, Figure 11], they

presented spherical tilings by congruent concave quadrangles of type 2, and

suggested that the class of spherical tilings by congruent concave quadrangles is

di‰cult to classify.

Among the spherical monohedral quadrangular tilings, we are concerned

with the following spherical tilings consisting of F b 6 congruent quadrangles,

having F=2-fold rotational symmetry. See Figure 2 and the first three spher-

ical tilings in [10, Figure 11], for example. The pair of the vertices and the

Fig. 1. A quadrangle of type 2 (left) and a quadrangle of type 4 (right). Designation of edge-

lengths and angles. The variables a, b, c are for edge-lengths and they have di¤erent values. The

variables a, b, g, d are for inner angles.

Fig. 2. The pictures in the upper row are, from left to right, a pseudo-double wheel of 6 faces, a

pseudo-double wheel of 8 faces, and two expansions of spherical quadrangulations to increase the

number of faces (Brinkmann et al. [5]). The graphs in this paper should be interpreted using

Convention 1 stated at the end of Section 2. The lower pictures are spherical tilings by congruent

quadrangles over pseudo-double wheel of F faces (F ¼ 6; 8; 10, from left to right).
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edges of the tiling forms a graph, which is obtained from the cycle consisting

of F vertices, by adjoining the north and the south poles alternately to the

vertices of the cycle. Such a graph falls into the class of pseudo-double wheels.

According to Brinkmann et al. [5], every spherical quadrangulation is obtained

from a pseudo-double wheel of even or odd faces through finite applications of

two local expansions (see Figure 2 (upper right)).

In [2], we prove that for every spherical tiling by congruent convex

quadrangles of type 2 or type 4, the edge-lengths of the graph are none of

two graphs in Figure 3. As a direct consequence, we can prove the following

statement: If a spherical tiling by congruent convex quadrangles of type 2 or

type 4 has a pseudo-double wheel as a graph, then the length-assignment of the

graph must be F=2-fold or an F=6-fold ‘‘rotationally symmetric.’’

The main theorem of this paper is: If a spherical tiling by congruent

quadrangles of type 2 or type 4 over a pseudo-double wheel has an F=6-fold

‘‘rotationally symmetric’’ length-assignment, then the tiling necessarily consists

of twelve congruent concave quadrangles. Such a tiling actually exists uniquely

up to mirror image, and the symmetry of the tiling is low compared to the

number of tiles. By this theorem, we can complete the classification of all the

spherical tilings by congruent convex quadrangles over pseudo-double wheels

([2]).

This paper is organized as follows: In the next section, we present

basic relevant notions of spherical tilings by congruent polygons. In Section

3, we present our main theorem, the background and the organization of

the proof. The rest of the sections are devoted to the proof of the main

theorem.

2. Preliminaries

Throughout this paper, by the sphere we mean the sphere with the center

being the origin and the radius being 1, and say two figures on the sphere are

congruent if there is an orthogonal transformation between them.

By a spherical triangle (resp. spherical quadrangle), we mean a nonempty,

simply connected, closed subset T of the sphere with the area less than 2p such

that the boundary is the union of three (resp. four) distinct geodesic lines but is

not the union of any two (resp. three) distinct geodesic lines.

To prove that a spherical triangle actually exists, we use the following:

Proposition 1 ([4, p. 62]). If 0 < A;B;C < p, Aþ Bþ C > p, �Aþ Bþ
C < p, A� Bþ C < p, Aþ B� C < p, then there exists uniquely up to orthog-

onal transformation a spherical triangle such that all the edges are geodesic lines

and the inner angles are A, B and C.
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We formalize relevant combinatorial notions of spherical tilings by con-

gruent polygons. Refer [8] for the terminology of the graph theory.

Definition 1. A map is a triple M ¼ ðV ;E; fOv j v A VgÞ such that ðV ;EÞ
is a graph (see [8, Section 1.1]) and each Ov is a cyclic order for the edges

incident to the vertex v. For a vertex v of M, the set Av of angles around

v is

Av :¼ fðv1; v; v2Þ; ðv2; v; v3Þ; . . . ; ðvn�1; v; vnÞ; ðvn; v; v1Þg

where the list vv1; vv2; . . . ; vvn is the enumeration of fvu j vu A Eg without

repetition by the cyclic order Ov. We write an inner angle ðu; v;wÞ by ffuvw.
The mirror of a map M is the map MR with the cyclic orders reversed.

Thus ffuvw is an inner angle of the original map, if and only if ffwvu is an inner

angle of the mirror of the map.

We recall a pseudo-double wheel [5].

Definition 2. For an even number F greater than or equal to 6, a

pseudo-double wheel pdwF with F faces is a map such that
� the graph is obtained from a cycle ðv0; v1; v2; . . . ; vF�1Þ, by adjoining a

new vertex N to each v2i ð0a i < F=2Þ and then by adjoining a new

vertex S to each v2iþ1 ð0a i < F=2Þ. We identify the su‰x i of the

vertex vi modulo F .
� The cyclic order at the vertex N is defined as follows: the edge Nv2iþ2 is

next to the edge Nv2i. The cyclic order at the vertex v2i (0a iaF=2)

is: the edge v2iN is next to the edge v2iv2iþ1, which is next to the edge

v2iv2i�1. The cyclic order at the vertex S is: the edge Sv2i�1 is next to

the edge Sv2iþ1. The cyclic order at the vertex v2iþ1 (0a i < F=2) is:

the edge v2iþ1S is next to the edge v2iþ1v2i, which is next to the edge

v2iþ1v2iþ2.

We call each edge Nv2i northern, each edge Sv2iþ1 southern, and the other

edges non-meridian. The number of edges is 2F . See Figure 2 (lower) for

pdw6, pdw8 and pdw10.

We use frequently the following notion:

Definition 3. A chart is, by definition, a triple A ¼ ðM;L;KÞ such that
� M is a map. Let V be the vertex set of M;
� L is a length-assignment, which is a function from the edge set E of M

to fa; b; cg with a; b; c A ð0; 2pÞ;
� K is an angle-assignment, which is a function from the set 6

v AV Av of

the angles to the set of a‰ne combinations of the variables a, b, g, d
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over R subject to the equation

X
c AAv

KðcÞ ¼ 2p for each vertex v A V : ð1Þ

Here Av is the set of angles around the vertex v, as in defined in

Definition 1. For a vertex v A V and an angle c A Av, KðcÞ is called

the type of the angle c, and
P

c AAv
KðcÞ is called the vertex type of the

vertex v; and
� The pair of K and L satisfies the constraint described by Figure 1 (left)

(‘‘type 2’’) for each face or the constraint described by Figure 1 (right)

(‘‘type 4’’) for each face.

We say a spherical tiling T by polygons realizes a chart A, provided that

there is an embedding G from A to the sphere such that
� G is a bijection from the vertex set of the chart A to that of the tiling

T,
� G is a bijection from the edge set of the chart A to that of the tiling T,

such that (i) if two edges uv and u 0v 0 of A has intersection fwg, then
the intersection of two edges GðuvÞ and Gðu 0v 0Þ is fGðwÞg; and (ii) if uv

and u 0v 0 is disjoint, then GðuvÞ and Gðu 0v 0Þ do not intersect.
� G preserves the cyclic order Ov of each vertex v of the chart A to the

orientation of the sphere at GðvÞ. In other words, for any vertex v of

the chart, if we rotate a screw at the vertex GðvÞ according to the cyclic

order Ov, then the screw goes outbound from the center of the sphere.
� For any angle ffuvw of the chart A, ffGðuÞGðvÞGðwÞ is an angle of the

tiling T and is KðffuvwÞ.
� For any edge uv of the chart A, GðuÞGðvÞ is an edge of the tiling T

and has length LðuvÞ.
The mirror AR of a chart A ¼ ðM;L;KÞ is, by definition, a chart ðMR;L;KRÞ
where KðffwvuÞ ¼ KRðffuvwÞ. Thus if a tiling T realizes A, then the mirror

image of T does the mirror AR.

The charts in Figure 2 and Figure 3 are subject to the following conven-

tion as in [5].

Convention 1. Each displayed vertex is distinct from the others; Edges

that are completely drawn must occur in the cyclic order given in the picture;

Half-edges indicate that an edge must occur at this position in the cyclic order

around the vertex; A triangle indicates that one or more edges may occur at this

position in the cyclic order around the vertex (but they need not); If neither a

half-edge nor a triangle is present in the angle between two edges in the picture,

then these two edges must follow each other directly in the cyclic order of edges

around that vertex.
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3. Main theorem and the background

In [9], Sakano classified the spherical tilings by six or eight congruent

quadrangles of type 2 or of type 4. His argument is generalized to the case in

which the number of the tiles is more than ten, as follows: Recall quadrangles

of type 2 and those of type 4, by Figure 1.

Theorem 1 ([2]). Two charts in Figure 3 and their mirrors do not occur as

the chart of a spherical tiling by ten or more congruent convex quadrangles of

type t for each t ¼ 2; 4. Thick edges are of length b while the other edges are of

length a or c. The charts should be interpreted by Convention 1.

Let the leftmost vertex of the chart in Figure 3 be the vertex S of the

pseudo-double wheel and let the central vertex incident to at least five edges be

the vertex N. In the left chart of Figure 3, an upper, designated, northern

edge of length b is immediately followed by another northern edge of length b.

In the right chart, the designated northern edge of length b is followed imme-

diately by two consecutive non-meridian edges of length b. By the repeated

applications of Theorem 1 to a slightly rotated pseudo-double wheel pdwF

around the vertices N and S, we can observe that all the possibilities of the

length-assignment of pdwF (F b 10) is as follows:

(p) the tile is a convex quadrangle, and no northern edges of pdwF have

length b; or

(a) the tile is a convex quadrangle. The northern edges and non-

meridian edges of pdwF alternatingly have length b. See Assump-

tion (II) of Theorem 2, and Figure 4; or

(aR) (a) with pdwF replaced by the mirror ðpdwF Þ
R.

As a consequence of the following Theorem 2, the possibilities (a) and (aR) are

impossible for any even number F b 10 of tiles. In other words, for any even

number F b 10, there is no spherical tiling by F congruent convex quadrangles

over pdwF such that (a) or (aR) holds. The only possibility (p) of the length-

Fig. 3. Charts forbidden for a spherical tiling by ten or more congruent convex quadrangles of

type t ¼ 2; 4. See Theorem 1. The figures are subject to Convention 1.
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assignment of pdwF is actually realized with a spherical tiling by F congruent

quadrangles. Such a spherical tiling is obtained from a spherical tiling by

congruent rhombic tiles, such as Figure 2 (lower), by deforming the tiles to

quadrangles of type 2 or of type 4 with the tiling kept F=2-fold rotational

symmetric. For details, see [1, 2]. So Theorem 2, which is rather a long

statement about tiles of type 2 or type 4, leads to a complete classification of

the spherical tilings by congruent convex quadrangles of type 2 or of type 4

over pseudo-double wheels.

Theorem 2. Assume a chart A satisfies the following assumptions:

( I ) the map of the chart is pdwF for some F b 10, and

(II) there is b > 0 such that all the edges Nv6i , v6iþ1S and v6iþ3v6iþ4 have

length b for each nonnegative integer i < F=6 while the other edges do

lengths0 b.

Then there exists a spherical tiling T by congruent quadrangles, uniquely up to

special orthogonal transformation. Moreover the tile is a concave quadrangle of

type 2, and the following three properties hold:

(1) The tiling T realizes A, where the length-assignment and the angle-

assignment are Figure 4 ðF ¼ 12 in particularÞ with the following equa-

tions:

a ¼ arccos
1

3
; ð2Þ

b ¼ arccos
�5

9
; ð3Þ

Fig. 4. The chart A of the tiling. Thick (resp. thin) edges of the chart correspond to edges of

length b (resp. a) of the tiling (see Theorem 2).
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a ¼ arccos
�1

2
ffiffiffi
7

p ; ð4Þ

b ¼ p

3
; ð5Þ

g ¼ 4p

3
; ð6Þ

d ¼ arccos
5

2
ffiffiffi
7

p : ð7Þ

(2) Define the spherical polar coordinate of a point p on the unit sphere to be

the pair ðy; jÞ of the length y of the geodesic line Np and the longitude j

of p. The longitude is the angle from the geodesic line Nv0 to Np, defined

consistently with the cyclic order of N. Let

f ¼ arccos
13

14
: ð8Þ

Then the spherical polar coordinates of the vertices viþ6 is ðy; rþ pÞ
for vi ¼ ðy; rÞ ði ¼ 0; 1; 2; 3; 4; 5Þ. Moreover S ¼ ðp; 0Þ, v0 ¼ ðb; 0Þ, v1 ¼
ðp� b; fÞ, v2 ¼ ða; aÞ, v3 ¼ ðp� a; fþ dÞ, v4 ¼ ða; aþ bÞ, and v5 ¼ ðp� a;

fþ dþ bÞ.
(3) The tiling T has only three perpendicular 2-fold rotation axes but no mirror

planes. In other words, the Schönflies symbol of the tiling is D2. See

Figure 5 for the views of T from the three axes.

The proof of Theorem 2 is organized as follows: In Section 4, by as-

suming the existence of such a tiling T, we prove the assertions (1) and (3)

concerning the inner angle a and the number of tiles F , and prove that the tile

Fig. 5. The tiling of twelve congruent concave quadrangles over a pseudo-double wheel and the

three 2-fold rotation axes. The upper left figure is the view from a general position, and the upper

right is from the antipodal of the first viewpoint. The thick edges are of length b. The lower left

figure is the view from a 2-fold rotation axis through the midpoint between the vertices v0 and

v1. The lower middle figure is from a 2-fold rotation axis through the midpoint between the

vertices v3 and v4. The lower right is from the other 2-fold rotation axis through the poles. In the

figure (lower left), two great circles containing the two middle thick edges forms an angle f ¼
arccosð13=14Þ (see (8)).
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is a concave quadrangle of type 2. In Section 5, we determine the absolute

values of all inner angles, all edge-lengths of the tile, and F . In Section 6, by

those values, we prove that the tile actually exists as a spherical quadrangle, by

using Proposition 1. In Section 7, we prove the assertion (2). In Section 8,

we complete the proof of Theorem 2 by establishing the assertion (3).

4. Which angles and which edges are equal?

We answer the question in this section by manipulations of systems of

equations of the form (1) and by elementary geometry.

By an automorphism of a map M, we mean any automorphism [8, Section

1.1] h of the graph that preserves the cyclic orders of the vertices. Here we let

h send any angle ffuvw to ffhðuÞhðvÞhðwÞ. For a chart A ¼ ðM;L;KÞ and an

automorphism h of the map M, let hðAÞ be a chart ðM;L � h�1;K � h�1Þ.

Definition 4. Let A ¼ ðM;L;KÞ be a chart satisfying the assumptions of

Theorem 2, define two automorphisms f and g on the map M of A as follows:

f ðNÞ ¼ S; f ðSÞ ¼ N; f ðviÞ ¼ v1�i ð0a iaF � 1Þ; ð9Þ

gðNÞ ¼ N; gðSÞ ¼ S; gðviÞ ¼ viþ6 ð0a iaF � 1Þ: ð10Þ

Here the su‰x i of the vertex vi is understood modulo F as before. Then we

can prove that both of f and g are indeed automorphisms.

Lemma 1. Suppose some tiling T realizes a chart A ¼ ðM;L;KÞ satisfy-

ing the assumptions of Theorem 2. Then,

(1) The number F of faces is a multiple of 6 greater than or equal to 12.

(2) The tile is a quadrangle of type 2.

(3) A ¼ f ðAÞ ¼ gðAÞ.
(4) The inner angles satisfy b ¼ 4p

F
, g ¼ 2p� 8p

F
> p, and d ¼ 8p

F
� a.

(5) K has the same assignment as in Figure 4 on the angles ffv�2Nv0, ffv0Nv2,

ffv2Nv4 and on all angles around the vertices v0, v2, v3. Especially,

ffv3v2N ¼ 2p� 8p

F
> p; ffv2Nv4 ¼

4p

F
; ffNv4v3 ¼ a: ð11Þ

To prove the assertion (1), assume F is not a multiple of 6. Then the

edge Nv2 or Nv4 should have length b, which contradicts against Assumption

(II) of Theorem 2. By this and Assumption (I) of Theorem 2, the assertion (1)

of Lemma 1 follows.

4.1. Basic general lemmas. To prove the other assertions of Lemma 1, we

associate to the chart in question a system of equations and inequalities about
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the inner angles a, b, g, d of a tile. The system consists of the equations (1),

inequalities 0 < a; b; g; d < 2p, and an equation

aþ b þ gþ d� 2p ¼ 4p

F
: ð12Þ

The last equation holds because all F tiles are congruent quadrangles and

because the area of a spherical triangle is the sum of the inner angles subtracted

by p according to [4].

If the system of equations and inequalities associated to a chart A is

unsolvable, no tiling realizes A. To show that such systems are unsolvable,

we use the following lemmas.

Lemma 2. In a quadrangle of type 2, no inner angle is equal to the opposite

inner angle ði.e. b0 d and a0 gÞ. In a quadrangle of type 4, we have a0 g.

Proof. Draw a diagonal line in the tiles, and then argue with the

isosceles triangle(s). r

Lemma 3. If a tiling by congruent quadrangle of type 4 realizes a chart,

then, for each Z A fa; b; g; dg, the chart has no 3-valent vertex of type Z þ 2d or

Z þ b þ d.

Proof. Recall d is the type of an angle between an edge of length b and

that of length c. Because b0 c, if a 3-valent vertex has vertex type 2dþ Z for

some type Z, then Z is the type of an angle between two edges of length b, or

is that of an angle between two edges of length c. But such an angle does not

exists in any quadrangles of type 4.

b is the type of an angle between two edges of length a. d is the type of

an angle between an edge of length b and that of length c. By c0 a0 b, no

edge of the angle of type b does not match an edge of the angle of type d.

Thus an angle of type d cannot be adjacent to an angle of type b in a quad-

rangle of type 4. Hence a vertex of type Z þ b þ d is impossible. r

Lemma 4. For any quadrangle of type 2, a ¼ d if and only if b ¼ g.

Proof. Assume a ¼ d. We identify the vertex of the quadrangle with the

inner angle. Because the quadrangle abgd is of type 2, the two edges ab and

gd have length a, and then the triangle abd is congruent to the triangle dga.

Thus ffbda ¼ ffgad. As a ¼ d, we have ffbag ¼ ffgdb. Hence ffgbd ¼ ffgdb ¼
ffbag ¼ ffbga. Thus b ¼ ffabdþ ffgbd ¼ ffdgaþ ffbga ¼ g. Conversely, assume

the inner angle b is equal to the inner angle g. As the triangle abg is con-

gruent to the triangle dgb, we have ffbag ¼ ffbga ¼ ffgbd ¼ ffgdb. Let the point

P be shared by the two diagonal segments ag and bd of the quadrangle. As
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ffPbg ¼ ffPgb, the length of the edge bP is equal to that of the edge gP. Since

the length of the diagonal ag is equal to that of the other diagonal db, we have

Pa ¼ Pd, by which the triangle aPd is an isosceles triangle. So ffbag ¼ ffgdb.
Thus the inner angle a is equal to the inner angle d. r

Lemma 5. Suppose a tiling by congruent quadrangles of type 2 realizes a

chart such that ð1Þ there is a vertex incident to only three edges of length a, and

ð2Þ there is a 3-valent vertex incident to two edges of length a and to one edge of

length b. Then a0 d and b0 g.

Proof. Assume otherwise. By Lemma 4, we have a ¼ d and b ¼ g. So

the assumption (1) implies b ¼ g ¼ 2p=3. By the assumption (2), there exists a

vertex of type X þ X 0 þ Y ðX ;X 0 A fa; dg;Y A fb; ggÞ. Thus a ¼ b ¼ g ¼ d ¼
2p=3. This contradicts against Lemma 2. r

4.2. The proof of the assertions (2), (3), (4) and (5) of Lemma 1.

Lemma 6. If a tiling by congruent quadrangles of type 2 realizes a chart

satisfying the assumptions of Theorem 2, then a0 d and b0 g.

Proof. Since the tile Nv0v1v2 of the pseudo-double wheel pdwF in ques-

tion is of type 2 and has an edge Nv0 of length b, other edges v1v2 and v2N of

the same tile have lengths a. The tile Sv1v2v3 is of type 2, and has an edge Sv1
of length b because of Assumption (II) of Theorem 2. Thus the opposite edge

v2v3 of the same tile Sv1v2v3 has length a. Thus the vertex v2 is incident to

only three edges of length a. On the other hand, the vertex v1 is incident to

one edge of length b and to two edges v0v1 and v0vF�1 of length a. By Lemma

5, we have a0 d and b0 g. r

We can easily verify the following Lemma for automorphisms f , g defined

in Definition 4.

Lemma 7. If A is any chart satisfying the assumptions of Theorem 2, then

(1) f ðAÞ and gðAÞ are charts satisfying the assumptions of Theorem 2.

(2) Whenever we can prove a property PðAÞ, we can prove the properties

Pð f ðAÞÞ and PðgðAÞÞ.

Definition 5. Fix a chart. For any property Pða; b; g; dÞ for the inner

angles a, b, g, d of the tile, the conjugate property P�ða; b; g; dÞ is, by definition,

a property Pðd; g; b; aÞ.

Lemma 8. Suppose a tiling by congruent quadrangles realizes a chart

satisfying the assumptions of Theorem 2. Then the tile is of type 2, and the

chart satisfies the following properties (A) and (B), or satisfies the conjugate

properties (A)� and (B)�.
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(A) For each integer 0a i < F=6, the types of ffSv6iþ1v6iþ2 and ffNv6iv6i�1 are

d, those of ffv6iv6iþ1S and ffv6iþ1v6iN are a, and those of ffv6iþ2v6iþ1v6i and

ffv6i�1v6iv6iþ1 are b.

(B) For each integer 0a i < F=6, the types of ffv6iþ2Nv6iþ4 and ffv6iþ5Sv6iþ3 are

all g.

Proof. It is su‰cient to prove the following properties and the conjugate

properties Property 1� and Property 2�:

Property 1. It is not the case that: for some nonnegative integer i < F=6,

both of ffv6iþ1v6iN and ffNv6iv6i�1 have type d and ffv6i�1v6iv6iþ1 has type b.

Property 2. It is not the case that: for some nonnegative integer i < F=6,

both of ffv6iþ1v6iN and ffNv6iv6i�1 have type a and ffv6i�1v6iv6iþ1 has type b.

We first verify the su‰ciency. Assume we can prove Property 1, Property

2, Property 1� and Property 2�. Then for every nonnegative integer i < F=6,

the type of the vertex v6i of pdwF is aþ b þ d or aþ gþ d, and thus the type

of the vertex v6iþ1 of pdwF is so, because the automorphism f satisfies

f ðv6iÞ ¼ v6iþ1 and by Lemma 7.

Because every edge v6iþ3v6iþ4 has length b, each angle mentioned in (B) is b

or g.

First consider the case where all the vertices v6i and v6iþ1 have type

aþ gþ d. Then all the angles ffv6iþ2Nv6iþ4 and ffv6iþ5Sv6iþ3 do b. Otherwise,

aþ gþ d < 2p because a and d appear as types of angles around the poles and

F=2b 5. Hence we have (B)�.

Each ffv6iþ1v6iN has type d. Otherwise ffv6iþ1v6iN has type a and thus

ffv6iþ2v6iþ1v6i does b, which contradicts against the vertex type of v6iþ1 being

aþ gþ d. Similarly we can prove ffv6iv6iþ1S has type d. So we have (A)�.

Thus each ffv6iþ4Nv6iþ6 has type d. If the tile is of type 4, then we have

contradiction against (B)�, by considering the length of the edge v4N. So the

tile is of type 2.

Next consider the case where all the vertices v6i and v6iþ1 have type

aþ b þ d. In this case we can prove (A) and (B) by the same argument as

above but with ða; bÞ $ ðd; gÞ swapped.

In the remaining case, we have a vertex of type aþ b þ d ¼ 2p and that

of type aþ gþ d ¼ 2p. The former vertex leads to a contradiction against

Lemma 3, when the tile is of type 4. If the tile is of type 2, this case implies

b ¼ g, which contradicts against Lemma 6.

Hence to verify Lemma 8, we prove Property 1, Property 2 and their

conjugate properties below.

Property 1� holds when the tile is of type 4, by the following argument.

If both of ffv6iþ1v6iN and ffNv6iv6i�1 have type a, then the length of the edge

v6iv6iþ1 and that of edge v6iv6i�1 are both a. So ffv6i�1v6iv6iþ1 has type b.
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Property 1 and Property 2� hold when the tile is of type 4, by Lemma 3.

Property 1 holds when the tile is of type 2. Otherwise, b þ 2d ¼ 2p.

See Figure 6 (left). The type of ffv6i�1v6i�2N is b. By Assumption (II) of

Theorem 2, the edge v6i�2v6i�3 has length b, and the type of the vertex v6i�2 is

one of aþ b þ d, b þ 2a, and b þ 2d. For the first two cases, we have a ¼ d

which contradicts against Lemma 6. Therefore among the vertex type of the

vertex N, the type g occurs. However the vertex type of v6i�3 is 2aþ Y for

some Y A fb; gg. In case Y ¼ b, we have a ¼ d, which contradicts against

Lemma 6. In the other case Y ¼ g, the vertex type of v6i�3 is a proper subtype

of N, which is a contradiction.

We can prove Property 1� holds when the tile is of type 2, by swapping

ða; bÞ $ ðd; gÞ in the proof above.

Claim 1. Property 2 holds when the tile is of type 2 or of type 4.

Proof. Assume otherwise. See Figure 6 (right). Since the edge Nv6i
has length b, the type of the angle ffv6iþ2v6iþ1v6i is b. Since the edge Sv6iþ1 has

length b, the type of ffv6iv6iþ1S is a. Assume the type of ffSv6iþ1v6iþ2 is d.

When the tile is of type 4, we have a contradiction against Lemma 3. When

the tile is of type 2, we have a contradiction against Lemma 6 because a ¼ d

follows by comparing the vertex types of v6i and v6iþ1. Therefore the vertex

types of v6i and v6iþ1 are both

2aþ b ¼ 2p; ð13Þ

and thus the type of ffv6iþ1v6iþ2v6iþ3 is b. If the vertex type of v6iþ2 is b þ 2g,

then a ¼ g by comparing the vertex types of v6iþ1 and v6iþ2. This contradicts

against Lemma 2, whether the tile is of type 2 or of type 4. Thus the vertex

type of v6iþ2 is

2b þ g ¼ 2p: ð14Þ

Fig. 6. The proof that Property 1 holds when the tile is of type 2 (left), and the proof of Claim 1

(right). The thick edges have length b.
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Because the type of ffv6iþ2v6iþ3S is g, if the vertex type of v6iþ3 is 2aþ g, then

(13) and (14) implies a ¼ b ¼ g ¼ 2p=3, which contradicts against Lemma 2.

Therefore the vertex type of v6iþ3 is

aþ gþ d ¼ 2p: ð15Þ

Then the vertex type of v6iþ4 is (15), too. Otherwise aþ b þ d ¼ 2p. This

contradicts against Lemma 6 and the equation (15). Hence the type of

ffNv6iþ6v6iþ5 is a. The type of ffSv6iþ5v6iþ6 is g. Otherwise it is b. Then

(14) implies b ¼ g, which contradicts against Lemma 6. Thus the type of

ffv6iþ5v6iþ6v6iþ7 is b.

Actually, the type of ffv6iþ7v6iþ6N is a. Otherwise it is d, and the vertex

type of v6iþ6 is aþ b þ d. This contradicts against Lemma 6 and (15).

To sum up, from the negation of Property 2 we derived the negation

of Property 2 with the indices increased by 6. This increase of the indices

by 6 contributes gþ 2d to the vertex type of the vertex N, and three tiles to

the northern part of the tiling. Therefore gþ 2d ¼ 2p=ðF=6Þ ¼ 12p=F . By

solving the system of this equation, (14), (15), and (12), we have 0 < d ¼
ð10� F Þp=F , which is, however, be negative from F b 10. This ends the

proof of Claim 1. r

We can prove Property 2� holds when the tile is of type 2, by the same

argument as above with ða; bÞ $ ðd; gÞ swapped. We can prove Property 2�

holds when the tile is of type 4 by Lemma 3. This completes the proof of

Lemma 8. r

We now resume the proof of Lemma 1. The readers are kindly advised to

follow the argument with Figure 4.

Proof. By Lemma 8, the assertion (2) of Lemma 1 follows. Hence

LðeÞ ¼ Lð f ðeÞÞ ¼ LðgðeÞÞ for every edge e of the chart.

First consider the case where the properties (A)� and (B)� of Lemma 8

hold. By the property (A)�, for each nonnegative integer i < F=6,

the type of ffv6iNv6iþ2 is a ð16Þ

and the type of ffv6iþ2v6iþ1v6i is g. By Lemma 8,

the type of ffv6i�1v6iv6iþ1 is g: ð17Þ

By the property (B)�,

the type of ffv6iþ2Nv6iþ4 is b: ð18Þ

By (16),

the type of ffNv6iþ2v6iþ1 is b: ð19Þ
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By (17), the type of ffv6iv6iþ1S is d. By Lemma 8, the type of ffSv6iþ1v6iþ2 is a.

Thus KðcÞ ¼ Kð f ðcÞÞ if c is an angle around v6i or v6iþ1. Observe

the type of ffv6iþ1v6iþ2v6iþ3 is b; ð20Þ
and thus

the type of ffv6iþ2v6iþ3S is g: ð21Þ
By (18),

the type of ffv6iþ3v6iþ2N is g: ð22Þ

Thus the vertex type of v6iþ2 is (14). Note the type of ffNv6iþ4v6iþ3 is a, and

the type of ffv6iþ4v6iþ3v6iþ2 is d: ð23Þ

By the property (A)�, we have the equation (15). By this, (21), and (23), if

the type of ffSv6iþ3v6iþ4 is d, then we have a ¼ d which contradicts against

Lemma 6. So

the type of ffSv6iþ3v6iþ4 is a; ð24Þ
and

that of ffv6iþ3v6iþ4v6iþ5 is d: ð25Þ

By the property (A)�, the type of ffv6iþ5v6iþ4N is g. Hence KðcÞ ¼ Kð f ðcÞÞ if

c is an angle around v6iþ3 or v6iþ4. Therefore the vertex type of v6iþ3 is (15).

The property (A)� furthermore implies that the type of ffv6iþ6v6iþ5v6iþ4 is b.

By (25), the type of ffv6iþ4v6iþ5S is g. By (17), the type of ffSv6iþ5v6iþ6 is b.

Therefore KðcÞ ¼ Kð f ðcÞÞ if c is an angle around v6iþ2 or v6iþ5. This

completes the proof of the assertion (3) of Lemma 1. By the property (A)�,

the type of ffNv6iv6i�1 is a and the type of ffv6i�2Nv6i is d: ð26Þ

Because of (16), (18) and (26), the vertex type of the north pole is

ðaþ b þ dÞF
6
¼ 2p:

From this and the equations (12) and (15), we obtain the assertion (4) of

Lemma 1. The claim g > p follows from Lemma 1 (1).

We prove the assertion (5) of Lemma 1. The assertion states the

following four statements: (i) the three inner angles ffv�2Nv0, ffv0Nv2, and

ffv2Nv4 are mapped by the angle-assignment K , to d, a, and b; (ii) the inner

angles around the vertex v0 are ffNv0v�1, ffv�1v0v1 and ffv1v0N, which K maps

to a, g and d; (iii) the inner angles around v2 are ffNv2v1, ffv1v2v3 and ffv3v2N,

which K maps to b, b and g; and (iv) the inner angles around v3 are ffv4v3v2,
ffv2v3S and ffSv3v4, which K maps to d, g and a. The statement (i) follows
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from (26), (16), and (18); the statement (ii) does from the property (A)�; the

statement (iii) does from (19), (20), and (22); and the statement (iv) does from

(23), (21), and (24).

Next consider the case where the properties (A) and (B) of Lemma 8 hold.

By the same argument as above but with ða; bÞ $ ðd; gÞ being swapped, we

obtain a chart from Figure 4 with ða; bÞ $ ðd; gÞ swapped and obtain the

assertion (4)�. But these data provide exactly the same angle-assignment for

the map pdwF which we have just obtained in the case the properties (A)� and

(B)� hold. Hence the assertions (1), (2), (3), (4) and (5) of Lemma 1 hold also.

r

5. The absolute values of the angles, the edges and the number of tiles

By trigonometry argument, we finish the proof of Assertion (1) of Theorem

2. In the rest of the paper, we use the spherical polar coordinate system

introduced in Assertion (2) of Theorem 2. The vertex S of the chart is located

at the south pole ðp; 0Þ. To see it, first we can compute the longitude j of

the vertex S by applying trigonometry arguments along the path Nv0v1S. By

rotating the path Nv0v1S by ðaþ b þ dÞ ¼ 12p=F radian, we obtain a path

Nv6v7S. By applying the same trigonometry arguments along the latter path,

the longitude of S becomes pþ j. Thus the vertex S should be the north pole

or the south pole of the spherical polar coordinate system. If the vertex is the

north pole, then some tile containing the vertex N and some tile containing

the vertex S shares the interior, which contradicts against the definition of the

tiling.

For the length a of an edge of the tile, cos a is positive. To see it, assume

ab p=2. Then the two points v2 and v4 are located on the southern hemi-

sphere while the point v3 on the northern hemisphere. So g ¼ ffv3v2N is less

than or equal to p, which contradicts against the assertion (4) of Lemma 1.

Consider the triangle Nv2v3. If we join the edge Nv3 of the triangle with

the edge v3S of the tiling, we obtain a geodesic line from the north pole to the

south pole. Because the edge v3S has length a,

Nv3 ¼ p� a:

The first equation of (11) of Lemma 1 implies ffv3v2N ¼ g > p. So the angle

between two edges Nv2 and v2v3 is 2p� g ¼ 8p=F . By the spherical cosine

theorem, we obtain a quadratic equation cosðp� aÞ ¼ cos2 aþ sin2 a cosð8p=FÞ
of cos a. Since cos a > 0, the solution is

cos a ¼ �
cos 8p

F

� �
1� cos 8p

F

� � > 0: ð27Þ
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Thus by the premise F b 10 of Theorem 2 and Lemma 1 (1), the number

of tiles is F ¼ 12. From this and (27), the length a is as in the equation (2) of

Theorem 2.

By F ¼ 12 and the assertion (4) of Lemma 1, the inner angles b and g

are as in the equations (5) and (6) of Theorem 2. By the spherical cosine

theorem applied to the isosceles triangle v2Nv4, the equations (2) and (5)

imply

cos v4v2 ¼ cos2 aþ sin2 a cos b ¼ 1

32
þ 1� 1

32

� �
cos

p

3
¼ 5

9
: ð28Þ

The length b of an edge is less than p, because otherwise two edges Nv0
and Nv6 of length b share more than two points. We compute the length b

by considering a triangle Nv0v1. If we join the edge Nv1 of the triangle with

the edge v1S of the tiling, we obtain a geodesic line from the north pole to the

south pole. Moreover the edge v1S has length b. Therefore the edge Nv1 of

the triangle Nv0v1 has length p� b. Because two tiles Sv11v0v1 and v4Nv2v3
are congruent, the segment v2v4 has length p� b. By (28), the length b is as in

the equation (3) of Theorem 2.

Then we compute the other inner angles a and d of the tile. To compute

a, we apply the spherical cosine theorem to the triangle Nv3v4. By the

equations (2), (3) and (11), we have cosðp� aÞ ¼ cos b cos aþ sin b sin a cos a.

Here 0 < a < p because a occurs twice in the vertex type of the vertex

N. Hence the inner angles a and d are as in the equations (4) and (7) of

Theorem 2.

By the assertion (5) and the assertion (3) of Lemma 1, all angles of the

chart A are as in Assertion (1) of Theorem 2.

6. The existence of the tile

To prove that the tiling T actually exists, we verify that the quadrangle

Nv2v3v4 actually exists. It is su‰cient to show the following three assertions:

( i ) Let u be the value of cos v2v4 computed by applying the spherical cosine

theorem to the triangle v2v3v4. Then u is equal to the value 5=9 of

cos v2v4 we have computed already in (28) by applying the spherical

cosine theorem to the triangle v2Nv4.

( ii ) The triangles Nv2v4 and v2v3v4 actually exist.

(iii) The di¤erent edges of the tile Nv0v1v2 do not have a common inner point.

To prove the assertion (i), we observe that sin a ¼ 2
ffiffiffi
2

p
=3 and sin b ¼

2
ffiffiffiffiffi
14

p
=9, because 0 < a; b < p and the equations (2) and (3) hold. Then u ¼

cos v3v2 cos v3v4 þ sin v3v2 sin v3v4 cos ffv4v3v2 ¼ cos a cos b þ sin a sin b cos d

¼ 5=9 as desired.
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To prove the assertion (ii), we employ Proposition 1. First we verify the

assumptions of Proposition 1 for the triangle v2v3v4. Let f be ffv0Nv1. By

applying the spherical cosine theorem to the triangle v0Nv1, we have cos a ¼
cos b cosðp� bÞ þ sin b sinðp� bÞ cos f. By the equation (3), we have f ¼
Garccosð13=14Þ. We prove the equation (8), that is, f ¼ arccosð13=14Þ. If

f is �arccosð13=14Þ, then the spherical polar coordinate of v1 and that of v2
are ðy1; j1Þ :¼ ðp� b;�arccosð13=14ÞÞ and ðy2; j2Þ :¼ ða; aÞ respectively. For

the length a of the geodesic line between two points v1 and v2, the value

cos a ¼ 1=3 should be equal to the inner product of the cartesian coordinates of

v1 and v2, that is, sinðy1Þ sinðy2Þ cosðj2 � j1Þ þ cosðy1Þ cosðy2Þ ¼ �5=21. This

is a contradiction. Hence we have (8). Thus

ffv2v4v3 ¼ ffv0Nv1 ¼ f ¼ arccos
13

14
¼ 0:380251 . . . : ð29Þ

By the spherical cosine theorem applied to the triangle v2v3v4, we have cos b ¼
cos a cosðp� bÞ þ sin a sinðp� bÞ cos ffv3v2v4. By the equations (2), (3), and

(27), we have cos ffv3v2v4 ¼ �5=ð2
ffiffiffi
7

p
Þ. If ffv3v2v4 is greater than p, then the

edges v3v4 and Nv2 of the tile Nv2v3v4 has a common inner point, which is a

contradiction. Hence

ffv3v2v4 ¼ arccos
�5

2
ffiffiffi
7

p ¼ 2:80812 . . . : ð30Þ

For a geodesic line from N to S through v1, we have ffv0v1N ¼ ffv3v2v4. So

ffv4v3v2 ¼ d ¼ p� ffv3v2v4 ¼ arccos
5

2
ffiffiffi
7

p ¼ 0:3334373 . . . : ð31Þ

By (29), (30) and (31), the assumptions of Proposition 1 hold for the triangle

v2v3v4.

Next we verify the assumptions of Proposition 1 for the triangle v2Nv4.

By the equations (6), (30), (5), (4), and (8), the inner angles of the triangle

v2Nv4 are

g� ffv3v2v4 ¼
4p

3
� arccos

�5

2
ffiffiffi
7

p ¼ 1:38067 . . . ; b ¼ p

3
¼ 1:0472 . . . ;

a� f ¼ arccos
�1

2
ffiffiffi
7

p � arccos
13

14
¼ 1:38067 . . . :

These also satisfy the assumptions of Proposition 1. Thus the triangle v2Nv4
actually exists.

The assertion (iii) holds because the longitudes of the vertices v0, v1 and v2
are, respectively, 0, f ¼ arccosð13=14Þ, and a ¼ arccosð�1=ð2

ffiffiffi
7

p
ÞÞ, increasing

between 0 and p. To sum up, the quadrangle Nv2v3v4 actually exists.
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7. The uniqueness up to special orthogonal transformation

We prove Assertion (2) of Theorem 2. Observe that the spherical polar

coordinate of each vertex v2i (resp. v2iþ1) of the tiling T is determined from

Assertion (1) of Theorem 2 by considering the angle around the north pole N

(resp. around the south pole S with the equation (8) of Theorem 2). The

length of the geodesic line between N and v2iþ1 is p subtracted by the length of

the edge Sv2iþ1.

We have a freedom to set a spherical polar coordinate system, so long that

the north pole is the vertex N and the ‘‘Greenwich meridian’’ of the spherical

polar coordinate system contains the edge Nv0. However, the spherical coor-

dinate system must respect the cyclic orders of the vertices of the chart. So

each vertex is unique up to special orthogonal transformation. In fact, the

mirror image of the tiling cannot be transformed to the original tiling, by a

special orthogonal transformation.

8. The symmetry

To complete the proof of Theorem 2, we prove Assertion (3) of Theorem

2: Schönflies symbol of the tiling T is D2. The Schönflies symbol is deter-

mined according to [7, p. 55] and Step 1, Step 2, . . . of [7, Figure 3.10 (p. 56)].

As for Step 1 of Figure 3.10, the tiling T does not have continuous rotational

symmetry, and so the Schönflies symbol is neither Cyv nor Dyh. Moreover

the tiling has none of 3-fold and 5-fold symmetry, so the Schönflies symbol is

none of T , Th, Td , O, Oh, I , Ih.

Observe that the tiling T has the following three 2-fold rotation axes

perpendicular to each other (cf. Figure 5):
� The axis through the both poles. The rotation around this axis by

p-radian maps a point ðy; jÞ on the sphere to a point ðy; jþ pÞ. The

action of the rotation on the vertices and the edges of the tiling T is

the automorphism g defined in (10).
� The axis through the ball’s center and the midpoint of v0 and v1. The

rotation around this axis by p-radian maps a point ðy; jÞ on the sphere

to a point ðp� y; f� jÞ where f is defined in the equation (8). The

action of the rotation on the vertices and the edges of the tiling T is

the automorphism f defined in (9).
� The axis through the ball’s center and the midpoint of v3 and v4. The

2-fold rotation around this axis corresponds to the automorphism g � f .

Because of the three perpendicular 2-fold axes, we can skip the Step 2, and we

see in Step 3 that the Schönflies symbol is none of S4;S6;S8; . . . . Hence, we

go to Step 5 and see that the symbol is one of D2, D2d , D2h. But by Figure 5,
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the tiling has no mirror plane perpendicular to a 2-fold axis, the symbol is

not D2h. Moreover the tiling has no mirror plane between two 2-fold axes,

so the symbol is not D2d either. Therefore the Schönflies symbol is D2. This

completes the proof of Theorem 2.

Three movies of the tiling T spinning around the rotation axes are

available at the web-site http://www.math.tohoku.ac.jp/akama/stcq.
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