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Abstract. Riley ‘‘defined’’ the Heckoid groups for 2-bridge links as Kleinian groups,

with nontrivial torsion, generated by two parabolic transformations, and he constructed

an infinite family of epimorphisms from 2-bridge link groups onto Heckoid groups. In

this paper, we make Riley’s definition explicit, and give a systematic construction of

epimorphisms from 2-bridge link groups onto Heckoid groups, generalizing Riley’s

construction.

1. Introduction

In [17], Riley introduced an infinite collection of Laurent polynomials,

called the Heckoid polynomials, associated with a 2-bridge link K , and ob-

served, through extensive computer experiments, that these Heckoid polyno-

mials define the a‰ne representation variety of certain groups, the Heckoid

groups for K . To be more precise, he ‘‘defines’’ the Heckoid group of index

qb 3 for K to be a Kleinian group generated by two parabolic transformations

which are obtained by choosing a ‘‘right’’ root of the Heckoid polynomials (see

[17, the paragraph following Theorem A in p. 390]). The classical Hecke

groups, introduced in [6], are essentially the simplest Heckoid groups. Riley

discussed relations of the Heckoid polynomials with the polynomials defining

the nonabelian SLð2;CÞ-representations of 2-bridge link groups introduced in

[16], and proved that each Heckoid polynomial divides the nonabelian rep-

resentation polynomials of 2-bridge links ~KK , where ~KK belongs to an infinite

collection of 2-bridge links determined by K and the index q. This suggests

that there are epimorphisms from the link group of ~KK onto the Heckoid group
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of index q for K , as observed in [17, the paragraph following Theorem B in

p. 391].

The purpose of this paper is (i) to give an explicit combinatorial definition

of the Heckoid groups for 2-bridge links (Definition 3.2), (ii) to prove that the

Heckoid groups are identified with Kleinian groups generated by two parabolic

transformations (Theorem 2.2), and (iii) to give a systematic construction of

epimorphisms from 2-bridge link groups onto Heckoid groups, generalizing

Riley’s construction (Theorem 2.3 and Remark 4.4).

We note that the results (i) and (ii) are essentially contained in the work

of Agol [1], in which he announces a complete classification of the non-free

Kleinian groups generated by two-parabolic transformations. Moreover, this

classification theorem gives a nice characterization of the Heckoid groups, by

showing that they are exactly the Kleinian groups, with nontrivial torsion,

generated by two-parabolic transformations.

The result (iii) is an analogy of the systematic construction of epimor-

phisms between 2-bridge link groups given in [14, Theorem 1.1]. In the sequel

[10] of this paper, we prove, by using small cancellation theory, that the

epimorphisms in Theorem 2.3 are the only upper-meridian-pair-preserving

epimorphisms from 2-bridge link groups onto even Heckoid groups. This

in turn forms an analogy of [9, Main Theorem 2.4], which gives a com-

plete characterization of upper-meridian-pair-preserving epimorphisms between

2-bridge link groups.

This paper is organized as follows. In Section 2, we describe the main

results. In Section 3, we give an explicit combinatorial definition of Heckoid

groups. Sections 4, 5 and 6, respectively, are devoted to the proof of Theorem

2.3, the topological description of Heckoid orbifolds, and the proof of Theorem

2.2.

Throughout this paper, we denote the orbifold fundamental group of an

orbifold X by p1ðX Þ.

2. Main results

Consider the discrete group, H, of isometries of the Euclidean plane R2

generated by the p-rotations around the points in the lattice Z2. Set ðS 2;PÞ :¼
ðR2;Z2Þ=H and call it the Conway sphere. Then S 2 is homeomorphic to the

2-sphere, and P consists of four points in S 2. We also call S 2 the Conway

sphere. Let S :¼ S 2 � P be the complementary 4-times punctured sphere.

For each s A Q̂Q :¼ QU fyg, let as be the simple loop in S obtained as the

projection of a line in R2 � Z2 of slope s. Then as is essential in S, i.e., it does

not bound a disk in S and is not homotopic to a loop around a puncture.

Conversely, any essential simple loop in S is isotopic to as for a unique
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s A Q̂Q. Then s is called the slope of the simple loop. We abuse notation to

denote by as the pair of conjugacy classes in p1ðSÞ represented by the loop as
with two possible orientations.

A trivial tangle is a pair ðB3; tÞ, where B3 is a 3-ball and t is a union of

two arcs properly embedded in B3 which is simultaneously parallel to a union

of two mutually disjoint arcs in qB3. Let t be the simple unknotted arc in

B3 joining the two components of t as illustrated in Figure 1. We call it the

core tunnel of the trivial tangle. Pick a base point x0 in int t, and let ðm1; m2Þ
be the generating pair of the fundamental group p1ðB3 � t; x0Þ each of which is

represented by a based loop consisting of a small peripheral simple loop around

a component of t and a subarc of t joining the circle to x0. For any base

point x A B3 � t, the generating pair of p1ðB3 � t; xÞ corresponding to the

generating pair ðm1; m2Þ of p1ðB3 � t; x0Þ via a path joining x to x0 is denoted

by the same symbol. The pair ðm1; m2Þ is unique up to (i) reversal of the order,

(ii) replacement of one of the members with its inverse, and (iii) simultaneous

conjugation. We call the equivalence class of ðm1; m2Þ the meridian pair of

p1ðB3 � tÞ.
By a rational tangle, we mean a trivial tangle ðB3; tÞ which is endowed

with a homeomorphism from qðB3; tÞ to ðS 2;PÞ. Through the homeomor-

phism we identify the boundary of a rational tangle with the Conway sphere.

Thus the slope of an essential simple loop in qB3 � t is defined. We define

the slope of a rational tangle to be the slope of an essential loop on qB3 � t

which bounds a disk in B3 separating the components of t. (Such a loop is

unique up to isotopy on qB3 � t and is called a meridian of the rational tangle.)

We denote a rational tangle of slope r by ðB3; tðrÞÞ. By van Kampen’s

theorem, the fundamental group p1ðB3 � tðrÞÞ is identified with the quotient

p1ðSÞ=hharii, where hharii denotes the normal closure.

For each r A Q̂Q, the 2-bridge link KðrÞ of slope r is defined to be the sum

of the rational tangles of slopes y and r, namely, ðS3;KðrÞÞ is obtained from

ðB3; tðyÞÞ and ðB3; tðrÞÞ by identifying their boundaries through the identity

map on the Conway sphere ðS 2;PÞ. (Recall that the boundaries of rational

tangles are identified with the Conway sphere.) KðrÞ has one or two

Fig. 1. A trivial tangle
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components according as the denominator of r is odd or even. We call

ðB3; tðyÞÞ and ðB3; tðrÞÞ, respectively, the upper tangle and lower tangle of

the 2-bridge link. By van Kampen’s theorem, the link group GðKðrÞÞ ¼
p1ðS3 � KðrÞÞ is obtained as follows:

GðKðrÞÞ ¼ p1ðS3 � KðrÞÞG p1ðSÞ=hhay; ariiG p1ðB3 � tðyÞÞ=hharii:

We call the image in the link group of the meridian pair of p1ðB3 � tðyÞÞ
(resp. p1ðB3 � tðrÞÞ) the upper meridian pair (resp. lower meridian pair).

For a rational number r (0y) and an integer nb 2, the (even) Heckoid

orbifold, Sðr; nÞ, of index n for the 2-bridge link KðrÞ is the 3-orbifold as shown

in Figure 2. Namely, the underlying space jSðr; nÞj is EðKðrÞÞ and the sin-

gular set is the lower tunnel, where the index of singularity is n. Here, the

lower tunnel means the core tunnel of the lower tangle. the core tunnel The

(even) Hekoid group Gðr; nÞ is defined to be the orbifold fundamental group

p1ðSðr; nÞÞ. By van Kampen’s theorem for orbifold fundamental groups (cf. [4,

Corollary 2.3]), we have

Gðr; nÞG p1ðSÞ=hhay; an
r iiG p1ðB3 � tðyÞÞ=hhan

r ii:

In particular, the even Heckoid group Gðr; nÞ is a two-generator and one-relator

group. We call the image in Gðr; nÞ of the meridian pair of p1ðB3 � tðyÞÞ the

upper meridian pair.

The announcement by Agol [1] and the announcement made in the second

author’s joint work with Akiyoshi, Wada and Yamashita [2, Section 3 of

Preface] (cf. Remark 6.1) suggest that the group Gðr; nÞ makes sense even when

n is a half-integer greater than 1. The precise definition of Gðr; nÞ with n > 1

a half-integer is given in Definition 3.2, and a topological description of the

corresponding orbifold, Sðr; nÞ, is given by Proposition 5.3 (see Figures 5 and

Fig. 2. The even Heckoid orbifold Sðr; nÞ of index n for the 2-bridge link KðrÞ, where we employ

Convention 5.1. Here ðS3;KðrÞÞ ¼ ðB3; tðyÞÞU ðB3; tðrÞÞ is the 2-bridge link with r ¼ 2=9 ¼ ½4; 2�
(with a single component). The rational tangles ðB3; tðyÞÞ and ðB3; tðrÞÞ, respectively, are the

outside and the inside of the bridge sphere S 2.
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6). When n > 1 is a non-integral half-integer, Gðr; nÞ and Sðr; nÞ, respectively,
are called the (odd ) Heckoid orbifold and the (odd ) Heckoid group of index n

for KðrÞ. There is a natural epimorphism from p1ðB3 � tðyÞÞ onto the odd

Heckoid group Gðr; nÞ, and the image of the meridian pair of p1ðB3 � tðyÞÞ is

called the upper meridian pair of Gðr; nÞ. Thus the odd Heckoid groups are

also two-generator groups. However, we show that they are not one-relator

groups (Proposition 6.8).

Remark 2.1. Our terminology is slightly di¤erent from that of [17], where

Gðr; nÞ is called the Heckoid group of index ‘‘2n’’ for KðrÞ. The Heckoid

orbifold Sðr; nÞ and the Heckoid group Gðr; nÞ are even or odd according to

whether Riley’s index 2n is even or odd.

We prove the following theorem, which was anticipated in [17] and is

contained in [1] without proof.

Theorem 2.2. For r a rational number and n > 1 an integer or a half-

integer, the Heckoid group Gðr; nÞ is isomorphic to a geometrically finite Kleinian

group generated by two parabolic transformations.

In order to explain a systematic construction of epimorphisms from

2-bridge link groups onto Heckoid groups, we prepare a few notation. Let

D be the Farey tessellation, that is, the tessellation of the upper half space H2

by ideal triangles which are obtained from the ideal triangle with the ideal

vertices 0; 1;y A Q̂Q by repeated reflection in the edges. Then Q̂Q is identified

with the set of the ideal vertices of D. For each r A Q̂Q, let G r be the group

of automorphisms of D generated by reflections in the edges of D with an

endpoint r. Let n > 1 be an integer or a half-integer, and let Crð2nÞ be the

group of automorphisms of D generated by the parabolic transformation,

centered on the vertex r, by 2n units in the clockwise direction.

For r a rational number and n > 1 an integer or a half-integer, let Gðr; nÞ
be the group generated by Gy and Crð2nÞ. Then we have the following

systematic construction of epimorphisms from 2-bridge link groups onto

Heckoid groups.

Theorem 2.3. Suppose that r is a rational number and that n > 1 is an

integer or a half-integer. For s A Q̂Q, if s or sþ 1 belongs to the Gðr; nÞ-orbit of
y, then there is an upper-meridian-pair-preserving epimorphism from GðKðsÞÞ to

Gðr; nÞ.

This theorem may be regarded as a generalization of Theorem B and

Theorem 3 of Riley [17]. In fact, they correspond to the case when s belongs

to the orbit of y by the infinite cyclic subgroup Crð2nÞ of Gðr; nÞ (see Remark

4.4).
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The above theorem is actually obtained from the following theorem.

Theorem 2.4. Suppose that r is a rational number and that n > 1 is an

integer or a half-integer. Let s and s 0 be elements of Q̂Q which belong to the

same Gðr; nÞ-orbit. Then the conjugacy classes as and as 0 in Gðr; nÞ are equal.

In particular, if s belongs to the Gðr; nÞ-orbit of y, then as is the trivial

conjugacy class in Gðr; nÞ.

3. Combinatorial definition of Heckoid groups

In this section, we give an explicit combinatorial definition of even/odd

Heckoid groups. Consider the ð2; 2; 2;yÞ-orbifold, O :¼ ðR2 � Z2Þ=ĤH, where

ĤH is the group generated by p-rotations around the points in 1
2Z
� �2

. Note

that O has a once-punctured sphere as the underlying space, and has three

cone points of cone angle p. The orbifold fundamental group of O has the

presentation

p1ðOÞ ¼ hP;Q;R jP2 ¼ Q2 ¼ R2 ¼ 1i;

where D :¼ ðPQRÞ�1 is represented by the puncture of O (see Figure 3). For

each s A Q̂Q, the image of a straight line of slope s in R2 � Z2 disjoint from the

singular set of ĤH projects to a simple loop, bs, in O disjoint from the cone

points. Thus the loop bs (with an orientation) represents a conjugacy class in

p1ðOÞ. We abuse notation to denote by bs the pair of the conjugacy classes

in p1ðOÞ represented by bs with two possible orientations. Throughout this

paper, we choose the generating set fP;Q;Rg of p1ðOÞ so that the conjugacy

classes b0 and by are represented by RQ and PQ, respectively (see Figure 3

and [2, Section 2.1]).

The Conway sphere S ¼ ðR2 � Z2Þ=H is the ðZ=2ZÞ2-covering of O,

and hence p1ðSÞ is a normal subgroup of p1ðOÞ such that p1ðOÞ=p1ðSÞG
ðZ=2ZÞ2. Each simple loop as in S doubly covers the simple loop bs, and so

we have as ¼ b2
s as conjugacy classes in p1ðOÞ.

Fig. 3. The orbifold O
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For each r A Q̂Q and integer mb 2, consider the orbifold, Bðr;mÞ, as

illustrated in Figure 4. In order to give its explicit description, we prepare

notation following [13]. For an integer mb 2, let D2ðmÞ be the discal

2-orbifold obtained from the unit disk D2 in the complex plane by taking

the quotient of the action generated by the 2p=m-rotation z 7! e2pi=mz. We call

the product 3-orbifold D2ðmÞ � I with I ¼ ½0; 1� a 2-handle orbifold. The

quotient orbifold of the unit 3-ball B3 in R3 by the dihedral subgroup, D2m,

of SOð3Þ of order 2m is denoted by B3ð2; 2;mÞ and is called a 3-handle

orbifold. By using this notation, the orbifold Bðr;mÞ has the following

description (see Figure 4). Let �OO be the compact 2-orbifold obtained from

O by removing an open regular neighborhood of the puncture. Then Bðr;mÞ
is obtained from the product orbifold �OO � ½0; 1� by attaching 2- and 3-handle

orbifolds as follows.

(1) Attach a 2-handle orbifold D2ðmÞ � I along the simple loop br � f0g,
i.e., identify ðqD2ðmÞÞ � I with an annular neighborhood of br � f0g
in the boundary of �OO � I .

(2) Cap o¤ the spherical orbifold boundary of the resulting orbifold by a

3-handle orbifold B3ð2; 2;mÞ.
Note that the 2-dimensional orbifold �OO sits in the boundary of Bðr;mÞ; we call

it the outer boundary of Bðr;mÞ, and denote it by qoutBðr;mÞ. To be precise,

as in the definition of rational tangles, Bðr;mÞ is defined to be the orbifold as

in Figure 4 which is endowed with a homeomorphism from qoutBðr;mÞ to
�OO. Thus, by van Kampen’s theorem for orbifold fundamental groups [3,

Corollary 2.3], we can identify the orbifold fundamental group p1ðBðr;mÞÞ with
p1ð �OOÞ=hhbm

r ii ¼ p1ðOÞ=hhbm
r ii. (Here we use the fact that the inclusion map

qB3ð2; 2;mÞ ! B3ð2; 2;mÞ induces an isomorphism between the orbifold fun-

damental groups.)

For a rational number r and an integer mb 2, let Oðr;mÞ be the orbifold

obtained by identifying Bðy; 2Þ and Bðr;mÞ, along their outer boundaries, via

Fig. 4. The orbifold Bðr;mÞ ¼ ð �OO � IÞU ðD2ðmÞ � IÞUB3ð2; 2;mÞ with r ¼ y, where we employ

Convention 5.1.
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their identification with �OO. By van Kampen’s theorem, the orbifold funda-

mental group of Oðr;mÞ is given by the following formula:

p1ðOðr;mÞÞG p1ðOÞ=hhb2
y; bm

r ii:

Proposition 3.1. For a rational number r and an integer n > 1, the even

Heckoid orbifold Sðr; nÞ is a ðZ=2ZÞ2-covering of Oðr;mÞ, where m ¼ 2n. In

particular, the even Heckoid group Gðr; nÞ is identified with the image of the

homomorphism, c, which is the following composition of two natural homo-

morphisms

p1ðSÞ ! p1ðOÞ ! p1ðOðr;mÞÞ:

Proof. Let �SS be the compact 2-manifold obtained from S by removing

open regular neighborhoods of the punctures. Then we see that the even

Heckoid orbifold Sðr; nÞ is obtained from �SS � ½�1; 1� by attaching a 2-handle

D2 � I along ay � f1g and by attaching a 2-handle orbifold D2ðnÞ � I along

ar � f�1g. Note that the group ĤH=HG ðZ=2ZÞ2 acts on �SS and the quotient

is identified with �OO. Since the loops ay and ar on �SS can be chosen so that

they are invariant by the action, it extends to an action on Sðr; nÞ. Moreover

the quotient of �SS � ½0; 1�UD2 � I and that of �SS � ½�1; 0�UD2ðnÞ � I are iden-

tified with Bðy; 2Þ and Bðr;mÞ, respectively. Hence Sðr; nÞ is a ðZ=2ZÞ2-
covering of Oðr;mÞ. Since the covering Sðr; nÞ ! Oðr;mÞ is ‘‘induced’’ by the

covering S ! O, and since the natural homomorphism p1ðSÞ ! p1ðSðr; nÞÞ is

surjective, we see that Gðr; nÞ is identified with ImðcÞ. r

This motivates us to introduce the following definition.

Definition 3.2. For a rational number r and a non-integral half-integer n

greater than 1, the (odd ) Heckoid group Gðr; nÞ of index n for KðrÞ is defined to

be the image, ImðcÞ, of the natural map

c : p1ðSÞ ! p1ðOÞ ! p1ðOðr;mÞÞ;

where m ¼ 2n. The covering orbifold of Oðr;mÞ corresponding to the sub-

group Gðr; nÞ of p1ðOðr;mÞÞ is denoted by Sðr; nÞ and is called the (odd )

Heckoid orbifold for the 2-bridge link KðrÞ of index n. (See Section 5 for a

topological description of this orbifold.)

Note that c is equal to the composition

p1ðSÞ ! p1ðB3 � tðyÞÞ ¼ p1ðSÞ=hhayii ! p1ðOÞ=hhb2
yii ! p1ðOðr;mÞÞ:

Since p1ðSÞ ! p1ðB3 � tðyÞÞ is surjective and since p1ðB3 � tðyÞÞ is a free

group of rank 2, the Heckoid group Gðr; nÞ is generated by two elements.

However, no odd Heckoid group is a one-relator group (see Proposition 6.8).
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4. Proofs of Theorems 2.3 and 2.4

The following lemma, on the existence of certain self-homeomorphisms

of the orbifold Bðr;mÞ, is the heart of Theorem 2.4. For the definition of a

homeomorphism (di¤eomorphism) between orbifolds, see [3, Section 2.1.3] or

[8, p. 138].

Lemma 4.1. (1) For r A Q̂Q and an integer mb 2, let F be a discal

2-suborbifold properly embedded in Bðr;mÞ bounded by br, and let j be the

m-th power of the Dehn twist of the underlying space jBðr;mÞj, preserving the

singular set, along the disk jF j. Then j is a self-homeomorphism of the orbifold

Bðr;mÞ, which induces the identity (outer) automorphism of p1ðBðr;mÞÞ.
(2) For an integer mb 2, let g be the reflection of jBðy;mÞj of Figure 4

in the sheet of the figure. Then g is a self-homeomorphism of the orbifold

Bðy;mÞ. Moreover, if m ¼ 2, then g induces the identity (outer) automorphism

of p1ðBðy;mÞÞ.

Proof. (1) To show the first assertion, we have only to check that each

singular point x of Bðr;mÞ has a neighborhood, Ux, such that the restriction

of j to Ux lifts to an equivariant homeomorphism from a manifold covering of

Ux to that of jðUxÞ. But, this follows from the following observation. Let

p : D2 � ½0; 1� ! D2ðmÞ � ½0; 1� be the universal covering of the 2-handle

orbifold, given by pðz; tÞ ¼ ðzm; tÞ, where we identify both D2 and jD2ðmÞj
with the unit disk in the complex plane. Let j be the m-th power of the Dehn

twist of jD2ðmÞ � ½0; 1�j given by jðz; tÞ ¼ ðe2pmtiz; tÞ. Then it is covered by

the Dehn twist, ~jj, of D2 � ½0; 1�, defined by ~jjðz; tÞ ¼ ðe2ptiz; tÞ, namely we have

j � p ¼ p � ~jj. (The corresponding automorphism of the local group, Z=mZ, is

the identity map.) Thus we have shown the first assertion that j is a self-

homeomorphism of the orbifold Bðr;mÞ.
To show the second assertion, we may assume r ¼ y without loss of

generality. Then we can see by using Figure 3 that

ðj�ðPÞ; j�ðQÞ; j�ðRÞÞ ¼ ðbm
yPb�m

y ; bm
yQb�m

y ;RÞ;

where by ¼ PQ A p1ðBðy;mÞÞ. Since bm
y ¼ 1 in p1ðBðy;mÞÞ, we see that j�

is the identity map.

(2) We show that g satisfies the local condition (in the definition of a

homeomorphism between orbifolds) at every singular point x. Suppose first

that x is contained in the interior of an edge of the singular set. Then x has

a neighborhood homeomorphic to the 2-handle orbifold D2ðmÞ � ½0; 1� such

that the restriction of g to it is given by gðz; tÞ ¼ ðz; tÞ. This is covered by the

self-homeomorphism ~gg of the universal cover D2 � ½0; 1�, defined by ~ggðz; tÞ ¼
ðz; tÞ. (The corresponding automorphism of the local group, Z=mZ, of x is
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given by ½k� 7! ½�k� for every ½k� A Z=mZ.) Suppose next that x is the vertex,

on which the edges of indices 2, 2, and m are incident. Then x has a

neighborhood homeomorphic to the 3-handle orbifold B3ð2; 2;mÞ ¼ B3=D2m.

Then the restriction of the map g is covered by the reflection in the disk in B3

containing the axes of the pair of order 2 generators of D2m. (The corre-

sponding automorphism of the local group, D2m, of x is the identity map.)

Thus we have shown that g is a self-homeomorphism of the orbifold Bðy;mÞ.
To show the second assertion, observe by using Figure 3 that

ðg�ðPÞ; g�ðQÞ; g�ðRÞÞ ¼ ðP; byQb�1
y ; byRb�1

y Þ:

By composing the inner automorphism i : x 7! b�1
y xby, we have

ði � g�ðPÞ; i � g�ðQÞ; i � g�ðRÞÞ ¼ ðb�1
y Pby;Q;RÞ ¼ ðQPQ;Q;RÞ:

If m ¼ 2, then ðPQÞ2 ¼ b2
y ¼ 1 and so i � g�ðPÞ ¼ QðPQÞ ¼ QðQPÞ ¼ P.

Hence g� is the identity outer automorphism when m ¼ 2. r

We can easily observe that the restrictions of the homeomorphisms, j and

g, to the outer boundary �OO act on the set of essential simple loops in �OO by the

following rule.

(1) jðbsÞ ¼ bAðr;mÞðsÞ, where Aðr;mÞ is the automorphism of the Farey tes-

sellation D which is the parabolic transformation, centered at the

vertex r, by m units in the clockwise direction (i.e., a generator of the

infinite cyclic group CrðmÞ).
(2) gðbsÞ ¼ b�s.

Hence we obtain the following corollary.

Corollary 4.2. For any r A Q̂Q and an integer mb 3, the following hold.

(1) The conjugacy classes of p1ðBðr;mÞÞ determined by the simple

loops bs and bAðr;mÞðsÞ are identical. So, the same conclusion also

holds for the conjugacy classes of the quotient group p1ðOðr;mÞÞG
p1ðBðr;mÞÞ=hhb2

yii.
(2) The conjugacy classes of p1ðBðy; 2ÞÞ determined by the simple loops

bs and b�s are identical. So, the same conclusion also holds for the

conjugacy classes of the quotient group p1ðOðr;mÞÞG p1ðBðy; 2ÞÞ=
hhbm

r ii.

Proof of Theorem 2.4. Suppose that s and s 0 belong to the same Gðr; nÞ-
orbit. Since Gðr; nÞ of automorphisms of D is generated by the three trans-

formations s 7! �s, Aðy;2Þ and Aðr;mÞ with m ¼ 2n, we see by Corollary 4.2 that

the conjugacy classes bs and bs 0 in p1ðOðr;mÞÞ are equal. On the other hand,

we can easily see that the natural action of p1ðOÞ=p1ðSÞG ðZ=2ZÞ2 on the

conjugacy classes in p1ðSÞ preserves as, the pair of conjugacy classes repre-
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sented by the loop as with two possible orientations. So, the same conclusion

holds for the natural action of p1ðOðr : mÞÞ=p1ðSðr; nÞÞ on the conjugacy classes

in p1ðSðr; nÞÞ. Hence the precending result implies that the conjugacy classes

as ¼ b2
s and as 0 ¼ b2

s 0 in Gðr; nÞ ¼ p1ðSðr; nÞÞ are equal. r

Proof of Theorem 2.3. Suppose first that s belongs to the Gðr; nÞ-orbit
of y. Then the conjugacy class of as in Gðr; nÞH p1ðOðr;mÞÞ is trivial by

Theorem 2.4. Since the conjugacy class of ay ¼ b2
y in p1ðOðr;mÞÞ is also

trivial by definition, the homomorphism p1ðSÞ 7! p1ðOðr;mÞÞ descends to a

homomorphism

GðKðsÞÞG p1ðSÞ=hhay; asii ! p1ðOÞ=hhb2
y; bm

r iiG p1ðOðr;mÞÞ:

Since the image of this homomorphism is equal to the Heckoid group

Gðr; nÞ by Proposition 3.1 and Definition 3.2, we obtain an epimorphism

GðKðsÞÞ ! Gðr; nÞ, which is apparently upper-meridian-pair-preserving.

Suppose next that sþ 1 belongs to the Gðr; nÞ-orbit of y. Then there

is an epimorphism GðKðsþ 1ÞÞ ! Gðr; nÞ by the above argument. Since there

is an upper-meridian-pair-preserving isomorphism GðKðsÞÞGGðKðsþ 1ÞÞ, we

obtain the desired epimorphism. r

At the end of this section, we give a characterization of those rational

numbers which belong to the Gðr; nÞ-orbit of y. Since Gðr; nÞ is isomorphic to

Gðrþ 1; nÞ, we may assume in the remainder of this paper that 0 < r < 1. For

the continued fraction expansion

r ¼ ½a1; a2; . . . ; ak� :¼
1

a1 þ
1

a2 þ . .
.

þ 1

ak

where kb 1, ða1; . . . ; akÞ A ðZþÞk, and ak b 2, let a, a�1, ea and ea�1, with

e A f�;þg, be the finite sequences defined as follows:

a ¼ ða1; a2; . . . ; akÞ; a�1 ¼ ðak; ak�1; . . . ; a1Þ;

ea ¼ ðea1; ea2; . . . ; eakÞ; ea�1 ¼ ðeak; eak�1; . . . ; ea1Þ:

Then we have the following proposition, which can be proved by the argument

in [14, Section 5.1].

Proposition 4.3. Let r be as above and n > 1 an integer or a half-

integer. Set m ¼ 2n. Then a rational number s belongs to the Gðr; nÞ-orbit of
y if and only if s has the following continued fraction expansion:

s ¼ 2cþ ½e1a;mc1;�e1a
�1; 2c2; e2a;mc3;�e2a

�1; . . . ; 2c2t�2; eta;mc2t�1;�eta
ð�1Þ�
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for some positive integer t, c A Z, ðe1; e2; . . . ; etÞ A f�;þg t
and ðc1; c2; . . . ; c2t�1Þ A

Z2t�1.

Remark 4.4. Riley’s Theorem B and Theorem 3 in [17] imply the

following. Let a and b be relatively prime integers with 1a b < a. For

integers db 2, mb 3, and eb 1, consider the 2-bridge link Kðb �=a�Þ, where
ða�; b �Þ ¼ ðadm; ad�1mða� bÞ þ eÞ. Then there is an epimorphism from the

link group GðKðb�=a�ÞÞ onto the Heckoid group Gðb=a; nÞ, where n ¼ m=2.

This result corresponds to the case when r ¼ ða� bÞ=a and s ¼ ½a;mc;�a�1�,
where c ¼ ead with e ¼G1 in Proposition 4.3. In fact, a simple calculation

shows

s ¼ ðad�1mða� bÞ þ ð�1ÞkeÞ=ðadmÞ ¼ b �=a�;

where k is the length of a and e is chosen so that ð�1Þke ¼ e. Thus Theorem

2.3 and Proposition 4.3 imply that there is an epimorphism from the link

group GðKðb�=a�ÞÞ ¼ GðKðsÞÞ onto the Heckoid group Gðr; nÞGGð1� r; nÞ ¼
Gðb=a; nÞ, recovering Riley’s result.

5. Topological description of odd Heckoid orbifolds

In this section, we show, following the sketch of Agol [1], that the orbifold

Oðr;mÞ and the odd Heckoid orbifold Sðr; nÞ are depicted as in Figures 5

and 6. Here, we employ the following convention.

Convention 5.1. Let S be a trivalent graph properly embedded in a

compact 3-manifold M such that each edge e of S is given a weight wðeÞ A
Nb2 U fyg. Here, a loop component of S is regarded as an edge. Assume

that if v is a (trivalent) vertex and e1; e2; e3 are the edges incident on v, then

either some wðeiÞ is y or the following inequality holds:

1

wðe1Þ
þ 1

wðe2Þ
þ 1

wðe3Þ
> 1:

Then the weighted graph ðM;S;wÞ determines the following 3-orbifold.

(a) Let Sy be the subgraph consisting of those edges with weight y.

Then the underlying space of the orbifold is the complement of an

open regular neighborhood of Sy.

(b) The singular set of the orbifold is the intersection of S � Sy with

the underlying space, where the index is given by the weight. (We

identify an edge of the singular set with the corresponding edge of S.)

We denote the orbifold by the same symbol ðM;S;wÞ. The part of the

boundary of the orbifold ðM;S;wÞ contained in qM is called the outer-

boundary of ðM;S;wÞ and is denoted by qoutðM;S;wÞ.
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In this section, we prove the following propositions.

Proposition 5.2. For a rational number r and an integer mb 2, the

orbifold Oðr;mÞ is homeomorphic to the orbifold ðS3;KðrÞU tþ U t�;wÞ, where
tþ and t� are the upper and lower tunnels of KðrÞ and the weight function w is

defined by the following rule.

Fig. 5. The case when KðrÞ is a knot and m ¼ 2n > 1 is an odd integer. Here r ¼ 2=9 ¼ ½4; 2�.
The odd Heckoid orbifold Sðr; nÞ (middle right) is a Z=2Z-covering of Oðr;mÞ (lower left). The

upper left figure is not an orbifold, but is a hyperbolic cone manifold. The odd Heckoid orbifold

Sðr; nÞ is the quotient of the cone manifold by the p-rotation around the axis containing the singular

set.
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(a) wðtþÞ ¼ 2 and wðt�Þ ¼ m.

(b) One of the four edges, say J, of KðrÞU tþ U t� contained in KðrÞ has

weight y and the remaining three edges have weight 2.

Fig. 6. The case when KðrÞ is a 2-component link and m ¼ 2n > 1 is an odd integer. Here

r ¼ 9=56 ¼ ½6; 4; 2�. The odd Heckoid orbifold Sðr; nÞ (middle right) is a Z=2Z-covering of Oðr;mÞ
(lower left). The upper left figure is not an orbifold, but is a hyperbolic cone manifold. The odd

Heckoid orbifold Sðr; nÞ is the quotient of the cone manifold by the p-rotation around the axis

containing the singular set.
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Proposition 5.3. For a rational number r ¼ q=p, where p and q are

relatively prime integers such that 0a q < p, and a non-integral half-integer n

greater than 1, the odd Heckoid orbifold Sðr; nÞ is described as follows.

(1) Suppose that KðrÞ is a knot, i.e., p is odd (see Figure 5). Consider the

2-bridge knot Kðr̂rÞ, where r̂r ¼ ðq=2Þ=p or ððpþ qÞ=2Þ=p according to

whether q is even or odd. Let t� be the lower tunnel of Kðr̂rÞ, and let

J1 and J2 be the edges of Kðr̂rÞU t� such that Kðr̂rÞ ¼ J1 U J2. Then

Sðr; nÞ is homeomorphic to the orbifold ðS3;Kðr̂rÞU t�; ŵwÞ, where the

weight function ŵw is defined as follows.

(a) ŵwðt�Þ ¼ m with m ¼ 2n.

(b) ŵwðJ1Þ ¼ y and ŵwðJ2Þ ¼ 2.

(2) Suppose that KðrÞ has two components, i.e., p is even (see Figure

6). Consider the 2-bridge link Kðr̂rÞ, where r̂r ¼ q=ðp=2Þ. Let tþ and

t� be the upper and lower tunnels of Kðr̂rÞ, and let J1 and J2 be

the union of mutually disjoint arcs of Kðr̂rÞ ¼ tðyÞU tðr̂rÞ bounded by

qðtþ U t�Þ such that Kðr̂rÞ ¼ J1 U J2 and such that Ji V tðyÞ ði ¼ 1; 2Þ
is equal to the closure of the intersection of tðyÞ with a component

of B3 �D0, where D0 is a ‘‘horizontal’’ disk embedded in ðB3; tðyÞÞ
bounded by the slope 0 simple loop a0, which intersects tðyÞ trans-

versely in two points and contains the core tunnel tþ of ðB3; tðyÞÞ
(see Figure 7(b)). Then Sðr; nÞ is homeomorphic to the orbifold

ðS3;Kðr̂rÞU tþ U t�; ŵwÞ, where the weight function ŵw is defined as

follows.

(a) ŵwðtþÞ ¼ 2 and ŵwðt�Þ ¼ m.

(b) The (two) components of J1 have weight y, and the (two)

components of J2 have weight 2.

Remark 5.4. (1) Because of the ðZ=2ZÞ2-symmetry of 2-bridge links, the

choice of the edge J in KðrÞ in Proposition 5.2 and that of the edges J1 and J2
in Kðr̂rÞ in Proposition 5.3 do not a¤ect the homeomorphism class of the

resulting orbifolds.

(2) By the announcement in [2, Section 3 of Preface], there exist

hyperbolic cone manifolds as illustrated in the upper left figures in Figures

5 and 6. The odd Heckoid orbifolds are Z=2Z-quotients of the cone

manifolds.

Proof of Proposition 5.2. Recall that Oðr;mÞ ¼ Bðy; 2ÞUBðr;mÞ and

note that ðS3;KðrÞU tþ U t�;wÞ ¼ ðB3; tðyÞU tþ;wþÞU ðB3; tðrÞU t�;w�Þ,
where wG are ‘‘restrictions’’ of w. We can observe that there are homeo-

morphisms fþ : Bðy; 2Þ ! ðB3; tðyÞU tþ;wþÞ and f� : Bðr;mÞ ! ðB3; tðrÞU t�;

w�Þ such that the restriction of each of fG to the outer-boundary determines

a homeomorphism from �OO to the 2-orbifold, �SS, obtained from the Conway
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sphere S by removing an open regular neighborhood of a puncture and filling

in order 2 cone points to the remaining punctures. Moreover, each of the

homeomorphisms maps the (isotopy class of the) simple loop bs in O to the

the (isotopy class of the) simple loop as in S for every s A Q̂Q. Thus we can

choose fG so that they are consistent with the gluing maps in the constructions

of Oðr;mÞ and ðS3;KðrÞU tþ U t�;wÞ; so, fþ and f� determine the desired

homeomorphism from Oðr;mÞ to ðS3;KðrÞU tþ U t�;wÞ. r

Proof of Proposition 5.3. By Definition 3.2, the odd Heckoid group

Gðr; nÞ is equal to the kernel of the natural projection

p1ðOðr;mÞÞ ! p1ðOðr;mÞÞ=cðp1ðSÞÞ;

where m ¼ 2n is an odd integer. Thus the Heckoid orbifold Sðr; nÞ is the

regular covering of Oðr;mÞ with the covering transformation group

p1ðOðr;mÞÞ=cðp1ðSÞÞG p1ðOÞ=hhp1ðSÞ; b2
y; bm

r ii:

Note that p1ðOÞ=p1ðSÞG ðZ=2ZÞ2 is generated by the homology classes ½b0�
and ½by�. Since ½br� ¼ p½b0� þ q½by� and since m is odd, the covering trans-

formation group is isomorphic to

h½b0�; ½by� j p½b0� þ q½by�ið2Þ GZ=2Z;

where the su‰x (2) represents that this is a presentation as a Z=2Z-module.

Let ~BBðy; 2Þ and ~BBðr;mÞ, respectively, be the inverse images of the suborbifolds

Bðy; 2Þ and Bðr;mÞ under the 2-fold covering Sðr; nÞ ! Oðr;mÞ. Then, by the

above description of the covering transformation group, the covering orbifold
~BBðy; 2Þ and its covering involution, hþ, are described as follows.

(a) If ðp; qÞ1 ð1; 0Þ ðmod 2Þ, then ~BBðy; 2Þ is identified with the orbifold

ðB3; tðyÞ; ŵwþÞ, where the weight function ŵwþ takes the value y
on one of the components of tðyÞ and the value 2 on the other

component. Under this identification, the covering involution hþ is

the p-rotation whose axis contains the core tunnel (see Figure 7(a)).

(b) If ðp; qÞ1 ð0; 1Þ ðmod 2Þ, then ~BBðy; 2Þ is identified with the orbifold

ðB3; tðyÞU tþ; ŵwþÞ, where tþ is the core tunnel, and the weight

function ŵwþ is given by the following rule: ŵwþðtþÞ ¼ 2, and ŵwþ
takes the value y on a pair of edges whose interiors are contained

in one of the components the complement of the horizontal disk D0

in B3, and the value 2 on the remaining pair of edges. Under this

identification, hþ is the p-rotation whose axis bisects tþ (see Figure

7(b)).
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We can easily observe the following:

Claim. Under the identifications of the outer-boundaries qout ~BBðy; 2Þ and

qoutBðy; 2Þ with (an orbifold obtained from) S, as in the above and in the

proof of Proposition 5.2, the covering projection qout ~BBðy; 2Þ ! qoutBðy; 2Þ maps

the pair of simple loops ða0; ayÞ to ða0; a2yÞ or ða20 ; ayÞ according to whether

ðp; qÞ1 ð1; 0Þ or ð0; 1Þ ðmod 2Þ.

On the other hand, ~BBðr;mÞ is identified with the orbifold ðB3; t� U t�; ŵw�Þ,
where ðB3; t�Þ is a 2-string trivial tangle, t� is the core tunnel of ðB3; t�Þ, and
where the weight function ŵw� is given by the following rule: ŵw�ðt�Þ ¼ m, and

ŵw� takes the value y on one of the four edges of t� U t� whose union is equal

to t�, and the value 2 on the remaining three edges. The covering involution,

h�, of ~BBðr;mÞG ðB3; t� U t�; ŵw�Þ is the p-rotation whose axis bisects t�
(cf. Figure 7(b)).

By these observations concerning the suborbifolds ~BBðy; 2Þ and ~BBðr;mÞ, the
odd Heckoid orbifold Sðr; nÞ ¼ ~BBðy; 2ÞU ~BBðr;mÞ is regarded as the union of

the orbifold ðB3; t� U t�; ŵw�Þ and the orbifold ðB3; tðyÞ; ŵwþÞ or ðB3; tðyÞU tþ;

ŵwþÞ according to whether ðp; qÞ1 ð1; 0Þ or ð0; 1Þ ðmod 2Þ. This implies that

Fig. 7. The covering orbifold ~BBðy; 2Þ of Bðy; 2Þ
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Oðr; nÞ is constructed from some 2-bridge link as in the proposition. The

remaining task is to identify the slope, r̂r, of the 2-bridge link. To this end,

pick a disk ~DD properly embedded in ðB3; t� U t�; ŵw�ÞG ~BBðr;mÞ which intersects

the singular set transversely in a single point in the interior of t�, such that ~DD

is mapped homeomorphically by the covering projection to a disk in Bðr;mÞ
bounded by the loop ar. Then the slope r̂r of the 2-bridge link is equal to the

slope of the simple loop q ~DD in qout ~BBðy; 2Þ. (Here qout ~BBðy; 2Þ is identified

with the outer boundary of ðB3; tðyÞ; ŵwþÞ or ðB3; tðyÞU tþ; ŵwþÞ; so the slope

of q ~DD in it is defined.) By using the Claim in the above, we can see that r̂r ¼
ðq=2Þ=p or q=ðp=2Þ according as ðp; qÞ1 ð1; 0Þ or ð0; 1Þ ðmod 2Þ. This com-

pletes the proof of the proposition except when ðp; qÞ1 ð1; 1Þ ðmod 2Þ. This

remaining case can be settled by using the fact that there is a homeomorphism

from ðS3;Kðq=pÞÞ to ðS3;Kððpþ qÞ=pÞÞ sending the upper/lower tunnels of

Kðq=pÞ to those of Kððpþ qÞ=pÞ. r

6. Heckoid groups as two-parabolic Kleinian groups

In this section, we prove Theorem 2.2, which is contained in the an-

nouncement by Agol [1]. As noted in [1], the proof relies on the orbifold

theorem and is analogous to the arguments in [7, Proof of Theorem 9].

Remark 6.1. This theorem also follows from the announcement made in

the second author’s joint work with Akiyoshi, Wada and Yamashita [2, Section

3 of Preface]. Note, however, that there is an error in the assertion 5 in Page

IX in Preface, though a special case is treated correctly in [2, Proposition

5.3.9]. In fact, the first sentence of the assertion should be read as follows:

The holonomy group of Mðy�; yþÞ is discrete if and only if yG A
�
2p=n j

n A 1
2Nb2

�
U f0g. The second author would also like to note that this asser-

tion can be proved by using the argument of Parkkonen in [15, Lemma 7.5];

this was forgotten to mention in [2], though the paper is included in the

bibliography.

In order to prove Theorem 2.2, we prove that Oðr;mÞ with m ¼
2nb 3 admits a hyperbolic structure. Throughout this section, we identify

Oðr;mÞ with the orbifold ðS3;KðrÞU tþ U t�;wÞ in Proposition 5.2. We denote

by B3
þ and B3

� the 3-balls of S3 bounded by the bridge sphere of KðrÞ such

that

ðS3;KðrÞU tþ U t�;wÞ ¼ ðB3
þ; tðyÞU tþ;wþÞU ðB3

�; tðrÞU t�;w�Þ:

We refer to [4, Introduction and Section 8] (cf. [3, Chapter 2], [5, Chapter 2]

and [8, Chapter 6]) for standard terminologies for orbifolds.
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Lemma 6.2. For a rational number r and an integer mb 3, the following

hold.

(1) Oðr;mÞ does not contain a bad 2-suborbifold.

(2) Any football S2ðp; pÞ in Oðr;mÞ bounds a discal 3-suborbifold.

(3) Oðr;mÞ does not contain an essential turnover.

(4) Oðr;mÞ is topologically atoroidal, i.e., it does not contain an essential

orientable toric 2-suborbifold.

Proof. (1) Suppose that Oðr;mÞ contains a bad 2-suborbifold, F . Then

F is either a teardrop S2ðpÞ or a spindle S2ðp; qÞ with 1 < p < q. Since the

indices of the singular set of Oðr;mÞ are 2 and mðb 3Þ, and since the underlying

2-sphere jF j intersects KðrÞ in an even number of points, we see that jF j is

disjoint from KðrÞ and intersects (at least) one of the unknotting tunnels tG
transversely in a single point, where F GS2ð2Þ, S2ðmÞ or S2ð2;mÞ. Since the

endpoints of each of the unknotting tunnels are contained in KðrÞ, this implies

that KðrÞ is a split link, a contradiction. Hence Oðr;mÞ cannot contain a bad

2-suborbifold.

(2) Let F be a suborbifold of Oðr;mÞ which is a football. As in (1), we

see that one of the following holds.

( i ) jF j intersects KðrÞ in two points, where F GS2ð2; 2Þ.
(ii) jF j is disjoint from KðrÞ and intersects one of the unknotting tunnels

tG in two points and does not intersect the other unknotting tunnel,

where F GS2ð2; 2Þ or S2ðm;mÞ.
Suppose that condition (i) holds. Then jF j is disjoint from tþ U t�, and so

either tþ and t� are separated by jF j, or tþ U t� is contained in a single

component of S3 � jF j. If tþ and t� are separated by jF j, then jF j must

intersect KðrÞ in at least four points, a contradiction. Hence tþ U t� is

contained in a single component of S3 � jF j. Let B3
1 and B3

2 be the 3-balls

in S3 bounded by jF j, such that tþ U t� HB3
2 . Set Ki ¼ B3

i VKðrÞ (i ¼ 1; 2).

Then the genus 3 open handle body S3 � ðKðrÞU tþ U t�Þ is the union of

B3
1 � K1 and B3

2 � ðK2 U tþ U t�Þ along the open annuls jF j � KðrÞ, and hence

the rank 3 free group, p1ðS3 � ðKðrÞU tþ U t�ÞÞ, is the free product of

p1ðB3
1 � K1Þ and p1ðB3

2 � ðK2 U tþ U t�ÞÞ with the infinite cyclic amalgamated

subgroup p1ðjF j � KðrÞÞ. Since H1ðB3
1 � K1ÞGZ, this implies p1ðB3

1 � K1ÞG
Z. Hence ðB3

1 ;K1Þ is a trivial 1-string tangle. Thus ðB3
1 ;B

3
1 V ðKðrÞU tþ U

t�ÞÞ ¼ ðB3
F ;B

3
1 VKðrÞÞ determines a discal 3-suborbifold of Oðr;mÞ bounded

by F , and therefore F is inessential.

Suppose that condition (ii) holds. For simplicity, we assume that jF j
intersects tþ in two points and does not intersect t�. (The other case is treated

similarly.) Let B3
F be the 3-ball bounded by jF j such that B3

F V tþ is a subarc

of tþ. Then ðB3
F ;B

3
F V ðKðrÞU tþ U t�ÞÞ ¼ ðB3

F ;B
3
F V tþÞ is a trivial 1-string
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tangle, because tþ is contained in a trivial constituent knot in the spatial graph

KðrÞU tþ U t�. Hence it determines a discal 3-suborbifold of Oðr;mÞ bounded

by F .

(3) Suppose that Oðr;mÞ contains an essential turnover F GS2ðp; q; rÞ.
Then either jF j is disjoint from KðrÞ, or jF j intersects KðrÞ in two points. In

the first case, jF j intersects tþ U t� in three points and hence jF j intersects tþ
or t� in an odd number of points. As in (1), it follows that KðrÞ is a split

link, a contradiction. Hence we may assume that jF j intersects KðrÞ in two

points, and therefore jF j is disjoint from tþ or t�. For simplicity, we assume

that jF j is disjoint from t�. (The other case is treated similarly.) By using

the fact that jF j is also disjoint from qOðr;mÞ and the fact that ðB3
�; tðrÞU t�Þ

is a relative regular neighborhood of t� in ðS3;KðrÞU tþ U t�Þ, we can see that

F is isotopic to a 2-suborbifold which is disjoint from the suborbifold

ðB3
�; tðrÞU t�;w�Þ. Hence we may assume that F is contained in the interior

of the suborbifold ðB3
þ; tðyÞU tþ;wþÞ. Let ti ð1a ia 4Þ be the edges of

tðyÞU tþ as illustrated in the right figures in Figure 7. Note that tðyÞ ¼
64

i¼1
ti, wþðt1Þ ¼ y and wþðtiÞ ¼ 2 ð2a ia 4Þ. Thus jF j is disjoint from t1

and jF j intersects ðtðyÞ � t1ÞU tþ transversely in three points. Let Dh be the

disk properly embedded in B3
þ determined by the plane in which Figure 7 is

drawn. Then Dh contains the graph tðyÞU tþ. We may assume that jF j is
transversal to Dh and hence jF jVDh consists of mutually disjoint circles. By

using the irreducibility of B3
þ � ðtðyÞU tþÞ, we may assume, by a standard

argument, that no component of jF jVDh bounds a disk disjoint from

tðyÞU tþ. Then it follows that jF jVDh must consist of a single circle which

intersects tþ, t3 and t4 in a single point. Let DF be the disk in Dh bounded by

the circle Dh V jF j, and let B3
F be the 3-ball in B3

þ bounded by jF j. Then DF is

properly embedded in B3
F , and B3

F V ðtðyÞU tþÞ ¼ DF V ðtðyÞU tþÞ. Hence

ðB3
F ;B

3
F V ðtðyÞU tþÞÞ determines a discal 3-orbifold bounded by the turnover

F , a contradiction.

(4) Suppose that Oðr;mÞ contains an essential pillow F GS2ð2; 2; 2; 2Þ.
Then jF j is disjoint from t�, which has index mb 3, and hence we may

assume, as in (3), that jF j is contained in the suborbifold ðB3
þ; tðyÞU tþ;wþÞ.

Under the notation in (3), jF j is disjoint from t1 and jF j intersects tðyÞU tþ
transversely in four points. We may also assume that jF j is transversal to the

disk Dh introduced in (3) and hence jF jVDh consists of mutually disjoint circles.

By using the irreducibility of B3
þ � ðtðyÞU tþÞ and the assumption that F is

essential, we may assume that no component of jF jVDh bounds a disk disjoint

from tðyÞU tþ. Hence we see that either (i) jF jVDh consists of a single loop

which intersects ðtðyÞ � t1ÞU tþ in four points, or (ii) jF jVDh consists of two

loops each of which intersects ðtðyÞ � t1ÞU tþ in two points. In either case, we

can find an ‘‘outermost disk’’ d in Dh satisfying the following conditions.
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(a) dV jF j is an arc, c, in qd.

(b) dV ðtðyÞU tþÞ is an arc, c 0, in qd which is contained in the interior of

an edge of the graph tðyÞU tþ.

(c) qd ¼ cU c 0.

(d) d is contained in the 3-ball, B3
F , in B3

þ which is bounded by jF j.
Then the frontier of a regular neighborhood of d in B3

F is a disk properly

embedded in B3
F disjoint from the singular set, whose boundary is an essential

loop in the pillow F . This contradicts the assumption that F is essential.

Hence Oðr;mÞ does not contain an essential pillow.

Assume that Oðr;mÞ contains an essential torus, F . Then F is a torus

contained in S3 � ðKðrÞU tþ U t�Þ, which is a genus 3 open handlebody.

Hence F must be compressible in S3 � ðKðrÞU tþ U t�Þ, a contradiction.

By the classification of toric 2-orbifolds, an orientable toric 2-orbifold is a

torus, a turnover or a pillow. Hence by (3) and the above arguments, Oðr;mÞ
does not contain an essential orientable toric 2-orbifold. r

Lemma 6.3. For a rational number r and an integer mb 3, the orbifold

Oðr;mÞ is Haken, i.e., it is irreducible and does not contain an essential turnover,

but contains an essential 2-suborbifold.

Proof. By Lemma 6.2(1), Oðr;mÞ does not contain a bad 2-suborbifold.

By Lemma 6.2(2) and (3), every orientable spherical 2-suborbifold of Oðr;mÞ
with nonempty singular set bounds a discal 3-suborbifold. Moreover any

2-sphere (i.e., spherical 2-suborbifold with empty singular set) of Oðr;mÞ
bounds a 3-ball in Oðr;mÞ, because Proposition 5.2 implies that the comple-

ment of an open regular neighborhood of the singular set of Oðr;mÞ is

homeomorphic to a genus 3 handlebody. Hence the orbifold Oðr;mÞ is

irreducible. Moreover, it does not contain an essential turnover by Lemma

6.2(3). Since qOðr;mÞGS2ð2; 2; 2;mÞ is not a turnover, we see by [3, Proposi-

tion 4.6] that Oðr;mÞ is Haken (see [4, Definition 8.0.1]). r

Lemma 6.4. For a rational number r and an integer mb 3, the orbifold

Oðr;mÞ is homotopically atoroidal, i.e., p1ðOðr;mÞÞ is not virtually abelian and

every rank 2 free abelian subgroup of p1ðOðr;mÞÞ is peripheral.

Proof. Since Oðr;mÞ is Haken by Lemma 6.3, we see by [19, Theorem A]

(cf. [4, Proposition 8.2.2]) that Oðr;mÞ is good, i.e., it has a manifold cover.

Suppose on the contrary that Oðr;mÞ is not homotopically atoroidal (see [4,

Definition 8.2.13]). Then, since Oðr;mÞ is topologically atoroidal by Lemma

6.2(4), we see by [4, Proposition 8.2.11] that Oðr;mÞ is either Euclidean or

Seifert fibered. (Here, we use the fact that Oðr;mÞ is good.) This contradicts

the fact that qOðr;mÞGS2ð2; 2; 2;mÞ is not Euclidian. Hence the orbifold

Oðr;mÞ is homotopically atoroidal. r
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Corollary 6.5. For a rational number r and an integer mb 3, the interior

of Oðr;mÞ has a geometrically finite hyperbolic structure. In particular, Oðr;mÞ
is very good, i.e., it has a finite cover which is a manifold.

Proof. By Lemmas 6.3 and 6.4, Oðr;mÞ is a homotopically atoroidal

Haken 3-orbifold. Hence, by the orbifold theorem for Haken orbifolds [4,

Theorem 8.2.14], Oðr;mÞ is hyperbolic. Moreover, it follows from the proof of

the theorem that the hyperbolic structure can be chosen to be geometrically

finite. The last assertion follows from Selberg’s Lemma [18] (cf. [12, Theorem

2.29]). r

Let P ¼ clðqBðy; 2Þ � qoutBðy; 2ÞÞ. Then PGD2ð2; 2Þ is an annular

2-suborbifold in qOðr;mÞ, and the following lemma shows that ðOðr;mÞ;PÞ
is a pared 3-orbifold (see [4, Definition 8.3.7]).

Lemma 6.6. For a rational number r and an integer mb 3, the pair

ðOðr;mÞ;PÞ satisfies the following conditions, and hence it is a pared 3-orbifold.

(1) Oðr;mÞ is irreducible and very good.

(2) P is incompressible.

(3) Every rank 2 free abelian subgroup of p1ðOðr;mÞÞ is conjugate to a

subgroup of p1ðPÞ. (In fact, p1ðOðr;mÞÞ does not contain a rank 2

free abelian subgroup.)

(4) Any properly embedded annular 2-suborbifold ðA; qAÞH ðOðr;mÞ;PÞ
whose boundary rests on essential loops in P is parallel to P.

Proof. (1) This follows from Lemma 6.3 and Corollary 6.5.

(2) Suppose that P is compressible. Then there is a discal orbifold

ðF ; qFÞ properly embedded in ðOðr;mÞ;PÞ such that qF is a loop in P parallel

to qP. Since F has at most one cone point, jF j is disjoint from tþ or t�.

For simplicity, we assume that jF j is disjoint from t�. (The other case is

treated similarly.) By using the fact that qF is parallel to qP in qOðr; nÞ,
and the fact that ðB3

�; tðrÞU t�Þ is a relative regular neighborhood of t� in

ðS3;KðrÞU tþ U t�Þ, we can see that F is isotopic to a 2-suborbifold which is

disjoint from the suborbifold ðB3
�; tðrÞU t�;w�Þ. Hence we may assume that

F is contained in the interior of the suborbifold ðB3
þ; tðyÞU tþ;wþÞ. Then, by

looking at the intersection of jF j with the disk Dh as in the proof of Lemma

6.2(3), we see that this cannot happen.

(3) Suppose that p1ðOðr;mÞÞ contains a rank 2 free abelian subgroup,

H. Then H is conjugate to a subgroup of j�ðp1ðqOðr;mÞÞÞ by Lemma 6.4,

where j is the inclusion. If j� is injective, then j�ðp1ðqOðr;mÞÞÞG
p1ðS2ð2; 2; 2;mÞÞ is isomorphic to a Fuchsian group and hence it cannot con-

tain a rank 2 free abelian subgroup, a contradiction. So, j� is not injective.
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By the loop theorem for good orbifolds [4, p. 133], qOðr;mÞ is compressible.

Let F GD2ðdÞ be a compressing disk for qOðr;mÞ. Then d ¼ 1; 2 or m, and

qF is a loop in qOðr;mÞ separating the 4 singular points into two pairs of

singular points. Thus the result of compression of qOðr;mÞ by F is a union

of two 2-suborbifolds, F1 GS2ð2; 2; dÞ and F2 GS2ð2;m; dÞ. If d ¼ 1, F2 G
S2ð2;mÞ is a bad 2-suborbifold, a contradiction to Lemma 6.2(1). Hence

d ¼ 2 or m, and therefore F1 and F2 are turnovers. By Lemma 6.2(3), they

must be inessential. Since none of them is boundary parallel, each Fi is a

spherical turnover bounding a discal 3-orbifold. Note that the singular set of

Oðr;mÞ has exactly two vertices and the boundaries of regular neighborhoods

of the vertices are S2ð2; 2; 2Þ and S2ð2; 2;mÞ (see Proposition 5.2). Hence we

see d ¼ 2 and F1 and F2 are the boundaries of regular neighborhoods of

the two vertices. Thus qOðr;mÞ is parallel to the boundary of the 3-orbifold

obtained from the regular neighborhoods of the two vertices of the singular

set by joining them by a tube around the unique edge of the singular set (of

index 2) joining the two vertices. Thus p1ðOðr;mÞÞ is a free product of the

dihedral groups of orders 4 and 2m with amalgamated subgroup isomorphic

to Z=2Z. It is easy to see that such a group cannot contain a rank 2 free

abelian subgroup. Hence, p1ðOðr;mÞÞ does not contain a rank 2 free abelian

subgroup.

(4) Let ðA; qAÞ be an annular 2-suborbifold properly embedded in

ðOðr;mÞ;PÞ whose boundary rests on essential loops in P.

Suppose first that A is an annulus. Then A is disjoint from tþ U t�.

Since each component of qA is parallel to qP in PH qOðr;mÞ, we may

assume as in (2) that A is embedded in a regular neighborhood of the

2-suborbifold of ðS3;KðrÞU tþ U t�;wÞ determined by the 2-bridge sphere.

Thus ðA; qAÞ is regarded as a suborbifold of ð �SS � ½�1; 1�;P 0Þ, where �SS is

obtained from the Conway sphere S by removing an open regular neighbor-

hood of a puncture and filling in order 2 cone points to the remaining punc-

tures (cf. Proof of Proposition 5.2), and P 0 is the product annulus q �SS � ½�1; 1�.
Consider a disk properly embedded in j �SSj � ½�1; 1� which contains the singular

set. By looking at the intersection of A with the disk, we can find a boundary

compressing disk for A. By the irreducibility of the complement of the

singular set of �SS � ½�1; 1�, this implies that A is parallel to an annulus in

P 0 HP.

Suppose next that A is homeomorphic to D2ð2; 2Þ. Then A is disjoint

from t�, which has index mb 3. Since qA is parallel to qP in PH qOðr;mÞ,
we see as in the above that A is contained in the suborbifold ðB3

þ; tðyÞU tþ;

wþÞ. By looking at the intersection of jAj with the disk Dh as in the proof

of Lemma 6.2(3), we can see that A is parallel to the suborbifold of P bounded

by qA. r
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Since p1ðOðr;mÞÞ is not virtually abelian by Lemma 6.4, we obtain the

following proposition by Lemma 6.6 and by the orbifold theorem for Haken

pared orbifolds [4, Theorem 8.3.9].

Proposition 6.7. For a rational number r and an integer mb 3, the pared

orbifold ðOðr;mÞ;PÞ is hyperbolic, i.e., there is a geometrically finite hyperbolic

3-orbifold M such that for some d > 0 and m, ðOðr;mÞ;PÞ is homeomorphic to

ðthickmðCdðMÞÞ; q thickmðCdðMÞÞV thinmðCdðMÞÞ;

where CdðMÞ is the closed d-neighborhood of the convex core CðMÞ of M, and

thickmðCdðMÞÞ and thinmðCdðMÞÞ are m-thick part and m-thin part. Here m is

chosen so that thinmðCdðMÞÞ consists of only cuspidal part.

Proof of Theorem 2.2. By the above proposition, there is a faithful

discrete representation r : p1ðOðr;mÞÞ ! PSLð2;CÞ which maps the conjugacy

class represented by the loop qP to a parabolic transformation. Recall that

the Heckoid group Gðr; nÞ ¼ p1ðSðr; nÞÞ is a subgroup of p1ðOðr;mÞÞ of index

2 or 4 by Proposition 3.1 and Definition 3.2 and that it is generated by

two elements in the conjugacy class of qP. Hence, the restriction of r to the

subgroup Gðr; nÞ gives the desired isomorphism from Gðr; nÞ to a geometrically

finite Kleinian group generated by two parabolic transformations. r

At the end of this section, we prove the following proposition, which

illustrates a significant di¤erence between odd Heckoid groups and even

Heckoid groups.

Proposition 6.8. No odd Heckoid group is a one-relator group.

Proof. Consider an odd Heckoid orbifold Sðr; nÞ. By Proposition 5.3,

the singular set of Sðr; nÞ has two or four 1-dimensional strata. Note that

the above proof of Theorem 2.2 shows that Sðr; nÞ is hyperbolic, and so the

interior of Sðr; nÞ is homeomorphic to a hyperbolic orbifold H3=G , where G is

a Kleinian group isomorphic to p1ðSðr; nÞÞ. Hence G G p1ðSðr; nÞÞ has two or

four conjugacy classes of maximal finite cyclic subgroups, accordingly. On the

other hand, any one-relator group has a unique maximal finite cyclic subgroup

up to conjugacy (see [11, Theorem IV.5.2]). Hence the odd Heckoid group

Gðr; nÞ ¼ p1ðSðr; nÞÞ cannot be a one-relator group. r
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