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Abstract. We shall define the spectral projection on the homogeneous tree X, which is

an analogue of the one given by Bray for semisimple Lie groups. We shall prove the

Paley–Wiener theorem for the spectral projection on X. As an application, we present

an elementary proof of the Paley–Wiener theorem for the Helgason–Fourier transform

on X, which was obtained by Cowling and Setti.

1. Introduction

One of the main concerns in the harmonic analysis has been the char-

acterization of the images of the Fourier transforms of various function spaces,

such as a space of compactly supported smooth functions, Schwartz space and

Lp Schwartz space. Even now, a number of authors consider these problems

for the case of Lie groups or homogeneous spaces. In [2], Bray studied the

spectral projection Pl on the Riemannian symmetric space G=K of rank 1 and

gave the characterization of the range of Pl acting on Cy
c ðG=KÞ. Here the

spectral projection Pl f of f A Cy
c ðG=KÞ is defined by

Pl f ðgÞ ¼ ð f � flÞðgÞ ¼
ð
G

f ðg1Þflðg�1
1 gÞdg1;

fl denoting the zonal spherical function on G. Ionescu characterized the

image of L2ðG=KÞ under the spectral projection in [7], and Jana determined

the image of the Lp Schwartz space CpðG=KÞ in [8].

Many authors have pointed out the analogy between the harmonic analysis

on homogeneous trees X and that on Lie groups (see [4, 3, 5]). In particular,

Cowling, Meda and Setti studied the Helgason–Fourier transform and its

inverse transform in [4]. In the subsequent paper [5], they gave character-

izations of the images of the space of compactly supported functions CcðXÞ and
the Schwartz space CðXÞ. We study here an analogue of the spectral pro-

jection for X. In this line of research, it is natural to study the characterization
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of these spaces under the spectral projection. In this paper, we shall give a

characterization of the range of CcðXÞ under the spectral projection Ps on X.

A brief outline of this note is as follows: Section 2 is devoted to

the overview of the spherical representations on the homogeneous trees and

the definition of the Helgason–Fourier transform. In Section 3, we define the

generalized spherical functions relative to the n-th martingale di¤erence on X.

We write down the Helgason–Fourier transform in terms of the generalized

spherical functions. In Section 5, we shall give a characterization of CcðXÞ
under the spectral projection. Our proof is made in parallel with the discus-

sion of [2] for semisimple Lie groups. As an application of our result, we

shall give an elementary proof of the Paley–Wiener theorem for the Helgason–

Fourier transform due to Cowling and Setti [5]. Our proof depends only on

the Paley–Wiener theorem for the Fourier cosine transform on torus T.

2. Notation and preliminaries

To begin with, let us fix some notation and terminology. For more

information, the reader is referred to the book [6] or the survey [4].

Let qb 2 and X be a homogeneous tree of degree qþ 1. It carries a

natural distance d, dðx; yÞ being the number of edges between the vertices x

and y. We fix a reference point o in X and write jxj ¼ dðx; oÞ. Let x; y A X.

When x; y A X belong to the same edge, they are said to be adjacent and

we write x@ y. The geodesic path starting at x and ending at y means

the sequence fx0; x1; . . . ; xng in X satisfying dðx; yÞ ¼ n, x0 ¼ x, xn ¼ y and

dðxi; xjÞ ¼ ji � jj. For any x; y A X, there exists the unique geodesic path

joining x and y and will be denoted by ½x; y�. For x A X and na jxj, we write

xðnÞ for the element in ½o; x� such that jxðnÞj ¼ n.

A geodesic ray o in X is an infinite sequence fon : n A Zb0g satisfying

dðoi;ojÞ ¼ ji � jj. Let o and o 0 be geodesic rays. We say that o and o 0

are equivalent if there exist i A Zb0 and j A Zb0 such that on ¼ o 0
nþi for all

nb j. The Poisson boundary is the set of equivalence classes of all geodesic

rays and will be denoted by W. For o A W, we choose the representative of o

starting at o and denote it by o again. In this paper, the geodesic rays are

always interpreted as the representative starting at o.

Let x; y A X and o A W. We use the notation cðx; yÞ to denote the con-

fluence point of the geodesic paths ½o; x� and ½o; y�. Similarly, cðx;oÞ denotes

the confluence point of the geodesic path ½o; x� and the geodesic ray o. We

write Bn for the closed ball centered at o of radius n and Sn for the sphere

centered at o of radius n, respectively. For convenience, we set B�1 ¼ q.

Let wn ¼ Card Sn, Card S indicating the cardinality of the set S. Then it is

known that wn ¼ ðqþ 1Þqn�1 for nb 1 and w0 ¼ 1.
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We denote by G the group of isometries of X and by K the stabilizer of o

in G. Then G=K can be identified with X via the correspondence g 7! g � o.
We endow the group G with the Haar measure dg such that the mass of K

is equal to 1. Let CðG=KÞ denote the space of continuous functions on G=K

and CcðG=KÞ the subspace of CðG=KÞ with compact support. Then, under

the above identification, we have for f A CcðG=KÞ that

ð
G

f ðgÞdg ¼
X
x AX

f ðxÞ:

For g A G, we put

sðgÞ ¼ jg � oj;

WðgÞ ¼ ðqþ 1ÞqsðgÞ�1 ðfor g0 oÞ; WðoÞ ¼ 1:

We set

EðxÞ ¼ fo A W : x ¼ ojxjg: ð1Þ

We define the K-invariant, G-quasi-invariant probability measure n on W by

nðEðoÞÞ ¼ nðWÞ ¼ 1;

nðEðxÞÞ ¼ 1

ðqþ 1Þqjxj�1
ðx A XnfogÞ:

Let M denote the s-algebra generated by EðxÞ. Then ðW;M; nÞ is a measure

space. For E A M, wE indicates the characteristic function of E. Let Mn

denote the s-subalgebra of M generated by EðxÞ with jxja n. For a M-

measurable function h, we indicate by Enh the conditional expectation of h

relative to Mn, that is,

EnhðoÞ ¼
1

nðEðonÞÞ

ð
EðonÞ

hðo 0Þdnðo 0Þ: ð2Þ

Here we set E�1h ¼ 0. With these conventions, the set fEnh : n A Zb0g is a

martingale associated to h A L1ðWÞ. Let us set Dnh ¼ Enh� En�1h. Then Dnh

is called the n-th martingale di¤erence of h A L1ðWÞ. Dnh is written as

DnhðoÞ ¼
ð
W

dnðo;o 0Þhðo 0Þdnðo 0Þ;

where

dnðo;o 0Þ ¼ nðEðonÞÞ�1wEðonÞðo
0Þ � nðEðon�1ÞÞ�1wEðon�1Þðo

0Þ:
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For the explicit expression of dnðo;o 0Þ, see [9, Proposition 4.3]. The height

function hoðxÞ of x A X with respect to o A W is defined by

hoðxÞ ¼ lim
m!y

dðx;omÞ: ð3Þ

By definition, the Poisson kernel pðg;oÞ is the Radon–Nikodym derivative

dnðg�1oÞ=dnðoÞ. As shown in [6, p. 37], it holds that

pðx;oÞ ¼ qhoðxÞ:

In analogy with the terminology for semisimple Lie groups, we define the

Poisson transform of h A L2ðWÞ by

PshðxÞ ¼
ð
W

pðx;oÞ1=2þ
ffiffiffiffiffi
�1

p
s
hðoÞdnðoÞ ðs A CÞ: ð4Þ

We set, for n A Zb0,

Sðn; xÞ ¼ fxg ðjxja nÞ;
fy A X : jyj ¼ jxj; yðnÞ ¼ xðnÞg ðjxj > nÞ:

�

For a function f on X, we define its average en f by

en f ðxÞ ¼
1

Card Sðn; xÞ
X

y ASðn;xÞ
f ðyÞ: ð5Þ

We write fa¼ e0 f and call fa the spherical mean of f . For a function f on

X and n A Zb0, we define

Dn f ðxÞ ¼ en f ðxÞ � en�1 f ðxÞ:

Here we set e�1 f ¼ 0. The Laplace operator L on X is defined by

Lf ðxÞ ¼ 1

qþ 1

X
y@x

f ðyÞ: ð6Þ

As described in [6, p. 35], it is satisfied that

LPshðxÞ ¼ lðsÞPshðxÞ; ð7Þ

where lðsÞ ¼ f ffiffiffi
q

p
=ðqþ 1Þg cosðs log qÞ.

We say that a function f on X is radial if f ðxÞ depends only on jxj. For

a function space EðXÞ, we denote the subspace of radial functions in EðXÞ by

EðXÞa. We naturally identify EðXÞ with EðG=KÞ and EðXÞa with EðKnG=KÞ,
respectively. The convolution f � j of f A DðXÞ and j A DðXÞa is given by

ð f � jÞðgÞ ¼
ð
G

f ðg1Þjðg�1
1 gÞdg1: ð8Þ
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3. The Helgason–Fourier transform on X

Retain the notation in § 2. We shall first review the spherical represen-

tations of G and the Helgason–Fourier transform on X to explain the notation

and parametrization. We use the notation h� ; �i and k � k to denote the

canonical inner product and the corresponding norm on L2ðWÞ, respectively.

We set t ¼ 2p=log q and T ¼ R=tZ. We say that a function F ðsÞ on R is

Weyl-invariant if it satisfies F ðsÞ ¼ Fð�sÞ and F ðsþ tÞ ¼ F ðsÞ.
Let s A C. Define the action ps of G on L2ðWÞ by the formula

ðpsðgÞhÞðoÞ ¼ pðg � o;oÞð1=2Þþ
ffiffiffiffiffi
�1

p
s
hðg�1oÞ: ð9Þ

Let s A C be such that s BG1
2

ffiffiffiffiffiffiffi
�1

p
þ t

2Z. According to [6, p. 44], the

intertwining operator Is between ps and p�s is defined by

Is ¼ ðP�sÞ�1
Ps: ð10Þ

For f A CcðXÞ, we define its Helgason–Fourier transform by

~ff ðs;oÞ ¼ ðpsð f Þ1ÞðoÞ ¼
X
x AX

f ðxÞpðx;oÞð1=2Þþ
ffiffiffiffiffi
�1

p
s: ð11Þ

Then as indicated in [4, Proposition 2.6], the following inversion formula holds:

f ðxÞ ¼ cG

ð
W

ð
T

~ff ðs;oÞpðx;oÞð1=2Þ�
ffiffiffiffiffi
�1

p
sjcðsÞj�2

dsdnðoÞ; ð12Þ

where cG ¼ q=f2tðqþ 1Þg and

cðsÞ ¼
ffiffiffi
q

p

qþ 1
� q

ð1=2Þþ
ffiffiffiffiffi
�1

p
s � q�ð1=2Þ�

ffiffiffiffiffi
�1

p
s

q
ffiffiffiffiffi
�1

p
s � q�

ffiffiffiffiffi
�1

p
s

ð13Þ

is a c-function. Further, the Helgason–Fourier transform extends to an iso-

metric mapping from L2ðXÞ into L2ðT�W; cGjcðsÞj�2
dsdnðoÞÞ and its range

coincides with the subspace of L2ðT�W; cGjcðsÞj�2
dsdnðoÞÞ consisting of func-

tions which satisfy the following symmetry condition:ð
W

Fðs;oÞpðx;oÞð1=2Þ�
ffiffiffiffiffi
�1

p
s
dnðoÞ ¼

ð
W

Fð�s;oÞpðx;oÞð1=2Þþ
ffiffiffiffiffi
�1

p
s
dnðoÞ: ð14Þ

Let Hn denote the subspace of L2ðWÞ comprised of all functions F such

that DnF ¼ F . Let a A Xnfog and for ease of notation write a 0 for aðjaj�1Þ.

We define the function xa on W by xoðoÞ ¼ 1 and for a0 o

xaðoÞ ¼ nðEðaÞÞ�1wEðaÞðoÞ � nðEða 0ÞÞ�1wEða 0ÞðoÞ: ð15Þ

Then it is easy to check that Djajxa ¼ xa.
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Let a A X and s A C. We define the function Fa; s on X by

Fa; sðxÞ ¼
ð
W

pðx;oÞ1=2þ
ffiffiffiffiffi
�1

p
s
xaðoÞdnðoÞ: ð16Þ

We call Fa; s the generalized spherical function on X. When a ¼ o, Fo; s coin-

cides with the spherical function fs on X, which is defined in the preceding

papers [4, 3, 5]. By the definition of the generalized spherical function, it holds

that

Fa; sðg � oÞ ¼ hpsðgÞ1; xai; Fa; sðxÞ ¼ PsxaðxÞ:

Define the function QnðsÞ on C by

Q0ðsÞ ¼ 1; ð17Þ

QnðsÞ ¼
ffiffiffi
q

p

qþ 1
q�n=2q

ffiffiffiffiffi
�1

p
ðn�1Þsðq1=2þ

ffiffiffiffiffi
�1

p
s � q�1=2�

ffiffiffiffiffi
�1

p
sÞ ðnb 1Þ: ð18Þ

We note that the function QnðsÞ is an analogue of Kostant’s polynomial for

semisimple Lie groups. In the following, we use the notation c to denote

cðn; xÞ ¼ sinðns log qÞ
sinðs log qÞ ; ðn A Zb0; s A RÞ:

Applying Theorem 2.1 in [9], we can immediately obtain the explicit expression

of the generalized spherical function Fa; s.

Proposition 1. We have the following expressions:

(1) (The case a0 o) Let o A EðxÞ. Then we have

Fa; sðxÞ ¼
0 ðjxj < jajÞ;
q�ðjxj�jajÞ=2cðjxj � jaj þ 1; sÞQjajðsÞxaðoÞ ðjxjb jajÞ:

�

(2) (The case a ¼ o) We have

fsðxÞ ¼ q�ð1=2þ
ffiffiffiffiffi
�1

p
sÞjxj 1þ q

qþ 1
ð1� q�1�

ffiffiffiffiffi
�1

p
2sÞ
Xjxj
j¼1

q
ffiffiffiffiffi
�1

p
2js

( )
:

Remark 1. Taking into account cðsÞ þ cð�sÞ ¼ 1, we can easily check that

the expressions of fsðxÞ in Proposition 1 coincide with the ones described in

[5, p. 138].

Finally in this section, we remark that the Paley–Wiener theorem for the

spherical transform was already proved by Betori and Pagliacci [1]. Let A

denote the Abel transform on X. For unexplained notation and discussion,

see [1] or [4]. In [1, Theorem 2.7], they proved that A is a bicontinuous

isomorphism of CcðXÞa onto CevðZÞ. They also showed that supp f JBN if

212 Shin Koizumi



and only if supp Af J ½�N;N�. Let F denote the Fourier transform on Z.

Then the spherical transform factors as ~ff ¼ FðAf Þ. Therefore, using the

result of Betori and Pagliacci and applying the Paley–Wiener theorem on Z, we

have the following proposition.

Proposition 2. Let f A CcðXÞa be such that supp f JBN. Then the

spherical transform ~ff satisfies the following conditions:

(1) ~ff ðsÞ is smooth on T,

(2) ~ff ðsÞ ¼ ~ff ð�sÞ and ~ff ðsþ tÞ ¼ ~ff ðsÞ,
(3) ~ff ðsÞ extends to a holomorphic function on C and there exists a constant

C > 0 such that

j ~ff ðsÞjaCqNj=sj:

Conversely, if F ðsÞ satisfies the above conditions (1)–(3), then there exists

f A CcðXÞa with supp f JBN such that ~ff ¼ F.

The above proposition can be obtained independently by the method of

Cowling and Setti in [5], and so we use this proposition to prove Proposition 5

in § 5.

4. Spectral projection on X

In this section, following the analogy with the case of semisimple Lie

groups, we shall give the definition of the spectral projection on X.

For f A CcðXÞ, we define the spectral projection Ps f by

Ps f ðxÞ ¼ ð f � fsÞðxÞ ¼
ð
G

f ðg1Þfsðg�1
1 gÞdg1; ð19Þ

where x ¼ g � o. Applying the functional equation of the spherical function in

[6, p. 55] to the right-hand side of (19) and using Fubini’s theorem, we obtain

Ps f ðxÞ ¼
ð
G

f ðg1 � oÞ
ð
W

pðg1 � o;oÞ1=2þ
ffiffiffiffiffi
�1

p
s
pðg � o;oÞ1=2�

ffiffiffiffiffi
�1

p
s
dnðoÞdg1

¼
ð
W

~ff ðs;oÞpðx;oÞ1=2�
ffiffiffiffiffi
�1

p
s
dnðoÞ: ð20Þ

By using (20), the inversion formula (12) is expressed as

f ðxÞ ¼ cG

ð
T

Ps f ðxÞjcðsÞj�2
ds: ð21Þ

To investigate more properties of the spectral projection, we shall compute

DnPs f ðxÞ below.
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Proposition 3. Let f A CcðXÞ. Then

DnPs f ðxÞ ¼
ð
W

Fon;�sðxÞ ~ff ðs;oÞdnðoÞ:

Proof. If s A � 1
2

ffiffiffiffiffiffiffi
�1

p
þ t

2Z, then Fon;�sðxÞ ¼ 0 and Ps f ðxÞ ¼ 0, so that

the assertion is trivial. Hence we can assume s B � 1
2

ffiffiffiffiffiffiffi
�1

p
þ t

2Z. Under this

assumption, using [9, Lemma 3.3], we have

DnPs f ðxÞ ¼ ðDnP
�s ~ff ðs; �ÞÞðxÞ

¼ ðP�sDn
~ff ðs; �ÞÞðxÞ

¼ P�s
X
y AX

f ðyÞFð�Þn; sðyÞ
 !

ðxÞ

¼
X
y AX

f ðyÞ
ð
W

pðx;oÞ1=2�
ffiffiffiffiffi
�1

p
sFon; sðyÞdnðoÞ

� �
: ð22Þ

On the other hand,

ð
W

pðx;oÞ1=2�
ffiffiffiffiffi
�1

p
s
Fon; sðyÞdnðoÞ

¼
ð
W

pðx;oÞ1=2�
ffiffiffiffiffi
�1

p
s

ð
W

pðy;o 0Þ1=2þ
ffiffiffiffiffi
�1

p
s
dnðo;o 0Þdnðo 0ÞdnðoÞ

¼
ð
W

pðy;o 0Þ1=2þ
ffiffiffiffiffi
�1

p
s

ð
W

pðy;oÞ1=2�
ffiffiffiffiffi
�1

p
s
dnðo;o 0ÞdnðoÞdnðo 0Þ

¼
ð
W

pðy;o 0Þ1=2þ
ffiffiffiffiffi
�1

p
sFo 0

n;�sðxÞdnðo 0Þ: ð23Þ

Substituting (23) into (22), we obtain that

DnPs f ðxÞ ¼
X
y AX

f ðyÞ
ð
W

pðy;o 0Þ1=2þ
ffiffiffiffiffi
�1

p
sFo 0

n;�sðxÞdnðo 0Þ

¼
ð
W

X
y AX

f ðyÞpðy;o 0Þ1=2þ
ffiffiffiffiffi
�1

p
s

 !
Fo 0

n;�sðxÞdnðo 0Þ

¼
ð
W

Fo 0
n;�sðxÞ ~ff ðs;o 0Þdnðo 0Þ:

This concludes the proof. r
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Finally in this section, we list the essential properties of the spectral

projection.

Corollary 1. The spectral projection Ps has the following properties:

(1) s 7! Ps f ðxÞ is a Weyl-invariant holomorphic function on C,

(2) LPs f ðxÞ ¼ lðsÞPs f ðxÞ,
(3) Qnð�sÞ�1DnPs f ðxÞ is holomorphic on C.

Remark 2. Since DnPs f ðxÞ is an even function with respect to the variable

s, we see that QnðsÞ�1
Qnð�sÞ�1DnPs f ðxÞ is also holomorphic on C.

5. The Paley–Wiener theorem for the spectral projection

In this section, we shall characterize the image of CcðXÞ under the spectral

projection on X. As an application of this, we shall give an elementary proof

of the Paley–Wiener theorem for the Helgason–Fourier transform, which is

proved by Cowling and Setti in [5].

Let N A Zb0. Let CNðXÞ denote the subset of CcðXÞ consisting of all

f A CcðXÞ such that supp f JBN . TNðT� XÞ denotes the set comprised of all

functions F on T� X satisfying the following conditions:

(N1) Fðs; xÞ is a Weyl-invariant smooth function on R with respect to the

variable s,

(N2) for each s A R, LF ðs; xÞ ¼ lðsÞFðs; xÞ,
(N3) for each x A X, Fðs; xÞ extends to a Weyl-invariant holomorphic

function on C,

(N4) for each n A Zb0, Qnð�sÞ�1DnF ðs; xÞ is holomorphic on C and there

exists a constant CN > 0 which does not depend on the choice of n

such that

jQnð�sÞ�1DnF ðs; xÞjaCNq
ðjxj�nþNÞj=sj:

We set

TðT� XÞ ¼ 6
y

N¼0

TNðT� XÞ:

We shall first show the following proposition, which is the assertion about

the necessary condition in the Paley–Wiener theorem for the spectral projec-

tion.

Proposition 4. Let f A CNðXÞ. Then Fðs; xÞ ¼ Ps f ðxÞ belongs to

TNðT� XÞ.
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Proof. The conditions (N1)–(N3) are already proved in Corollary 1.

We show here that the condition (N4) is fulfilled. By the definition of the

Helgason–Fourier transform (11), we can easily see that

j ~ff ðs;oÞja
X
x ABN

j f ðxÞjqhoðxÞ=2qjxj�j=sj aC 0
Nq

Nj=sj ð24Þ

for some constant C 0
N > 0. From Proposition 3, Qnð�sÞ�1DnF ðs; xÞ is holo-

morphic on C and it is satisfied that

Qnð�sÞ�1
DnF ðs; xÞ ¼ q�ðjxj�nÞ=2cðjxj � nþ 1; sÞ

ð
W

xon
ðo 0Þ ~ff ðs;oÞdnðoÞ

for o 0 A EðonÞ. Noting

jxaðoÞja
qjajðq2 � 1Þ

q2
; jq�n=2cðnþ 1; sÞja qþ 1

q� 1
qnj=sj ðs A CÞ;

we can find a constant CN > 0 so that

jQnð�sÞ�1DnF ðs; xÞjaCNq
ðjxj�nþNÞj=sj;

concluding the proof. r

The di‰cult part of the proof of the Paley–Wiener theorem is to prove

that it is also the su‰cient condition.

Let F A TNðT� XÞ and set

f ðxÞ ¼ cG

ð
T

Fðs; xÞjcðsÞj�2
ds: ð25Þ

Then from the condition (N4) with n ¼ 0, we see that

j f ðxÞjaCNcG

ð
T

jcðsÞj�2
ds

aCNcG

ð
T

4ðqþ 1Þ2

ðq� 1Þ2
sin2ðs log qÞds ¼ qðqþ 1Þ

ðq� 1Þ2
CN ;

and hence f ðxÞ is bounded on X.

We put fnðxÞ ¼ Dn f ðxÞ. Then

fnðxÞ ¼ cG

ð
T

Fnðs; xÞjcðsÞj�2
ds;

where Fnðs; xÞ ¼ DnF ðs; xÞ. By the definition of Dn, we observe that Fnðs; xÞ
satisfies the conditions (N3) and (N4) again. The following lemma is obtained

in the same way as in [5].
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Lemma 1. Let N A Z>0, F A TNðT� XÞ and a A Sn. If n > N then

Fnðs; aÞ ¼ 0 for all s A T.

Proof. We set fðsÞ ¼ Qnð�sÞ�1
Fnðs; aÞ. Then the condition (N4) yields

that fðsÞ is an entire function of exponential type N. We use the Paley–

Wiener theorem on Z to write

fðsÞ ¼
X
k AZ

fðkÞq
ffiffiffiffiffi
�1

p
ks;

where fðkÞ ¼ 0 unless �Na kaN. It follows from the condition (N3) that

fð�sÞ ¼ QnðsÞ�1
Fnð�s; aÞ ¼ Qnð�sÞ

QnðsÞ
Qnð�sÞ�1

Fnðs; aÞ ¼
Qnð�sÞ
QnðsÞ

fðsÞ:

As shown in [5, pp. 241–242], it is satisfied that

X
k AZ

fðkÞq�
ffiffiffiffiffi
�1

p
ks ¼

X
k AZ

�q�2
ffiffiffiffiffi
�1

p
sðn�1Þ�1 þ ð1� q�2Þ

Xy
l¼0

q�2
ffiffiffiffiffi
�1

p
sðlþnÞ�l

" #

� fðkÞq
ffiffiffiffiffi
�1

p
ks;

and hence

fðkÞ ¼ �q�1fð�k þ 2n� 2Þ þ ð1� q�2Þ
Xy
l¼0

q�lfð�k þ 2nþ 2lÞ: ð26Þ

From this, when n > N þ 1, it is easily verified that fðkÞ ¼ 0 for all k A Z. In

case n ¼ N þ 1, (26) yields

fðkÞ ¼ �q�1fð�k þ 2NÞ;

and so fðNÞ ¼ 0. Therefore, in this case, fðkÞ ¼ 0 for all k A Z. This

concludes the proof. r

Using these facts, we shall prove the following proposition.

Proposition 5. Let F A TNðT� XÞ. Then we have for each n A Zb0 that

fn A CNðXÞ. Moreover, if n > N, then fnðxÞ ¼ 0 for all x A X.

Proof. We first consider the case when n ¼ 0. Since f0 and F0 are the

spherical means of f and F , respectively, they are radial functions on X. In

addition, the condition (N4) is written as

jF0ðs; xÞjaCNq
Nj=sj:

Consequently, from Proposition 2, we have f0 A CNðXÞ.
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Let us next assume n A Z>0. It is to be noted that fnðxÞ ¼ 0 when jxj < n.

From this, we may assume jxjb n. We put a ¼ xðnÞ and choose an o A EðxÞ.
Because Fn ¼ DnFn and LFn ¼ lðsÞFn, it follows from [9, Lemma 3.2] that

Fnðs; xÞ ¼ q�ðjxj�jajÞ=2cðjxj � jaj þ 1; sÞFnðs; aÞ: ð27Þ

In the case when n > N, Lemma 1 yields that Fnðs; aÞ ¼ 0 and therefore

fnðxÞ ¼ 0 for all x A X.

Suppose that naN. We set

gaðsÞ ¼ QnðsÞ�1
Qnð�sÞ�1

Fnðs; aÞ:

Then (27) is written as

Fnðs; xÞ ¼ q�ðjxj�jajÞ=2cðjxj � jaj þ 1; sÞgaðsÞQnðsÞQnð�sÞ:

On the other hand, we have

fnðxÞ ¼ cG

ð
T

Fnðs; xÞjcðsÞj�2
ds

¼ q�ðjxj�jajÞ=2cG

ð
T

gaðsÞcðjxj � jaj þ 1; sÞQnðsÞQnð�sÞjcðsÞj�2
ds: ð28Þ

We here compute QnðsÞQnð�sÞjcðsÞj�2. Since

QnðsÞ ¼ q�n=2q
ffiffiffiffiffi
�1

p
ðn�1Þsðq

ffiffiffiffiffi
�1

p
s � q�

ffiffiffiffiffi
�1

p
sÞcðsÞ;

Qnð�sÞ ¼ q�n=2q�
ffiffiffiffiffi
�1

p
ðn�1Þsðq�

ffiffiffiffiffi
�1

p
s � q

ffiffiffiffiffi
�1

p
sÞcð�sÞ;

we see that

QnðsÞQnð�sÞ ¼ q�njcðsÞj2ðq
ffiffiffiffiffi
�1

p
s � q�

ffiffiffiffiffi
�1

p
sÞ2ð�1Þ

¼ 4q�njcðsÞj2 sin2ðs log qÞ:

Accordingly we have

QnðsÞQnð�sÞjcðsÞj�2 ¼ 4q�n sin2ðs log qÞ: ð29Þ

Substituting (29) into (28), we obtain

fnðxÞ ¼ 4q�nq�ðjxj�jajÞ=2cG

ð
T

gaðsÞcðjxj � jaj þ 1; sÞ sin2ðs log qÞds: ð30Þ

By the condition (N4), we observe that

jQnð�sÞ�1
Fnðs; aÞjaCqNj=sj:
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We pick L A R so that L < 1=2. Since the zeros of QnðsÞ lie in the set
1
2

ffiffiffiffiffiffiffi
�1

p
þ t

2Z, we can find a constant d > 0 such that

QnðsÞb dqnj=sj

for =s < L. Then, by an argument similar to that in [2, Theorem 3.2(J)], we

can see

jgaðsÞjaCqðN�nÞj=sj

for =s < L. As gaðsÞ is a holomorphic function on C, we have

jgaðsÞjaCqðN�nÞj=sj:

We here apply the Paley–Wiener theorem for the Fourier transform on Z to

the expression (30). We consequently obtain that fnðxÞ ¼ 0 for jxj � jaj þ 1 >

N � nþ 1. This concludes the proof. r

Using Proposition 5, we can obtain the following proposition.

Proposition 6. Let F A TNðT� XÞ. We set

f ðxÞ ¼ cG

ð
T

Fðs; xÞjcðsÞj�2
ds:

Then f A CNðXÞ.

Proof. Let n A Zb0 and set fnðxÞ ¼ Dn f ðxÞ. Then Proposition 5 yields

that fn A CNðXÞ and fn ¼ 0 when n > N. Let x A X be such that jxj > N.

We choose an integer M so that jxjaM. Then f ðxÞ can be written as the

following finite sum:

f ðxÞ ¼ eM f ðxÞ ¼ f0ðxÞ þ f1ðxÞ þ � � � þ fNðxÞ:

Since fn A CNðXÞ, we have f A CNðXÞ. r

Summarizing the arguments in this section, we arrive at the following

theorem.

Theorem 1. The spectral projection Ps gives a linear isomorphism from

CcðXÞ onto TðT� XÞ. Moreover, the image of CNðXÞ under Ps coincides with

TNðT� XÞ for all N A Zb0.

In the remainder of this section, we shall give an elementary proof of the

Paley–Wiener theorem for the Helgason–Fourier transform due to Cowling and

Setti. Our proof is a direct consequence of Theorem 1.

Let ZNðT�WÞ denote the set of all functions F on T�W satisfying the

following conditions:
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(H1) Fðs;oÞ is a smooth function on T with respect to the variable s,

(H2) Fðsþ t;oÞ ¼ Fðs;oÞ,
(H3) Fðs;oÞ extends to a t-periodic holomorphic function on C and there

exists a constant CN > 0 such that

jFðs;oÞjaCNq
Nj=sj;

(H4) F satisfies the symmetry condition (14).

With the notation above, Cowling and Setti have proved the following theorem.

Theorem 2 ([5, Theorem 1]). The Helgason–Fourier transform gives a

linear isomorphism of CNðXÞ onto ZNðT�WÞ.

In order to prove the above theorem, Cowling and Setti investigated

dim ZNðT�WÞ and showed that dim ZNðT�WÞ ¼ Card BN . Our proof is a

consequence of Theorem 1 and simpler than the one of Cowling and Setti.

Proof. Let F A ZNðT�WÞ. We first show that the Poisson transform

P�sFðs; �Þ of F ðs;oÞ satisfies the conditions (N1)–(N4). The condition (N2) is

already shown in Corollary 1. The symmetry condition (14) and the condition

(H2) imply that P�sF ðs; �Þ is Weyl-invariant. Thus Corollary 1 yields that

the conditions (N1) and (N3) are fulfilled. By the definition of the Poisson

transform, we have

jP�sF ðs; xÞja
ð
W

jpðx;oÞ1=2�
ffiffiffiffiffi
�1

p
sj jF ðs;oÞjdnðoÞ

a

ð
W

qhoðxÞ=2qj=sj�jxjCNq
Nj=sj dnðoÞ

aCNq
ðjxjþNÞj=sj:

Thus the condition (N4) is an immediate corollary of Proposition 3. Therefore

we see that P�sF A TNðT� XÞ. We set

f ðxÞ ¼ cG

ð
T

P�sFðs; xÞjcðsÞj�2
ds: ð31Þ

Applying here Proposition 6, we have f A CNðXÞ. This concludes the proof.

r
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