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Abstract. In this paper, we are concerned with oscillation of solutions of a certain

class of third-order nonlinear delay di¤erential equations of the form x 000ðtÞþ
pðtÞx 0ðtÞ þ qðtÞ f ðxðtðtÞÞÞ ¼ 0. We establish some new oscillation results that extend

and improve some results in the literature in the sense that our results do not require

that t 0ðtÞb 0. Some examples are considered to illustrate the main results and some

conjectures and open problems are presented.

1. Introduction

In this paper, we are concerned with oscillation of solutions of the third-

order nonlinear delay di¤erential equation

x 000ðtÞ þ pðtÞx 0ðtÞ þ qðtÞ f ðxðtðtÞÞÞ ¼ 0; for t A ½t0;yÞ; ðE0Þ

where p, q, and t are positive real-valued functions, tðtÞa t, tðtÞ ! y as

t ! y, and uf ðuÞ > 0 for u0 0. By a solution of (E0), we mean a non-

trivial real-valued function xðtÞ A C3½t�1ðt0Þ;yÞ satisfying (E0), where

t�1ðtÞ ¼ supfsb 0 : tðsÞa tg for tbT0 ¼ minftðtÞ : tb 0g: Our attention

is restricted to those solutions of (E0) which exist on ½tx;yÞ and satisfy

supfjxðtÞj : t > t1g > 0 for any t1 b tx. We make a standing hypothesis that

(E0) does possess such solutions. A solution of (E0) is said to be oscillatory if

it has arbitrarily large zeros; otherwise, we say it is nonoscillatory. Equation

(E0) is disconjugate on the interval I ¼ ½t0;yÞ in case no nontrivial solution

has more than two zeros on I counting multiplicity. Equation (E0) is said

to be oscillatory in case there exists at least one oscillatory solution. The

challenge in the study of the asymptotic behavior of solutions of equations of

the form (E0) or its generalizations is the determination of the signs of the

derivatives of the solution x 0ðtÞ, x 00ðtÞ, and x 000ðtÞ. In the case where pðtÞ ¼ 0,

it is known (see [1]) that there are only two cases to consider:
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( I ) xðtÞ > 0, x 0ðtÞ > 0, x 00ðtÞ > 0, or

(II) xðtÞ > 0, x 0ðtÞ < 0, x 00ðtÞ > 0

for tb t1 su‰ciently large.

When pðtÞ0 0, we cannot use the technique employed in [1] to determine

the signs of x 0ðtÞ, x 00ðtÞ, and x 000ðtÞ and some conditions need to be imposed

to determine the signs of these quantities. In fact, there are two di¤erent

approaches that have been used for this determination, one is due to Lazer

[24] and another to Heidel [19]. Lazer’s method depends on the sign of

functional

FðxðtÞÞ ¼ ðx 0ðtÞÞ2 � 2xðtÞx 00ðtÞ � pðtÞx2ðtÞ;

whereas Heidel’s method depends on the nonoscillatory behavior of the related

second-order equation

x 00ðtÞ þ pðtÞxðtÞ ¼ 0:

Functionals of this type and its variations have been used by other authors in

the study of third-order equations; for example, see Greguš, Graef, and Gera

[13].

In the following, for completeness and comparison, we give a detailed

discussion of known oscillation results for third-order linear and nonlinear

di¤erential equations related to (E0). Hanan [18] wrote an important paper

that was the starting point for many investigations into the asymptotic behavior

of solutions of third-order di¤erential equations. He studied the oscillation

and nonoscillation of the linear equation

x 000ðtÞ þ pðtÞx 0ðtÞ þ qðtÞxðtÞ ¼ 0; tb t0; ðE1Þ

where the coe‰cients satisfy:

ðc1Þ pðtÞ > 0 and 2qðtÞ � p 0ðtÞ > 0;

he proved that if xðtÞ is a given solution such that

Fðxðt1ÞÞ ¼ ðx 0ðt1ÞÞ2 � 2xðt1Þx 00ðt1Þ � pðt1Þx2ðt1Þb 0;

then the zeros of xðtÞ and x 0ðtÞ separate each other in ½t2;y), where t2 is the

first zero of x 0ðtÞ to the right of t ¼ t1. As for comparison theorems, Hanan

[18] considered the equations

Lx :¼ x 000ðtÞ þ pðtÞx 0ðtÞ þ qðtÞxðtÞ ¼ 0; t A ½a; bÞ;

L1x :¼ x 000ðtÞ þ p1ðtÞx 0ðtÞ þ q1ðtÞxðtÞ ¼ 0; t A ½a; bÞ;

where p, q, p1, and q1 A C½a; bÞ, 0 < a < bay. He proved that if the

inequalities

ðc2Þ pðtÞb p1ðtÞ, qðtÞb q1ðtÞ, 2qðtÞ > p 0ðtÞ, and 2q1ðtÞ > p 0
1ðtÞ

hold for all large t, and if Lx ¼ 0 is nonoscillatory, then so is L1x ¼ 0.
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A useful comparison equation for third-order linear equations is the Euler

equation

Ex :¼ x 000ðtÞ þ a

t2
x 0ðtÞ þ b

t3
xðtÞ ¼ 0; ð1Þ

where a and b are positive constants. It is known (cf. Swanson [33]) that

Ex ¼ 0 is disconjugate on ð0;yÞ if and only if aa 1 and jaþ bja 2 1�a
3

� �3=2
.

In view of this, the following conjecture now arises.

Conjecture 1. Equation (1) is oscillatory if

a < 1 and jaþ bj > 2
1� a

3

� �3=2
:

In Section 2, we give an a‰rmative answer to this conjecture (see Example 2

below).

Using the Euler di¤erential equation as a comparison equation, Hanan

[18] proved that if

(c3) p1ðtÞb 0 and 2q1ðtÞ > p 0
1ðtÞ,

and there exists a number k, 0 < k < 1, with

lim sup
t!y

t2p1ðtÞ < k and lim sup
t!y

t3q1ðtÞ < 2
1� k

3

� �3=2
� k;

then L1x ¼ 0 is nonoscillatory.

Using a di¤erent approach, Erbe [7] showed that there are examples of

equations L1x with lim supt!y q1ðtÞ ¼ y that are nevertheless disconjugate on

½t0;yÞ; this follows from some integral forms of his comparison theorems.

Erbe proved that if

�ðt0=
ffiffiffi
3

p
Þðt� t0ÞaP1ðtÞ þQ1ðtÞa ðt� t0Þ2=ð3

ffiffiffi
3

p
Þ for t > t0;

and

0a t2p1ðtÞa kv0ðtÞ for t > t0 and some 0 < k < ð1=2Þ þ 1=
ffiffiffi
3

p
< 1;

where

P1ðtÞ ¼
ð t

t0

ðt� sÞs2p1ðsÞds; Q1ðtÞ ¼
ð t

t0

ðt� sÞs3q1ðsÞds;

and

t2v0ðtÞ ¼ t20ð1� 1=
ffiffiffi
3

p
Þ þ ðt0ðt� t0Þ=

ffiffiffi
3

p
Þ þ P1ðtÞ þQ1ðtÞ;

then L1x ¼ 0 is disconjugate on ½t0;yÞ.
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Remark 1. As a special case, from the results of Erbe [7], we can deduce

the following results that generalize the results of Hanan [18]. If qðtÞ has

constant sign, then the equation

x 000ðtÞ þ qðtÞxðtÞ ¼ 0; ð2Þ

is disconjugate on ½a;yÞ ifð t

t0

ðt� sÞs3qðsÞdsa ðt� t0Þ2

3
ffiffiffi
3

p ; for t > t0: ð3Þ

From this remark, we can formulate the following conjecture.

Conjecture 2. If qðtÞ > 0, then the condition

lim inf
t!y

1

ðt� t0Þ2
ð t

t0

ðt� sÞs3qðsÞds > 1

3
ffiffiffi
3

p ; for t > t0; ð4Þ

is su‰cient for the oscillation of (2).

Remark 2. To prove that condition (4) is sharp, we take qðtÞ ¼ 2

3
ffiffi
3

p
t3
.

Then equation (2) becomes the third-order Euler di¤erential equation

x 000ðtÞ þ 2

3
ffiffiffi
3

p
t3
xðtÞ ¼ 0; tb 1; ð5Þ

and condition (4) becomes

lim inf
t!y

1

ðt� t0Þ2
ð t

t0

ðt� sÞs3qðsÞds ¼ 2

3
ffiffiffi
3

p lim inf
t!y

1

ðt� 1Þ2
ð t

1

ðt� sÞds ¼ 1

3
ffiffiffi
3

p :

Thus, condition (4) is not satisfied, and so (5) is not oscillatory. It is known

that (5) is disconjugate and the associated characteristic equation has the

negative root 2
ffiffi
3

p

3 � 1 and two equal positive roots given by 1þ 1ffiffi
3

p . On the

other hand, it is easy to see that the equation

x 000ðtÞ þ 1ffiffiffi
3

p
t3
xðtÞ ¼ 0; tb 1; ð6Þ

satisfies condition (4), so that it has an oscillatory solution. Note that the

roots of the characteristic equation of (6) are given by m ¼ 1:60732G 0:32634i

and m ¼ �0:21463: This shows that the condition (4) is sharp and cannot be

weakened.

Lazer [24] considered equation (E1) with pðtÞ < 0, and proved that if qðtÞ
has fixed sign and xðtÞ is a nonoscillatory solution of (E1), then there exists

t1 > t0 such that either
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(III) xðtÞx 0ðtÞ < 0, or

(IV) xðtÞx 0ðtÞ > 0

for tb t1 (see Lemmas 1.3 and 2.2 in [24]). He also proved that if (III) holds,

then ð�1Þ ixðtÞxðiÞðtÞ > 0, for i ¼ 0; 1; 2; 3, and he then established some nec-

essary and su‰cient conditions for the oscillation of (E1). Lazer used the

Riccati substitution uðtÞ ¼ x 0ðtÞ=xðtÞ to prove that if pðtÞa 0, qðtÞ > 0, andðy
t0

qðtÞ � 2

3
ffiffiffi
3

p ð�pðtÞÞ3=2
� �

dt ¼ y; ð7Þ

then (E1) is oscillatory (see [24, Theorem 1.3]). On the other hand, in [24], he

also considered the case where

(c4) pðtÞ > 0, qðtÞ > 0, 2qðtÞ � p 0ðtÞb 0, and 2qðtÞ � p 0ðtÞ2 0 in any

subinterval of ½t0;yÞ.
Lazer’s investigation in this case depends on the value of the function

FðxðtÞÞ ¼ ðx 0ðtÞÞ2 � 2xðtÞx 00ðtÞ � pðtÞx2ðtÞ:

He proved that if xðtÞ is a nonoscillatory solution of (E1) that is eventually

nonnegative and there exists t1 A ½t0;yÞ such that Fðxðt1ÞÞb 0, then there

exists t2 > t1 such that

xðtÞ > 0; x 0ðtÞ > 0; x 00ðtÞ > 0; and x 000ðtÞ < 0 for tb t2: ð8Þ

Waltman [37] considered the equations

x 000ðtÞ þ pðtÞx 0ðtÞ þ qðtÞxgðtÞ ¼ 0; tb t0; ðE3Þ

and

x 000ðtÞ þ pðtÞx 0ðtÞ þ qðtÞ f ðxðtÞÞ ¼ 0; tb t0; ðE4Þ

where pðtÞb 0 and qðtÞb 0 are continuous functions and g is the ratio of

odd positive integers. He established some oscillation results; in particular, for

equation (E3), he proved that if p 0ðtÞ < 0 and

Aþ Bt�
ð t

t0

ð s

0

qðuÞduds < 0; ð9Þ

for t su‰ciently large, where A, B are any constants, then every solution that

has a zero is oscillatory. For equation (E4), Waltman proved ([37, Theorem

2]) that every solution of (E4) having a zero is oscillatory if f ðuÞ=ubK > 0,

KqðtÞ � p 0ðtÞ > 0, and ðy
t0

t½KqðtÞ � p 0ðtÞ�dt ¼ y: ð10Þ
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Remark 3. We note that conditions (7) and (10) do not hold for the

Euler equation (1) with pðtÞ ¼ 0. This implies that condition (4) in Conjecture

2 improves condition (7) of Lazer [24] and condition (10) of Waltman [37] in

this case.

Heidel [19] considered equation (E3) and investigated the behavior of the

nonoscillatory solutions as well as the existence of oscillatory solutions. He

considered two di¤erent cases, namely,

(c5) pðtÞa 0 and qðtÞa 0, or

(c6) pðtÞb 0 and qðtÞb 0.

Most of his results dealt with the behavior of the nonoscillatory solutions. In

the case where ðc5Þ holds, Heidel generalized the results of Lazer [24] and

established some su‰cient conditions that ensure nonoscillatory solutions of

(E3) satisfy either (III) or (IV). For the existence of oscillatory solutions,

Heidel proved that if g ¼ 1, �2=t2 a pðtÞa 0, qðtÞa 0, and for some

0 < a < 1,ðy
t0

s2�aqðsÞds ¼ �y; and

ðy
t0

s4½p 0ðsÞ � 2qðsÞ�ds ¼ y;

then (E3) has an oscillatory solution. For more results on (E3), we refer the

reader to the paper of Greguš et al. [16] which also improved Waltman’s result

[37].

Škerlik [31] considered equation (E1) with pðtÞ and qðtÞ being positive

functions and improved Lazer’s results [24]. He proved that if t2pðtÞa 1
4

and ðy
t0

s2qðsÞ þ spðsÞ � 2

3
ffiffiffi
3

p
s
ð1� s2pðsÞÞ3=2

� �
ds ¼ y; ð11Þ

then (E1) has the following property.

Property A: Equation (E1) has Property A if each solution xðtÞ is either

oscillatory or satisfies limt!y xðiÞðtÞ ¼ 0 for i ¼ 0; 1; 2; 3.

He also showed that the equation is oscillatory if and only if it has

Property A. In the special case where pðtÞ ¼ 0, equation (E1) reduces to (2) and

condition (11) becomes ðy
t0

s2qðsÞ � 2

3
ffiffiffi
3

p
s

� �
ds ¼ y; ð12Þ

this is a su‰cient condition for the oscillation of (2). We note here that the

results of Škerlik are sharp and cannot be weakened. One of our aims in this

paper is to extend Škerlik’s results and find similar conditions for the delay

equation (E0).
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Tiryaki and Yamen [36] considered equation (E0) and studied the asymp-

totic behavior of the nonoscillatory solutions. They asked that f ðuÞ=ub b > 0

and that the delay tðtÞa t satisfies t 0ðtÞb 0. In the case where pðtÞa 0 and

qðtÞ > 0, they extended the results of Škerlik [31] and proved that ifðy
t0

bs2qðsÞ þ spðsÞ � 2

3
ffiffiffi
3

p
s
ð1� s2pðsÞÞ3=2

� �
ds ¼ y; ð13Þ

then every nonoscillatory solution of (E0) tends to either zero or Gy as

t ! y. They also considered the case where

(c7) pðtÞb 0, qðtÞ > 0, 2bqðtÞ � p 0ðtÞ > 0, and t2pðtÞa 1
4 .

In this case, they proved that every nonoscillatory solution of (E0) tends to

either zero or Gy as t ! y provided (13) holds.

In [34], Tiryaki and Atkas considered the general third-order equation

ðr1ðtÞðr2ðtÞx 0ðtÞÞ0Þ0 þ pðtÞx 0ðtÞ þ qðtÞ f ðxðtðtÞÞÞ ¼ 0; ð14Þ

where p, q are positive functions, uf ðuÞ > 0 for u0 0, the delay tðtÞ satisfies

t 0ðtÞb 0, and ðy
t0

1

r1ðtÞ
dt ¼

ðy
t0

1

r2ðtÞ
dt ¼ y:

To prove the main results in [34], the authors applied the Riccati technique

used in [26] and established some su‰cient conditions to ensure that (14) is

either oscillatory or every nonoscillatory solution tends to zero as t tends to

infinity. The proofs of the main results in [34] are based on their Lemma 2,

which is presented without proof; it is mentioned that its proof is similar to

the proof of Lemma 1 in [30]. In fact, to apply the proof of [30, Lemma 1]

which is based on the results of Lazer [24] (also see Lemma 1 in [31]) there

are some additional conditions that need to be satisfied. These conditions are

that 2qðtÞ � p 0ðtÞb 0 and

Fðxðt1ÞÞ ¼ ðx 0ðt1ÞÞ2 � 2xðt1Þx 00ðt1Þ � pðt1Þx2ðt1Þb 0; ð15Þ

where x1ðtÞ is a solution of (14) with r1ðtÞ ¼ r2ðtÞ ¼ 1. The authors in [34] did

not present a generalization of these conditions to the equation (14), which are

important to prove that the solutions have the property

Property V2: yðtÞðr1ðtÞy 0ðtÞÞ > 0, yðtÞr2ðtÞðr1ðtÞy 0ðtÞÞ0 > 0, and

yðtÞðr2ðtÞðr1ðtÞy 0ðtÞÞ0Þ0 a 0.

This means that Lemma 2 in [34] needs a generalization of condition (15),

or to assume that the equation

ðr1ðtÞz 0ðtÞÞ0 þ
pðtÞ
r2ðtÞ

zðtÞ ¼ 0
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is nonoscillatory, in order to prove that solutions have property V2. On the

other hand, their main results are not sharp as will be clear from the following

simple example. It is known that the equation

x 000ðtÞ þ b

t3
xðtÞ ¼ 0; tb 1; ð16Þ

is oscillatory if b > 2=ð3
ffiffiffi
3

p
Þ. But by applying Theorem 1 in [34] shows that

(16) is oscillatory if b > 1; this is di¤erent from the oscillation condition

for (16). The natural question to ask now is: ‘‘Is it possible to find new

oscillation results for equation (E0) without the condition t 0ðtÞb 0 as required

in [36] and [34]?’’ One of our aims in this paper is to give an a‰rmative

answer to this question (see Theorem 7 and Example 3 below).

For additional oscillation results for di¤erent forms of third-order equa-

tions, we refer the reader to the works of Barrett [2, 3], Bartušek, Cecchi and

Martini [4], Cecchi and Marini [5], Džurina [6], Erbe [7], Etgen and Shih [8],

Greguš [9], Greguš Jr. [10], Greguš and Graef [11, 12], Greguš, Graef, and

Gera [13, 14], Greguš and Greguš Jr. [15, 17], Jones [20, 21], Saker [27], Šoltěs

[32], Tiryaki and Çelebi [35], and the references cited therein, as well as the new

monograph by Saker [28].

The remainder of this paper is organized as follows: First, we establish

some new oscillation criteria for the delay equation (E0), which in the special

case tðtÞ ¼ t include the results established by Hanan [18], Lazer [24], and

Waltman [37], and are di¤erent from the results of Tiryaki and Yamen [36]

and Greguš [10] in the sense that our results will depend on the delay func-

tion and do not require any information about an unknown solution to a

related equation. Our results also include those of Škerlik [31] when f ðuÞ ¼ u

and tðtÞ ¼ t, and are di¤erent from the results of Džurina [6] in the sense

that our results can be easily verified and do not require an additional func-

tion rðtÞ and depend on the solution of a second-order di¤erential equation.

They also di¤er from the results by Tiryaki and Atkas [34] in that we do

not require t 0ðtÞb 0 and we give sharp conditions for the oscillation of (1) and

(16).

Secondly, we will apply the Riccati technique to establish some new

oscillation results of Kamenev-type [22]. Some examples are considered to

illustrate the main results.

2. Main results

In this section, we establish some su‰cient conditions ensuring that each

solution of equation (E0) is either oscillatory or it tends to zero as t tends

to y. We will refer to this as:
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Property P: A solution is said to satisfy Property P if it is either

oscillatory or it tends to zero as t ! y. An equation is said to satisfy Property

P if each of its nontrivial solutions satisfies Property P.

We note that if xðtÞ is a solution of (E0), then x̂x ¼ �x is a solution of an

equation of the same form as (E0). Thus, concerning nonoscillatory solutions

of (E0), we can restrict our attention to only the positive ones in giving proofs.

The following lemma due to Kiguradze and Chanturia [23] will be useful

in the remainder of this paper.

Lemma 1. If the function f ðtÞ satisfies f ðiÞðtÞ > 0, i ¼ 0; 1; 2; . . . ; n, and

f ðnþ1ÞðtÞ < 0, then
f ðtÞ
tn=n!

b
f 0ðtÞ

tn�1=ðn� 1Þ! .

To prove the main oscillation results, we need the following lemma whose

proof is similar to that of the proofs of Lemma 3.1 of Lazer [24] and Lemma

2.1 of Tiryaki and Yamen [36], and hence is omitted.

Lemma 2. Assume that

(h1) f ðuÞ=ub k > 0 for u0 0,

(h2) 2kqðtÞ � p 0ðtÞb 0 for t A ½t0;yÞ and is not identically zero in any

subinterval of ½t0;yÞ.
Let xðtÞ be a nonoscillatory solution of (E0) that is eventually positive with

Fðxðt1ÞÞ ¼ ðx 0ðt1ÞÞ2 � 2xðt1Þx 00ðt1Þ � pðt1Þx2ðt1Þb 0; ð17Þ

for some t1 A ½t0;yÞ. Then there exists t2 b t1 such that

xðtÞ > 0; ; x 0ðtÞ > 0; x 00ðtÞ > 0; and x 000ðtÞ < 0; ð18Þ

for tb t2.

We are now ready to present our main results in this paper. Recall that

we are asking that pðtÞ and qðtÞ be positive functions.

Theorem 1. Assume that ðh1Þ–ðh2Þ hold, p 0ðtÞa 0, and let xðtÞ be a

solution of (E0) satisfying (17) for some t1 A ½t0;yÞ. Ifðy
t0

t2ðsÞ
s

ðkqðsÞ � p 0ðsÞÞds ¼ y; ð19Þ

and then xðtÞ is oscillatory.

Proof. Let xðtÞ be a nonoscillatory solution of (E0). Without loss of

generality, we may assume that there exists t1 b t0 such that xðtÞ > 0 and

xðtðtÞÞ > 0 for tb t1 and that Fðxðt1ÞÞb 0. By Lemma 2, there exists t2 b t1
such that (18) holds for tb t2. Integrating (E0) from t2 to t, we have
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x 00ðtÞ � x 00ðt2Þ þ pðtÞxðtÞ � pðt2Þxðt2Þ ¼
ð t

t2

p 0ðsÞxðsÞds�
ð t

t2

qðsÞ f ðxðtðsÞÞÞds

a

ð t

t2

p 0ðsÞxðsÞds�
ð t

t2

kqðsÞxðtðsÞÞds:

Thus,

pðt2Þxðt2Þ þ x 00ðt2Þb x 00ðtÞ þ pðtÞxðtÞ �
ð t

t2

p 0ðsÞxðsÞdsþ
ð t

t2

kqðsÞxðtðsÞÞds

b�
ð t

t2

p 0ðsÞxðsÞdsþ
ð t

t2

kqðsÞxðtðsÞÞds

¼
ð t

t2

kqðsÞ � p 0ðsÞ xðsÞ
xðtðsÞÞ

� �
xðtðsÞÞds: ð20Þ

By Lemma 1, we can easily deduce from (18) that

x 0ðtÞ
xðtÞ a

2

t
; for tb t2: ð21Þ

Integrating (21) from tðtÞ to t, we obtain

xðtðtÞÞb t2ðtÞ
t2

xðtÞ: ð22Þ

Since x 0ðtÞ > 0 for tb t2 and is increasing, we have x 0ðtÞ > A > 0 for tb t2,

and since xðt2Þ > 0, we see that

xðtÞb xðt2Þ þ Aðt� t2Þb
A

2
t; for t > t3 ð23Þ

for some t3 b t2. Since p 0ðtÞa 0 and xðsÞb xðtðsÞÞ, (20) yields

pðt2Þxðt2Þ þ x 00ðt2Þb
ð t

t3

½kqðsÞ � p 0ðsÞ�xðtðsÞÞds: ð24Þ

Substituting (22) and (23) into (24), we obtain

pðt2Þxðt2Þ þ x 00ðt2Þ
A=2

b

ð t

t3

t2ðsÞ
s

½kqðsÞ � p 0ðsÞ�ds; ð25Þ

so ðy
t3

t2ðsÞ
s

½kqðsÞ � p 0ðsÞ�ds < y;

which contradicts assumption (19).
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Our next theorem is for the case p 0ðtÞb 0.

Theorem 2. Assume that ðh1Þ holds, p 0ðtÞb 0,

kqðtÞ � p 0ðtÞ t2

t2ðtÞ
b 0 for t A ½t0;yÞ,(h3)

and let xðtÞ be a solution of (E0) satisfying (17) for some t1 A ½t0;yÞ. Ifðy
t0

t2ðsÞ
s

kqðsÞ � p 0ðsÞ s2

t2ðsÞ

� �
ds ¼ y; ð26Þ

then xðtÞ is oscillatory.

Proof. Proceeding as in the proof of Theorem 1, we again obtain

pðt2Þxðt2Þ þ x 00ðt2Þb
ð t

t2

kqðsÞxðtðsÞÞds�
ð t

t2

p 0ðsÞxðsÞds:

From (22), (23), and condition (h3), we have

pðt2Þxðt2Þ þ x 00ðt2Þb
A

2

ð t

t2

t2ðsÞ
s

kqðsÞ � p 0ðsÞ s2

t2ðsÞ

� �
ds:

The resulting contradiction to (26) completes the proof.

Remark 4. Note that when tðtÞ ¼ t, conditions (19) and (26) both becomeðy
t0

s½kqðsÞ � p 0ðsÞ�ds ¼ y;

which is the condition of Waltman (10) above. In the linear case, f ðuÞ ¼ u,

this condition becomes that of Hanan [18]. We note that condition (22) which

gives a relation between the solution with delay and without delay plays an

important role in the proof of the above results. So if a sharper relation can

be found, then it would be possible to obtain a better oscillation result. We

leave this as an open question for the interested reader.

In the following theorem, we extend the results of Lazer [24] (see Theorem

3.1 in [24]) to the delay equation (E0).

Theorem 3. Assume that ðh1Þ–ðh2Þ hold. If for some m < 1=2, the

second-order equation

w 00ðtÞ þ pðtÞ þ qðtÞ kmt2ðtÞ
t

� �
wðtÞ ¼ 0 ð27Þ

is oscillatory, then equation (E0) is oscillatory, i.e., the equation has an oscillatory

solution. In particular, any nontrivial solution xðtÞ of (E0) with F ðxðt1ÞÞ ¼
ðx 0ðt1ÞÞ2 � 2xðt1Þx 00ðt1Þ � pðt1Þðxðt1ÞÞ2 b 0, for some t1 b t0, is oscillatory.
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Proof. We follow the proof of Theorem 3.1 of Lazer [24], and suppose

that xðtÞ is a nonoscillatory solution of (E0). Without loss of generality, we

may assume that xðtÞ > 0 and xðtðtÞÞ > 0 for t > t0 with F ðxðt1ÞÞb 0 for

t1 b t0. By Lemma 2, there exists a number t2 b t1 such that (18) holds for

tb t2. Hence, as in the proof of Theorem 1, applying Lemma 1, we have

xðtÞ=x 0ðtÞb t=2 for tb t2. Thus, since m < 1=2, there exists t3 b t2 such that

xðtÞ=x 0ðtÞbmt for tb t3: ð28Þ

We can write equation (E0) as the system

x 0ðtÞ ¼ wðtÞ > 0;

w 0ðtÞ ¼ x 00ðtÞ > 0;

w 00ðtÞ þ pðtÞwðtÞ þ qðtÞð f ðxðtðtÞÞÞ ¼ 0:

8<
:

The third equation can be written in the form

w 00ðtÞ þ pðtÞ þ qðtÞ f ðxðtðtÞÞÞ
x 0ðtÞ

� �
wðtÞ ¼ 0: ð29Þ

From (h1), (22), and (28), we have

pðtÞ þ qðtÞ f ðxðtðtÞÞÞ
x 0ðtÞ b pðtÞ þ qðtÞkxðtðtÞÞ

x 0ðtÞ

b pðtÞ þ qðtÞkt2ðtÞ
t2

xðtÞ
x 0ðtÞ

b pðtÞ þ qðtÞmkt2ðtÞ
t

;

for tb t3. Since (27) is oscillatory, by the Sturm Comparison Theorem, every

nontrivial solution of (29) defined for tb t3 is oscillatory. But this contradicts

the fact that wðtÞ ¼ x 0ðtÞ > 0, and this completes the proof of the theorem.

We need the following lemma whose proof is similar to that of the proof

of Theorem 3.6 of Heidel [19] and hence is omitted.

Lemma 3. Assume that ðh1Þ and

ðh4Þ pðtÞb 0, qðtÞ > 0, and t2pðtÞa 1=4

hold. If xðtÞ is a nonoscillatory solution of (E0), then there exists t1 b t0 such

that either (i) xðtÞx 0ðtÞ > 0 or (ii) xðtÞx 0ðtÞ < 0 for tb t1.

Theorem 4. Let ðh1Þ and ðh4Þ hold and let xðtÞ be a solution of (E0). Ifðy
t0

kt2ðsÞqðsÞ þ spðsÞ � 2

3
ffiffiffi
3

p
s
ð1� s2pðsÞÞ3=2

� �
ds ¼ y; ð30Þ

then equation (E0) satisfies Property P.
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Proof. Let xðtÞ be a nonoscillatory solution of (E0) on ½t0;yÞ. Without

loss of generality, we may assume that xðtÞ > 0 and xðtðtÞÞ > 0 for t > t1.

Since t2pðtÞa 1=4, it follows from Lemma 3 that there exists t2 b t1 such that

either

( i ) xðtÞx 0ðtÞ > 0, x 00ðtÞ > 0, and x 000ðtÞ < 0 for tb t2, or

(ii) xðtÞx 0ðtÞ < 0, x 00ðtÞ > 0, and x 000ðtÞ < 0 for tb t2.

First, we consider case (i) and define

uðtÞ :¼ tx 0ðtÞ
xðtÞ : ð31Þ

Then uðtÞ > 0 and by using (E0), we see that uðtÞ satisfies the second-order

Riccati equation

ðtuÞ0 þ 3

2
u2 � 4u

� �0
¼ � 1

t
u3 � 3u2 þ ð2þ t2pðtÞÞuþ t3qðtÞ f ðxðtðtÞÞÞ

xðtÞ

� �
: ð32Þ

Define

QðuÞ :¼ u3 � 3u2 þ ð2þ t2pÞuþ t3qðtÞ f ðxðtðtÞÞÞ
xðtÞ :

Using the fact that the function QðuÞ has a minimum value, we can easily see

that

QðuÞb t3qðtÞ f ðxðtðtÞÞÞ
xðtÞ þ t2pðtÞ � 2

3
ffiffiffi
3

p ð1� t2pðtÞÞ3=2: ð33Þ

Substituting the estimate (33) into (32), we have

ðtuÞ0 þ 3

2
u2 � 4u

� �0

a� 1

t
t3qðtÞ f ðxðtðtÞÞÞ

xðtÞ þ t2pðtÞ � 2

3
ffiffiffi
3

p ð1� t2pðtÞÞ3=2
� �

: ð34Þ

When (i) holds, we see that the conditions of Kiguradze’s Lemma are satisfied

and so we can use the estimate (22). Substituting (22) into (34) and using ðh1Þ,
we have for all tb t2 that

ðtuÞ0 þ 3

2
u2 � 4u

� �0

a� 1

t
t3qðtÞ kt

2ðtÞ
t2

þ t2pðtÞ � 2

3
ffiffiffi
3

p ð1� t2pðtÞÞ3=2
� �

¼ �PðtÞ; ð35Þ
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where

PðtÞ ¼ kt2ðtÞqðtÞ þ tpðtÞ � 2

3
ffiffiffi
3

p
t
ð1� t2pðtÞÞ3=2:

Integrating (35) from t2 to t, we have

ðtuðtÞÞ0 þ 3

2
u2ðtÞ � 4uðtÞaK0 �

ð t

t2

PðsÞds;

where K0 is a constant. Using the fact that the function 3
2 u

2 � 4u has a

minimum value �8=3, we have

ðtuÞ0 aK1 �
ð t

t2

PðsÞds;

where K1 ¼ K0 þ 8
3 . Integrating again and applying (30) shows that uðtÞ must

eventually become negative, which contradicts the positivity of uðtÞ.
Next, we assume that (ii) holds and suppose that x 0ðtÞ < 0 for tb t2.

Hence, limt!y xðtÞ ¼ Lb 0 exists. Let L > 0. Then xðtðtÞÞb xðtÞbL for

t A ½t2;yÞ. Since t2pðtÞa 1=4, we can easily see that

tpðtÞ � 2

3
ffiffiffi
3

p
t
ð1� t2pðtÞÞ3=2 a 0 for t2pðtÞa 1=4;

where

ð3
ffiffiffi
3

p
pt2Þ2 � ð2ð1� pt2Þ3=2Þ2 ¼ 4p3t6 þ 15p2t4 þ 12pt2 � 4

¼ ð4t2p� 1Þðt2pþ 2Þ2:

Consequently, from (30) and the fact that tðtÞa t, we haveðy
t0

s2qðsÞdsb
ðy
t0

t2ðsÞqðsÞds ¼ y:

Multiplying (E0) by t2 and integrating from t2 to t, we have

t2x 00ðtÞ � 2tx 0ðtÞ þ 9

4
xðtÞaK � Lk

ð t

t2

s2qðsÞds;

where K is a constant. Since xðtÞ > 0, this implies

ðt2x 00ðtÞ � 2tx 0ðtÞÞ < K � Lk

ð t

t2

s2qðsÞds:

From the last inequality, we see that the right hand side tends to �y as

t ! y: However, by Lemma 2.2 in [19], since limt!y xðtÞ ¼ L, we have
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limt!yðt2x 00ðtÞ � 2tx 0ðtÞÞ ¼ 0, which is a contradiction. Hence, L ¼ 0 and so

limt!y xðtÞ ¼ 0. This completes the proof.

From Theorem 4, we have the following Hille-Kneser type oscillation

result. It can be considered as the extension of Theorem 5.7 of Hanan [18].

Corollary 1. Let ðh1Þ and ðh4Þ hold. If

lim inf
t!y

kt2ðtÞtqðtÞ þ t2pðtÞ
ð1� t2pðtÞÞ3=2

>
2

3
ffiffiffi
3

p ; ð36Þ

then equation (E0) satisfies Property P.

Remark 5. From Corollary 1, it is clear that when pðtÞ ¼ 0 and tðtÞ ¼ t,

then condition (36) becomes

lim inf
t!y

t3qðtÞ > 2

3k
ffiffiffi
3

p ;

which is the oscillation condition of Hanan for the equation x 000ðtÞ þ qðtÞxðtÞ ¼ 0

(see [18, Theorem 5.7]).

Remark 6. Theorem 4 improves Theorem 2.2 in [36] since our results

ensure that each solution of (E0) is either oscillatory or tends to zero as t goes

to infinity, but the results in [36] ensure only that the nonoscillatory solutions

tend to Gy as t ! y. To illustrate the results in Theorem 4, we give the

following example which shows that condition (10) of Theorem 2.2 in [36]

holds, but the solution does not tend to Gy as t ! y.

Example 1. Consider the third-order linear delay di¤erential equation

x 000ðtÞ þ a

t3
x

t

2

� �
¼ 0; tb 1: ð37Þ

Here tðtÞ ¼ t=2, pðtÞ ¼ 0, and qðtÞ ¼ a=t3: We will apply Theorem 4. In this

case, we see thatðy
t0

t2ðsÞqðsÞ � 2

3
ffiffiffi
3

p
s

� �
ds ¼

ðy
1

s

2

� �2
a

s3
� 2

3
ffiffiffi
3

p
s

" #
ds

¼
ðy
1

1

36s
ð9a� 8

ffiffiffi
3

p
Þ

� �
ds

¼ ð9a� 8
ffiffiffi
3

p
Þ
ðy
1

1

36s
ds ¼ y;

provided that a > 8
ffiffi
3

p

9 . Thus (30) is satisfied. Then by Theorem 4, if xðtÞ is a
solution of (37), then xðtÞ satisfies Property P, i.e., it is either oscillatory or
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satisfies limt!y xðtÞ ¼ 0: Note that when tðtÞ ¼ t, the oscillation condition for

(37) is a > 2
3
ffiffi
3

p (see Remark 5).

Next, we give an example to show that Theorem 4 can be applied even in

the case where Theorems 1 and 3 cannot.

Example 2. Consider the third-order delay di¤erential equation

x 000ðtÞ þ a

t2
x 0ðtÞ þ b

tt2ðtÞ xðtðtÞÞ ¼ 0; tb 1; ð38Þ

where tðtÞa t is the delay function and a and b are positive constants such that

a < 1
4 . It is easy to see that Theorem 1 cannot be applied to (38). On the

other hand, to apply Theorem 3, we note that the equation (27) becomes

x 00ðtÞ þ a

t2
þmb

t2

� �
xðtÞ ¼ 0; tb 1: ð39Þ

Applying the Hille-Kneser criterion, we see that equation (39) is oscillatory if

aþmb > 1
4 for some m < 1=2: That is, aþ b

2 > aþmb > 1=4: This implies

that a su‰cient condition for the oscillation of (39) is

2aþ b > 1=2: ð40Þ

According to Theorem 4, we see that condition (30) becomes

aþ b >
2

3
ffiffiffi
3

p ð1� aÞ3=2; ð41Þ

which gives us an a‰rmative answer to Conjecture 1. By choosing a ¼ 0:06

and b ¼ 0:3; we see that the condition (40) is not satisfied. On the other hand,

we can easily verify that condition (41) is satisfied in this case since aþ b ¼
0:36 > 2

3
ffiffi
3

p ð1� aÞ3=2 ¼ 0:35079: From this we see that Theorem 4 improves

the results of Lazer [24] even for equations without delays.

Remark 7. In Lemma 3, we used the condition t2pðtÞa 1=4. This con-

dition can be removed and instead make use of the nonoscillatory properties

of the equation

y 00ðtÞ þ pðtÞyðtÞ ¼ 0 ð42Þ

to prove the results. In this case, the oscillation of equation (E0) will be close

to that of the corresponding second order equation (42) in the sense that

equation (E0) can be written in the form

y2ðtÞ 1

yðtÞ x
0ðtÞ

� �0� �0

þ yðtÞqðtÞ f ðxðtðtÞÞÞ ¼ 0; ð43Þ
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where yðtÞ is positive solution of (42). This is easy to see since

1

yðtÞ y2ðtÞ 1

yðtÞ x
0ðtÞ

� �0� �0

¼ x 000ðtÞ � y 00ðtÞ
yðtÞ x 0ðtÞ ¼ x 000ðtÞ þ pðtÞx 0ðtÞ:

Note that the condition t2pðtÞa 1=4 implies that equation (42) has a positive

nonoscillatory solution yðtÞ with y 0ðtÞ of one sign. We note also that ifðy 1

y2ðsÞ ds ¼
ðy

yðsÞds ¼ y;

then equation (43) is in canonical form and the results in [1, 26] can be applied

to obtain several oscillation results. We leave the details to the interested

reader.

Remark 8. In case f ðuÞ ¼ ug, where g > 1 is the quotient of two odd

positive integers, we can use the approach taken in the proof of Theorem 4,

to obtain (32). Now since f ðuÞ ¼ ug, inequality (34) can be written in the

form

ðtuÞ0 þ 3

2
u2 � 4u

� �0

a� 1

t
t3qðtÞ xðtðtÞÞ

xðtÞ xg�1ðtðtÞÞ þ t2pðtÞ � 2

3
ffiffiffi
3

p ð1� t2pðtÞÞ3=2
� �

:

Since x 0ðtÞ > 0 and is increasing for tbT , we have x 0ðtÞ > A for some A > 0.

Moreover, since xðTÞ > 0, we see that xðtÞb xðTÞ þ ðt� TÞA > Aðt� TÞ for

t > T . Using this and inequality (22), we obtain

ðtuÞ0 þ 3

2
u2 � 4u

� �0

a� 1

t
Ag�1tqðtÞt2ðtÞðtðtÞ � TÞg�1 þ t2pðtÞ � 2

3
ffiffiffi
3

p ð1� t2pðtÞÞ3=2
� �

:

From this remark and proceeding as in the proof of Theorem 4, we can

prove the following result.

Theorem 5. Let ðh4Þ hold and let xðtÞ be a solution of

x 000ðtÞ þ pðtÞx 0ðtÞ þ qðtÞxgðtðtÞÞ ¼ 0; ð44Þ

where g > 1 is the quotient of two odd positive integers. Ifðy
t0

Ag�1sqðsÞt2ðsÞðtðsÞ � TÞg�1 þ s2pðsÞ � 2

3
ffiffiffi
3

p
s
ð1� s2pðsÞÞ3=2

� �
ds ¼ y; ð45Þ
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for every positive constant A, then xðtÞ is either oscillatory or satisfies

lim
t!y

xðtÞ ¼ 0.

Remark 9. In Theorem 5, it is clear that the condition (45) depends on

the additional constant A. So it would be interesting to give a result similar to

this theorem without such a constant.

For equation (44), we can use the above calculations and obtain the

following extension of Theorem 1 of Waltman [37] (see condition (9) above).

Theorem 6. Assume that (h2) holds, p
0ðtÞa 0, and g > 1 is the quotient of

two odd positive integers. If

Aþ Bt�
ð t

t0

ð s

t0

t2ðvÞ
v2

� �g

qðvÞdvds < 0;

for su‰ciently large t, then any continuable solution of (E0) that has a zero is

oscillatory.

In the following, we extend some oscillation conditions of Kamenev type.

First, we introduce a class of functions <. Let

D0 ¼ fðt; sÞ : t > sb t0g and D ¼ fðt; sÞ : tb sb t0g:

The function H A CðD;RÞ is said to belong to the class < if:

( i ) Hðt; tÞ ¼ 0 for tb t0 and Hðt; sÞ > 0 for ðt; sÞ A D0;

(ii)
qHðt; sÞ

qs
is continuous on D0 and

� qHðt; sÞ
qs

¼ hðt; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðt; sÞ

p
b 0 ð46Þ

for a suitable function h.

Theorem 7. Assume that (h1), (h2), and (h4) hold and

ðy
t0

qðsÞt2ðsÞds ¼ y: ð47Þ

If there exist functions H and h satisfying (46) and a function r A C 1ð½t0;yÞ;
½0;yÞÞ such that

lim sup
t!y

1

Hðt; t0Þ

ð t

t0

Hðt; sÞ krðsÞqðsÞt
2ðsÞ

s2
� rðsÞQ2ðt; sÞ

4s

� �
ds ¼ y; ð48Þ

where Qðt; sÞ ¼ hðt; sÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðt; sÞ

p
½r 0ðsÞ � pðsÞrðsÞs�=rðsÞ, then equation (E0) sat-

isfies Property P.
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Proof. Let xðtÞ be a nonoscillatory solution of (E0) on ½t0;yÞ. Without

loss of generality, we assume that xðtÞ > 0 and xðtðtÞÞ > 0 for t > t1. It

follows from Lemma 3 that there exists t2 b t1 such that either (i) xðtÞx 0ðtÞ > 0,

x 00ðtÞ > 0, and x 000ðtÞ < 0 for tb t2, or (ii) xðtÞx 0ðtÞ < 0, x 00ðtÞ > 0, and

x 000ðtÞ < 0 for tb t2. First consider case (i) and define

oðtÞ ¼ rðtÞ x
00ðtÞ
xðtÞ : ð49Þ

Then oðtÞ > 0 and after di¤erentiation satisfies the equation

o 0ðtÞ ¼ r 0ðtÞ
rðtÞ oðtÞ � pðtÞrðtÞ x

0ðtÞ
xðtÞ � rðtÞqðtÞ f ðxðtðtÞÞÞ

xðtÞ � rðtÞ x
00ðtÞx 0ðtÞ
x2ðtÞ : ð50Þ

From (h1Þ, since f ðuÞ=u > k > 0, we see that

o 0ðtÞa r 0ðtÞ
rðtÞ oðtÞ � pðtÞrðtÞ x

0ðtÞ
xðtÞ � krðtÞqðtÞ xðtðtÞÞ

xðtÞ � rðtÞ x
00ðtÞx 0ðtÞ
x2ðtÞ : ð51Þ

As in the proof of Theorem 1, applying Lemma 1, we see that (22) holds.

From (22) and (51), we have

o 0ðtÞa r 0ðtÞ
rðtÞ oðtÞ � pðtÞrðtÞ x

0ðtÞ
xðtÞ � krðtÞqðtÞt2ðtÞ

t2
� rðtÞ x

00ðtÞx 0ðtÞ
x2ðtÞ : ð52Þ

We will now derive a relation between x 0ðtÞ and x 00ðtÞ to simplify (52). To

do this, we let UðtÞ :¼ x 0ðtÞ � tx 00ðtÞ and will show that UðtÞ > 0 eventually.

Since U 0ðtÞ ¼ �tx 000ðtÞ > 0 for t A ½T ;yÞ; we see that UðtÞ is strictly increasing

on ½T ;yÞ. We claim that there is a t1 A ½T ;yÞ such that UðtÞ > 0 on ½t1;yÞ.
Assume this is not the case, say UðtÞ < 0 on ½t1;yÞ. Then,

ðx 0ðtÞ=tÞ0 ¼ tx 00ðtÞ � x 0ðtÞ
t2

¼ �UðtÞ
t2

> 0; t A ½t1;yÞ;

which implies that x 0ðtÞ=t is strictly increasing on ½t1;yÞ. Choose t2 A
½t1;yÞ so that tðtÞb tðt2Þ for tb t2. Since x 0ðtÞ=t is strictly increasing, we

have x 0ðtðtÞÞ=tðtÞb x 0ðtðt2ÞÞ=tðt2Þ ¼: d > 0; so that x 0ðtðtÞÞb dtðtÞ for tb t2.

Since xðtÞb t
2 x

0ðtÞb t
2 x

0ðtðtÞÞ (see (21)), we have

xðtðtÞÞb dtðtÞ t
2
b

d

2
t2ðtÞ: ð53Þ

From (E0) and the fact that we are in case (i), we see that x 000ðtÞþ
qðtÞ f ðxðtðtÞÞÞ ¼ �pðtÞx 0ðtÞ < 0: By ðh1Þ and (53), we have

x 000ðtÞ þ dk

2
qðtÞt2ðtÞ < 0: ð54Þ
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Integrating both sides of (54) from t2 to t, we have

x 00ðtÞ � x 00ðt2Þ þ
dk

2

ð t

t2

qðsÞt2ðsÞds < 0:

This implies that

x 00ðt2Þ >
dk

2

ð t

t2

qðsÞt2ðsÞds;

which contradicts (47). Hence, there is a t1 A ½T ;yÞ such that UðtÞ > 0 on

½t1;yÞ. Consequently,

x 0ðtÞ
t

� �0
¼ tx 00ðtÞ � x 0ðtÞ

t2
¼ �UðtÞ

t2
< 0; t A ½t1;yÞ:

Then,

x 0ðtÞ > tx 00ðtÞ: ð55Þ

From (55) and (52), we have

o 0ðtÞ < 1

rðtÞ ½r
0ðtÞ � pðtÞrðtÞt�oðtÞ � krðtÞqðtÞt2ðtÞ

t2
� to2ðtÞ

rðtÞ : ð56Þ

Set gðsÞ ¼ ½r 0ðtÞ � pðtÞrðtÞt�=rðsÞ and WðsÞ ¼ s=rðsÞ. Then from (56), we haveð t

t1

Hðt; sÞ krðsÞqðsÞt
2ðsÞ

s2
ds

a

ð t

t1

Hðt; sÞ½�o 0ðsÞ þ gðsÞoðsÞ �WðsÞo2ðsÞ�ds

¼ �Hðt; sÞoðsÞjtt1 þ
ð t

t1

qHðt; sÞ
qs

oðsÞ þHðt; sÞ½gðsÞoðsÞ �WðsÞo2ðsÞ�
� 	

ds

¼ Hðt; t1Þoðt1Þ �
ð t

t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðt; sÞWðsÞ

p
oðsÞ þ 1

2

Qðt; sÞffiffiffiffiffiffiffiffiffiffiffi
WðsÞ

p
" #2

�Q2ðt; sÞ
4WðsÞ

8<
:

9=
;ds:

It follows thatð t

t1

Hðt; sÞ krðsÞqðsÞt
2ðsÞ

s2
ds

aHðt; t1Þoðt1Þ

�
ð t

t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðt; sÞWðsÞ

p
oðsÞ þ 1

2

Qðt; sÞffiffiffiffiffiffiffiffiffiffiffi
WðsÞ

p
" #2

�Q2ðt; sÞ
4WðsÞ

8<
:

9=
;ds; ð57Þ
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and so

1

Hðt; t1Þ

ð t

t1

Hðt; sÞ krðsÞqðsÞt
2ðsÞ

s2
�Q2ðt; sÞ

4WðsÞ

� �
dsaoðt1Þ;

which contradicts (48). If case (ii) holds, then by (47) and the second part of

the proof of Theorem 4, we can show that limt!y xðtÞ ¼ 0: This completes

the proof.

The following result provides an alternative oscillation criteria when (48)

is di‰cult to verify. The notations of Theorem 7 and its proof will be used

here.

Theorem 8. Let the hypotheses of Theorem 7 hold except for condition

(48) and assume that

0 < inf
sbt0

lim inf
t!y

Hðt; sÞ
Hðt; t0Þ

� �
ay and

lim sup
t!y

1

Hðt; t0Þ

ð t

t0

Q2ðt; sÞ
WðsÞ ds < y: ð58Þ

If there exists c A Cð½t0;yÞ;RÞ such that

lim sup
t!y

ð t

t0

c2
þðsÞWðsÞds ¼ y ð59Þ

and

lim sup
t!y

1

Hðt; t0Þ

ð t

t0

Hðt; sÞ krðsÞqðsÞt
2ðsÞ

s2
�Q2ðt; sÞ

4WðsÞ

� 	
dsb sup

tbt0

cðtÞ; ð60Þ

where cþðtÞ ¼ maxfcðtÞ; 0g, then equation (E0) satisfies property P.

Proof. As in the proof of Theorem 7, we have (57). It follows that

lim sup
t!y

1

Hðt; t1Þ

ð t

t1

Hðt; sÞ krðsÞqðsÞt
2ðsÞ

s2
�Q2ðt; sÞ

4WðsÞ

� �
ds

aoðt1Þ � lim inf
t!y

1

Hðt; t1Þ

ð t

t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðt; sÞWðsÞ

p
oðsÞ þ Qðt; sÞ

2
ffiffiffiffiffiffiffiffiffiffiffi
WðsÞ

p
" #2

ds:

From (60), we obtain

oðt1Þbcðt1Þ þ lim inf
t!y

1

Hðt; t1Þ

ð t

t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðt; sÞWðsÞ

p
oðsÞ þ Qðt; sÞ

2
ffiffiffiffiffiffiffiffiffiffiffi
WðsÞ

p
" #2

ds; ð61Þ
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and hence

0a lim inf
t!y

1

Hðt; t1Þ

ð t

t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðt; sÞWðsÞ

p
oðsÞ þ Qðt; sÞ

2
ffiffiffiffiffiffiffiffiffiffiffi
WðsÞ

p
" #2

ds

aoðt1Þ � cðt1Þ < y: ð62Þ

Define the functions a and b by

aðtÞ ¼ 1

Hðt; t1Þ

ð t

t1

Hðt; sÞWðsÞo2ðsÞds

and

bðtÞ ¼ 1

Hðt; t1Þ

ð t

t1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hðt; sÞ

p
Qðt; sÞoðsÞds:

The remainder of the proof is similar to the proof of Theorem 5.2 in [29] and

hence is omitted.

Remark 10. For the choice Hðt; sÞ ¼ ðt� sÞn and hðt; sÞ ¼ nðt� sÞðn�2Þ=2,

Theorem 8 reduces to the Kamenev-type condition. Other possible choices of

H include Hðt; sÞ ¼ ln t
s

� �n
so that hðt; sÞ ¼ n

s
ln t

s

� �n=2�1
.

Example 3. Consider the delay di¤erential equation

x 000ðtÞ þ a

t2
x 0ðtÞ þ bt3 þ g

t4

� �
xðt� 4þ 2 sin tÞ ¼ 0; tb 6; ð63Þ

where 0 < aa 1
4 , g; b > 0, f ðuÞ ¼ u, k ¼ 1, and tðtÞ ¼ t� 4þ 2 sin t. We note

that the results in and [34] and [36] cannot be applied to (63) since t 0ðtÞ ¼
1þ 2 cos t oscillates. To apply Theorem 7, first note that tðtÞb t=2 for

tb 12. Hence, ðy
12

bs3 þ g

s4

� �
s2

4
dsa

ðy
6

qðsÞt2ðsÞds;

so (47) holds. Choosing rðsÞ ¼ 1 and Hðt; sÞ ¼ 1, we have

lim sup
t!y

ð t

12

bs3 þ g

s4

� �
s2

4
� a2

4s3

� �
ds

a lim sup
t!y

1

Hðt; t0Þ

ð t

t0

Hðt; sÞ krðsÞqðsÞt
2ðsÞ

s2
� rðsÞQ2ðt; sÞ

4s

� �
ds;

so (48) holds. By Theorem 7, any solution xðtÞ of (63) is either oscillatory or

satisfies limt!y xðtÞ ¼ 0.
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