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ABSTRACT. In this paper, we are concerned with oscillation of solutions of a certain
class of third-order nonlinear delay differential equations of the form x"'(f)+
p(O)x'(¢) + q(2) f(x(z(£))) = 0. We establish some new oscillation results that extend
and improve some results in the literature in the sense that our results do not require
that /() > 0. Some examples are considered to illustrate the main results and some
conjectures and open problems are presented.

1. Introduction

In this paper, we are concerned with oscillation of solutions of the third-
order nonlinear delay differential equation

x"(1) + p(0)x'(1) + q() f (x(z(1))) =0, for 1€ [, 0), (Eo)

where p, g, and © are positive real-valued functions, 7(f) <1, ©(f) — oo as
t— oo, and uf(u) >0 for u#0. By a solution of (E;), we mean a non-
trivial real-valued function x(7) e C3[t7!(f),0) satisfying (Ep), where
t1(t) =sup{s > 0:7(s) <t} for t>Tp=min{z(¢):¢#>0}. Our attention
is restricted to those solutions of (E;) which exist on [fy,c0) and satisfy
sup{|x(#)| : > 1} > 0 for any #; > t,. We make a standing hypothesis that
(Ep) does possess such solutions. A solution of (Ej) is said to be oscillatory if
it has arbitrarily large zeros; otherwise, we say it is nonoscillatory. Equation
(Eo) is disconjugate on the interval I = [fy,c0) in case no nontrivial solution
has more than two zeros on [ counting multiplicity. Equation (Ep) is said
to be oscillatory in case there exists at least one oscillatory solution. The
challenge in the study of the asymptotic behavior of solutions of equations of
the form (Ej) or its generalizations is the determination of the signs of the
derivatives of the solution x'(¢), x"(¢), and x"(¢). In the case where p() =0,
it is known (see [1]) that there are only two cases to consider:
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(I) x(r) >0, x'(r) >0, x"(¢t) >0, or

(I) x(z) >0, x'(r) <0, x"(r) >0
for t > t; sufficiently large.

When p(f) # 0, we cannot use the technique employed in [1] to determine
the signs of x'(¢), x”(¢), and x”(¢) and some conditions need to be imposed
to determine the signs of these quantities. In fact, there are two different
approaches that have been used for this determination, one is due to Lazer
[24] and another to Heidel [19]. Lazer’s method depends on the sign of
functional

F(x(0)) = (¥'(1))* = 2x(0)x" (1) = p()*(0),

whereas Heidel’s method depends on the nonoscillatory behavior of the related
second-order equation

x"(t) + p()x(t) = 0.

Functionals of this type and its variations have been used by other authors in
the study of third-order equations; for example, see Gregus, Graef, and Gera
[13].

In the following, for completeness and comparison, we give a detailed
discussion of known oscillation results for third-order linear and nonlinear
differential equations related to (Ejp). Hanan [18] wrote an important paper
that was the starting point for many investigations into the asymptotic behavior
of solutions of third-order differential equations. He studied the oscillation
and nonoscillation of the linear equation

xX"(0) + p()x'(1) + q()x(1) =0, 1 =1, (E1)

where the coefficients satisfy:
(c1) p(1) >0 and 2q(1) — p'(z) > 0;
he proved that if x(¢) is a given solution such that

F(x(1n) = (¥'(1))* = 2x(0)x"(11) = p(01)x* (1) = 0,

then the zeros of x(¢) and x'(¢) separate each other in [t;, 00), where f, is the
first zero of x'(¢) to the right of t =¢;. As for comparison theorems, Hanan
[18] considered the equations

Lx :=x"(1) + p(6)x'(¢) + q(£)x(r) = 0, t€la,b),
Lix := x"(6) + p1(6)x'(¢) + q1 (1) x(¢) = 0, tela,b),

where p, ¢, pi1, and ¢ € Cla,b), 0 <a <b < co. He proved that if the
inequalities

(c2) p() = pi(0), q(t) = q1(1), 2q(1) > p'(¢), and 2q:(1) > py(1)
hold for all large ¢, and if Lx = 0 is nonoscillatory, then so is Lix = 0.
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A useful comparison equation for third-order linear equations is the Euler
equation

Ex = x"(f) +%x’(t) +;‘%x(l) —0, (1)

where o and f are positive constants. It is known (cf. Swanson [33]) that
Ex =0 is disconjugate on (0,00) if and only if <1 and |z + f] < 2(%)3/2.

In view of this, the following conjecture now arises.

CONJECTURE 1. Equation (1) is oscillatory if

1— o\
o<1 and |a+ﬁ|>2( 3 ) .

In Section 2, we give an affirmative answer to this conjecture (see Example 2
below).

Using the Euler differential equation as a comparison equation, Hanan
[18] proved that if

(c3) pi(¢) =0 and 2q(t) > pi(1),
and there exists a number k, 0 < k < 1, with

1 — i\32
limsup %p;(t) < k and limsup 3¢ (¢) < 2<Tk> —k,

t— o0 t— o0

then L;x = 0 is nonoscillatory.

Using a different approach, Erbe [7] showed that there are examples of
equations L;x with limsup,_ , ¢1(f) = co that are nevertheless disconjugate on
[to, 00); this follows from some integral forms of his comparison theorems.
Erbe proved that if

—(t0/V3)(t —10) < Pi(t) + Q1(1) < (1 — 1)°/(3V3)  for > 1,
and
0<®pi(t) <kvo(r) for t>1, and some 0<k<(1/2)+1/V3<1,
where
P = |
and
Poo(1) = (1 = 1/V3) + (10t = 10) /V/3) + P1 (1) + Q1 (1),

then L;x =0 is disconjugate on [¢y, c0).
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REMARK 1. As a special case, from the results of Erbe [7], we can deduce
the following results that generalize the results of Hanan [18]. If ¢(¢) has
constant sign, then the equation

x"(2) + q(0)x(1) = 0, (2)

is disconjugate on |a, ) if

t _ 2
JI (t —5)sq(s)ds < (Z3\/Z%) ,  Jor t> 1. (3)

From this remark, we can formulate the following conjecture.

CONIECTURE 2. If ¢(t) > 0, then the condition

1 ! 1
lim inf J t— ) q(s)ds > —=, or t > ty, 4
mind s | (1= > m o> )

is sufficient for the oscillation of (2).

2

REMARK 2. To prove that condition (4) is sharp, we take ¢(7) =

==
Then equation (2) becomes the third-order Euler differential equation l
x"(t) + Lx(r) =0 t>1 (5)
3313 ’ -

and condition (4) becomes

1 ! 2 1 ! 1
liminf4J t—5)s°q(s)ds = —— liminf4J t—s)ds =——.
=0 (1 —1)? ,0( )574(s) 33 = (1—1)? 1( ) 3V3
Thus, condition (4) is not satisfied, and so (5) is not oscillatory. It is known
that (5) is disconjugate and the associated characteristic equation has the
negative root ¥ — 1 and two equal positive roots given by 1+\/i§. On the

other hand, it is easy to see that the equation

1
V38

satisfies condition (4), so that it has an oscillatory solution. Note that the
roots of the characteristic equation of (6) are given by m = 1.60732 + 0.32634;
and m = —0.21463. This shows that the condition (4) is sharp and cannot be
weakened.

x/// (l) +

x(1)=0, t>1, (6)

Lazer [24] considered equation (E)) with p(f) < 0, and proved that if ¢(r)
has fixed sign and x(¢) is a nonoscillatory solution of (Ej), then there exists
t; > to such that either
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(IIT)  x(6)x'(¢) <0, or

(IV) x(0)x'(r) >0
for 1 > 1, (see Lemmas 1.3 and 2.2 in [24]). He also proved that if (III) holds,
then (—1)'x(¢)x?(¢) >0, for i=10,1,2,3, and he then established some nec-
essary and sufficient conditions for the oscillation of (E;). Lazer used the
Riccati substitution u(f) = x'(z)/x(¢) to prove that if p(r) <0, ¢(¢) > 0, and

[ [qm - %(—pm” di = 0, ()

4

then (E)) is oscillatory (see [24, Theorem 1.3]). On the other hand, in [24], he
also considered the case where

(cs) p() >0, qt) >0, 2q(t) — p'(1) = 0, and 24(r) — p'(1) £0 in any
subinterval of [fy, c0).
Lazer’s investigation in this case depends on the value of the function

F(x(0)) = ('(1))* = 2x(0)x" (1) = p(1)°(0).

He proved that if x(¢) is a nonoscillatory solution of (E;) that is eventually
nonnegative and there exists | € [tp, 00) such that F(x(z;)) >0, then there
exists #, > f; such that

x(t)>0, x'(6)>0, x"(t)>0, and Xx"(1)<0 forr>1t. (8)
Waltman [37] considered the equations
xX"(0) 4+ p(O)x'(1) + q()x7(1) =0, 1> 1, (E3)
and
X" (0) 4+ p(O)x'(1) + q(0) f(x(1) =0, 1> 1, (E4)

where p(f) >0 and ¢(¢) > 0 are continuous functions and y is the ratio of
odd positive integers. He established some oscillation results; in particular, for
equation (E3), he proved that if p’(r) <0 and

tors
A+ Bt — J J q(u)duds < 0, 9)

f0 40
for ¢ sufficiently large, where A, B are any constants, then every solution that
has a zero is oscillatory. For equation (E;), Waltman proved ([37, Theorem
2]) that every solution of (E4) having a zero is oscillatory if f(u)/u > K > 0,
Kq(t) — p'(r) >0, and

|, ka0 = 1= . (10)

0
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ReEMARK 3. We note that conditions (7) and (10) do not hold for the
Euler equation (1) with p(z) = 0. This implies that condition (4) in Conjecture
2 improves condition (7) of Lazer [24] and condition (10) of Waltman [37] in
this case.

Heidel [19] considered equation (E3) and investigated the behavior of the
nonoscillatory solutions as well as the existence of oscillatory solutions. He
considered two different cases, namely,

(es) p(t) <0 and ¢(r) <0, or

(cg) p(t) =0 and ¢(r) = 0.

Most of his results dealt with the behavior of the nonoscillatory solutions. In
the case where (c¢s) holds, Heidel generalized the results of Lazer [24] and
established some sufficient conditions that ensure nonoscillatory solutions of
(E3) satisfy either (III) or (IV). For the existence of oscillatory solutions,
Heidel proved that if y=1, -2/ <p() <0, ¢(f) <0, and for some
0<a<l,

= 0
J s*7%q(s)ds = — o0, and J s*[p'(s) — 2q(s)]ds = o,
to to
then (£3) has an oscillatory solution. For more results on (E3), we refer the
reader to the paper of Gregus et al. [16] which also improved Waltman’s result
[37].

Skerlik [31] considered equation (E;) with p(¢) and ¢(r) being positive
functions and improved Lazer’s results [24]. He proved that if /’p(r) < 1
and

| [ato) +spts) -

2
f 3/3s
then (E;) has the following property.
Property A: Equation (E)) has Property A if each solution x(t) is either
oscillatory or satisfies lim,_., x) () =0 for i =0,1,2,3.
He also showed that the equation is oscillatory if and only if it has
Property A. In the special case where p(f) = 0, equation (E;) reduces to (2) and

condition (11) becomes
« 2
S2 S) — )ds =
th0 ( q( ) 3\/§S

this is a sufficient condition for the oscillation of (2). We note here that the
results of Skerlik are sharp and cannot be weakened. One of our aims in this
paper is to extend Skerlik’s results and find similar conditions for the delay
equation (Ej).

00; (12)
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Tiryaki and Yamen [36] considered equation (E;) and studied the asymp-
totic behavior of the nonoscillatory solutions. They asked that f(u)/u > >0
and that the delay 7(¢) < ¢ satisfies 7’(#) > 0. In the case where p(z) <0 and
q(t) > 0, they extended the results of Skerlik [31] and proved that if

P ) 2 2 32| 4. _
[ (et + 5000 =5 7 (1= 2000 s = (13)
then every nonoscillatory solution of (Ej) tends to either zero or +oo as
t — o0. They also considered the case where

(e7) p(t) 20, q(t) >0, 2q(1) — p'(1) > 0, and £*p(1) < §.
In this case, they proved that every nonoscillatory solution of (Ej) tends to
either zero or +oo as ¢t — oo provided (13) holds.

In [34], Tiryaki and Atkas considered the general third-order equation

(r (0 (r2()x"(0)")" + p(0)x" (1) + q(1).f (x(z(1))) = 0, (14)

where p, ¢ are positive functions, uf(u) > 0 for u # 0, the delay 7(¢) satisfies
7'(¢) > 0, and

| =] =

To prove the main results in [34], the authors applied the Riccati technique
used in [26] and established some sufficient conditions to ensure that (14) is
either oscillatory or every nonoscillatory solution tends to zero as ¢ tends to
infinity. The proofs of the main results in [34] are based on their Lemma 2,
which is presented without proof; it is mentioned that its proof is similar to
the proof of Lemma 1 in [30]. In fact, to apply the proof of [30, Lemma 1]
which is based on the results of Lazer [24] (also see Lemma 1 in [31]) there
are some additional conditions that need to be satisfied. These conditions are
that 2¢(r) — p’(+) = 0 and

F(x(11) = (x'(01))* = 2x(0)x" (1) = p(1)x* (1) = 0, (15)

where x;(¢) is a solution of (14) with r;(¢) = r»(¢) = 1. The authors in [34] did
not present a generalization of these conditions to the equation (14), which are
important to prove that the solutions have the property

Property  Va: y(0)(n(0)y'(0) >0,  y(r()(n()y'(®) >0, and
(0 () (r (D' (1)) < 0.

This means that Lemma 2 in [34] needs a generalization of condition (15),
or to assume that the equation

(rn(H)z' (1) + ==%z(t) =0
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is nonoscillatory, in order to prove that solutions have property V,. On the
other hand, their main results are not sharp as will be clear from the following
simple example. It is known that the equation

x" (1) + = x(t) =0, t>1, (16)

is oscillatory if #>2/(3v/3). But by applying Theorem 1 in [34] shows that
(16) is oscillatory if f > 1; this is different from the oscillation condition
for (16). The natural question to ask now is: “Is it possible to find new
oscillation results for equation (Ej) without the condition 7/(¢) > 0 as required
in [36] and [34]?” One of our aims in this paper is to give an affirmative
answer to this question (see Theorem 7 and Example 3 below).

For additional oscillation results for different forms of third-order equa-
tions, we refer the reader to the works of Barrett [2, 3], Bartusek, Cecchi and
Martini [4], Cecchi and Marini [5], DZurina [6], Erbe [7], Etgen and Shih [§],
Gregus [9], Gregus Jr. [10], Gregu$ and Graef [11, 12], Gregus, Graef, and
Gera [13, 14], Gregus and Gregus Jr. [15, 17], Jones [20, 21], Saker [27], Solt&s
[32], Tiryaki and Celebi [35], and the references cited therein, as well as the new
monograph by Saker [28].

The remainder of this paper is organized as follows: First, we establish
some new oscillation criteria for the delay equation (E;), which in the special
case 7(f) =t include the results established by Hanan [18], Lazer [24], and
Waltman [37], and are different from the results of Tiryaki and Yamen [36]
and Gregus [10] in the sense that our results will depend on the delay func-
tion and do not require any information about an unknown solution to a
related equation. Our results also include those of Skerlik [31] when f(u) = u
and 7(¢) = ¢, and are different from the results of Dzurina [6] in the sense
that our results can be easily verified and do not require an additional func-
tion r(¢#) and depend on the solution of a second-order differential equation.
They also differ from the results by Tiryaki and Atkas [34] in that we do
not require 7’(z) > 0 and we give sharp conditions for the oscillation of (1) and
(16).

Secondly, we will apply the Riccati technique to establish some new
oscillation results of Kamenev-type [22]. Some examples are considered to
illustrate the main results.

2. Main results

In this section, we establish some sufficient conditions ensuring that each
solution of equation (Ep) is either oscillatory or it tends to zero as ¢ tends
to co. We will refer to this as:
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Property P: A solution is said to satisfy Property P if it is either
oscillatory or it tends to zero as t — o0. An equation is said to satisfy Property
P if each of its nontrivial solutions satisfies Property P.

We note that if x(¢) is a solution of (Ej), then X = —x is a solution of an
equation of the same form as (Ej). Thus, concerning nonoscillatory solutions
of (Ep), we can restrict our attention to only the positive ones in giving proofs.

The following lemma due to Kiguradze and Chanturia [23] will be useful
in the remainder of this paper.

LemMa 1. If the function f(t) satisfies f(f) >0, i=0,1,2,...,n, and

f0 (1) <0, then [];%2, = tnlj/r(l,(f)_ nr

To prove the main oscillation results, we need the following lemma whose
proof is similar to that of the proofs of Lemma 3.1 of Lazer [24] and Lemma
2.1 of Tiryaki and Yamen [36], and hence is omitted.

LEMMA 2. Assume that
(M) fu)/u=k>0 for u+#0,
(ha) 2kq(t) — p'(t) =0 for te[ty, ) and is not identically zero in any
subinterval of [ty, ).
Let x(t) be a nonoscillatory solution of (Ey) that is eventually positive with

F(x(n)) = (x'(1))* = 2x(01)x" (1) = p(01)x*(11) = 0, (17)
for some t) € [ty,0). Then there exists t, >t such that
x(t) >0, ,x'(1) >0, x"(t) > 0, and  x" (1) <0, (18)
for t =t

We are now ready to present our main results in this paper. Recall that
we are asking that p(¢) and ¢(¢) be positive functions.

THEOREM 1. Assume that (hy)—(h2) hold, p'(¢) <0, and let x(t) be a
solution of (Ey) satisfying (17) for some t, € [ty,0). If

T (s s —
j (kg(s) — p'(s))ds = oo, (19)

n S
and then x(t) is oscillatory.

ProOF. Let x(f) be a nonoscillatory solution of (Ep). Without loss of
generality, we may assume that there exists f; >ty such that x(¢) >0 and
x(z(#)) > 0 for ¢ > #; and that F(x(#;)) > 0. By Lemma 2, there exists #» > ¢
such that (18) holds for ¢ >1,. Integrating (Ey) from ¢, to ¢, we have
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t

x%ﬁfﬁﬁ+pwﬂﬂﬂhhw)[pbh@ﬁjq@U@ﬁwnﬁ

[5)

t

< J; p'(s)x(s)ds — J kq(s)x(z(s))ds.

15}

t X(S)
= 20
[, e - 70 5 2
By Lemma 1, we can easily deduce from (18) that
x'(1)
<- for t > 1. 21
X S ori=Eh @1)

x(z(2)) = 2 x(1). (22)

Since x'(r) > 0 for > t, and is increasing, we have x'(¢) > 4 > 0 for t > 1,
and since x(#,) > 0, we see that

SN

x(t) = x(t) + A(t — ) = = ¢, for > t3 (23)

for some #3 > f,. Since p’(¢) <0 and x(s) > x(z(s)), (20) yields
p(0)x(2) +x" (1) = J: [kq(s) — p'(s)]x(z(s))ds. (24)

Substituting (22) and (23) into (24), we obtain

p()x(t2) + x"(2) L (s)
A/2 = L S

[kq(s) = p'(s)]ds, (25)
SO

"2 ats) -
[kg(s) — p'(9)ds < oo,

13 §

which contradicts assumption (19).
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Our next theorem is for the case p’(¢) > 0.

THEOREM 2. Assume that (hy) holds, p'(t) =0,

(h3) kq(r) = p'(1) =20 for telt,x),

()

and let x(t) be a solution of (Ey) satisfying (17) for some t; € [ty, ). If

[0 (k) = ') 35 ) o = 26)

to s

then x(t) is oscillatory.

ProoF. Proceeding as in the proof of Theorem 1, we again obtain

t t

kq(s)x(z(s))ds — J p'(s)x(s)ds.

15}

p(0)x(t) +x"(t) = J

1)
From (22), (23), and condition (/43), we have

')

N

p(t)x(ty) + x" (1) > ;J

15}
The resulting contradiction to (26) completes the proof.

REMARK 4. Note that when 7(¢) = ¢, conditions (19) and (26) both become

|| stkats) - p'(51as = oc.

fo
which is the condition of Waltman (10) above. In the linear case, f(u) = u,
this condition becomes that of Hanan [18]. We note that condition (22) which
gives a relation between the solution with delay and without delay plays an
important role in the proof of the above results. So if a sharper relation can
be found, then it would be possible to obtain a better oscillation result. We
leave this as an open question for the interested reader.

In the following theorem, we extend the results of Lazer [24] (see Theorem
3.1 in [24]) to the delay equation (Ep).

THEOREM 3. Assume that (h)—(hy) hold. If for some m < 1/2, the
second-order equation

w” (1) + | p(t) + q(2) w(t) =0 (27)

kmt?(t)
t

is oscillatory, then equation (Ey) is oscillatory, i.e., the equation has an oscillatory

solution. In particular, any nontrivial solution x(t) of (Ey) with F(x(t;)) =

(xX'(11))* = 2x(11)x"(t1) — p(t1)(x(11))* = 0, for some 1, > 1o, is oscillatory.
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Proor. We follow the proof of Theorem 3.1 of Lazer [24], and suppose
that x(¢) is a nonoscillatory solution of (Ej). Without loss of generality, we
may assume that x(z) >0 and x(z(¢)) >0 for 7>t with F(x(#;)) >0 for
t1 > tp. By Lemma 2, there exists a number #, > #; such that (18) holds for
t>1t,. Hence, as in the proof of Theorem 1, applying Lemma 1, we have
x(t)/x'(t) = t/2 for t > t,. Thus, since m < 1/2, there exists #3 > f, such that

x(1)/x'(t) =mt  for t > t3. (28)
We can write equation (Ej) as the system
x'(t) = w(t) >0,
{ w'(1) = x"(¢) > 0,
w"(1) + p(O)w(1) + q(1)(f (x(z(2))) = 0.

The third equation can be written in the form

St

w0+ |20+ a0 L

From (/;), (22), and (28), we have

q(t)ymkt? (1)

> p(t) + ;

)

for ¢ > #3. Since (27) is oscillatory, by the Sturm Comparison Theorem, every
nontrivial solution of (29) defined for # > 73 is oscillatory. But this contradicts
the fact that w(z) = x’(¢) > 0, and this completes the proof of the theorem.

We need the following lemma whose proof is similar to that of the proof
of Theorem 3.6 of Heidel [19] and hence is omitted.

LemMMA 3. Assume that (h) and
(hy) p(t) =0, q(t) >0, and *p(1) < 1/4
hold. I x(t) is a nonoscillatory solution of (Ey), then there exists t| > ty such
that either (1) x(¢)x'(¢) > 0 or (i) x(£)x'(¢) <0 for t > 1.
THEOREM 4. Let (h) and (hy) hold and let x(t) be a solution of (Ey). If
L) [k‘cz(s)q(s) +sp(s) — SL\/gs(l — szp(s))3/2 ds = oo, (30)

then equation (E,) satisfies Property P.
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Proor. Let x(7) be a nonoscillatory solution of (Ey) on [fy, 00). Without
loss of generality, we may assume that x(¢) >0 and x(z(z)) >0 for 7> 1.
Since #*p(f) < 1/4, it follows from Lemma 3 that there exists #, > #; such that
either

(1) x(0)x'(r) >0, x"(¢) >0, and x" (1) <0 for t > 15, or

(i) x(5)x'(r) <0, x"(¢) >0, and x"(¢) <0 for t > t,.
First, we consider case (i) and define

u(t) := . (31)

Then u(tf) >0 and by using (Ej), we see that u(f) satisfies the second-order
Riccati equation

((lu)' + %uz - 4u>l = —% <u3 —3u? 4+ (24 Pp())u+ 3q(1) M) (32)

x(1)
Define

Ou) == u® —3u> + 2+ *p)u+ t¢(t)

Using the fact that the function Q(z) has a minimum value, we can easily see
that

S(x(x(1))) 2
0 =352 (33)

Substituting the estimate (33) into (32), we have

((tu)/ + %Lﬂ - 4u)/

<! (13(1([)M + 2p(1) — %(1 - lzp(l))m)' (34)

t

Ou) = rq(1)

When (i) holds, we see that the conditions of Kiguradze’s Lemma are satisfied
and so we can use the estimate (22). Substituting (22) into (34) and using (/;),
we have for all ¢t > 1, that

((tu)/ + %uz - 4u),

< —; (t3q(t)kfl—2(t)+ p(1) —%(1 - t2p(t))3/2) =—P(r),  (35)
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where

P(t) =kt (0)q (1) + tp(t) — —= (1 — 2p(1)) .

2z
3V/3t
Integrating (35) from #, to ¢, we have

3 t
(tu(r))’ —|—§u2(t) —4u(t) < Ky — J P(s)ds,
5]
where K, is a constant. Using the fact that the function %uz —4u has a
minimum value —8/3, we have

t
(tw) < Ky — J P(s)ds,
B
where K; = Ko+ 5. Integrating again and applying (30) shows that u(z) must
eventually become negative, which contradicts the positivity of u(z).
Next, we assume that (ii) holds and suppose that x'(z) <0 for 7> 1.
Hence, lim, ., x(¢) = L >0 exists. Let L >0. Then x(z(¢)) > x(¢) > L for
te[t,0). Since £2p(f) < 1/4, we can easily see that

(1) —3%@(1 —2p(1)*? <0 for Pp(r) < 1/4,

where
(3V3pi2)? — (2(1 — p*) V) = 4p>16 + 15p%t* + 12p8> — 4
= (4%p — 1)(*p +2)*.

Consequently, from (30) and the fact that 7(¢) <, we have

0

JOC s2q(s)ds > J 2(s)g(s)ds = .

Io to
Multiplying (Ey) by #*> and integrating from #, to ¢, we have

t
£2x"(t) = 2tx' (1) + %x(l) <K- LkJ s%q(s)ds,

153
where K is a constant. Since x(#) > 0, this implies

t
(2x"(1) = 203 (1)) < K — ij 2q(s)ds.
[5)
From the last inequality, we see that the right hand side tends to —oo as
t — oo. However, by Lemma 2.2 in [19], since lim, ., x(f) = L, we have
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lim, .. (£2x"(¢) — 2tx'(¢)) = 0, which is a contradiction. Hence, L =0 and so
lim,—, x(#) =0. This completes the proof.

From Theorem 4, we have the following Hille-Kneser type oscillation
result. It can be considered as the extension of Theorem 5.7 of Hanan [18].

CorROLLARY 1. Let (h) and (hg) hold. If

2 2
+ 2
100 (1= 2p(1))* 3V3

(36)

then equation (E,) satisfies Property P.

REMARK 5. From Corollary 1, it is clear that when p(¢) =0 and () = ¢,
then condition (36) becomes
liminf 3¢(z) > 2
100 3k\/3’
which is the oscillation condition of Hanan for the equation x"(z) + ¢(#)x(¢) =0
(see [18, Theorem 5.7]).

REMARK 6. Theorem 4 improves Theorem 2.2 in [36] since our results
ensure that each solution of (Ey) is either oscillatory or tends to zero as ¢ goes
to infinity, but the results in [36] ensure only that the nonoscillatory solutions
tend to +oo as ¢t — oo. To illustrate the results in Theorem 4, we give the
following example which shows that condition (10) of Theorem 2.2 in [36]
holds, but the solution does not tend to +oo as t — oo.

ExampLE 1. Consider the third-order linear delay differential equation

n o t

Here ©(¢) = t/2, p(t) =0, and ¢q(t) = «/t>. We will apply Theorem 4. In this
case, we see that

[ oo e [3-s3Jo

_ J:c {% (92 sﬁ)]ds

o)

1
— ds = o0,

= (9o — 8V/3) J1 36s

provided that o > %g Thus (30) is satisfied. Then by Theorem 4, if x(¢) is a
solution of (37), then x(¢) satisfies Property P, i.e., it is either oscillatory or
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satisfies lim,_,,, x(¢) = 0. Note that when z(¢) = ¢, the oscillation condition for

(37) is « >ﬁ (see Remark 5).

Next, we give an example to show that Theorem 4 can be applied even in
the case where Theorems 1 and 3 cannot.

ExamMpPLE 2. Consider the third-order delay differential equation

B

172(1)

o
X))+ ¥ (1) + s x(1(0) =0, 121, (38)
where 7(¢) < ¢ is the delay function and o and f are positive constants such that
o< }—r It is easy to see that Theorem 1 cannot be applied to (38). On the
other hand, to apply Theorem 3, we note that the equation (27) becomes

x"(t) + F + T—zﬁ] x(t) =0, t>1. (39)

2
Applying the Hille-Kneser criterion, we see that equation (39) is oscillatory if
o+ mp >1 for some m < 1/2. That is, oc+§ > o+ mp > 1/4. This implies
that a sufficient condition for the oscillation of (39) is

2u+f>1/2. (40)

According to Theorem 4, we see that condition (30) becomes

2 32

o+ pf>——(1—0a)"" 41
B>y 0= (41)
which gives us an affirmative answer to Conjecture 1. By choosing o = 0.06
and f = 0.3, we see that the condition (40) is not satisfied. On the other hand,
we can easily verify that condition (41) is satisfied in this case since o+ f =
0.36 > 3%[3(1 - cx)3/2 =0.35079. From this we see that Theorem 4 improves

the results of Lazer [24] even for equations without delays.
REMARK 7. In Lemma 3, we used the condition #*p(¢) < 1/4. This con-
dition can be removed and instead make use of the nonoscillatory properties

of the equation

y'(0) + p(0)y(t) =0 (42)

to prove the results. In this case, the oscillation of equation (Ej) will be close
to that of the corresponding second order equation (42) in the sense that
equation (Ejp) can be written in the form
1 N
(0 (557 0) ) + s0asesteon =o @3)
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where y(z) is positive solution of (42). This is easy to see since

y(t) y(t) y(1)

Note that the condition #*p(f) < 1/4 implies that equation (42) has a positive
nonoscillatory solution y(z) with p’(¢) of one sign. We note also that if

then equation (43) is in canonical form and the results in [1, 26] can be applied
to obtain several oscillation results. We leave the details to the interested
reader.

S (70 (fo@)’)/ = ()~ 2D 0y = () + p(0) ()

ReEMaARk 8. In case f(u) =wu’, where y > 1 is the quotient of two odd
positive integers, we can use the approach taken in the proof of Theorem 4,
to obtain (32). Now since f(u) =u’, inequality (34) can be written in the
form

<1 <z3c1(z) XE:((;))) X7 2(1) + () — % (I— lzp(l))m) :

Since x'(¢) > 0 and is increasing for ¢ > T, we have x'(f) > A for some 4 > 0.
Moreover, since x(7T') > 0, we see that x(¢#) > x(T)+ (t—T)4 > A(t—T) for
t > T. Using this and inequality (22), we obtain

((zu)’ + %uz - 4u>l

< (mlm(z)rzu)(r(z) = 1)+ Ppl) - %(1 = ep(n)” )

From this remark and proceeding as in the proof of Theorem 4, we can
prove the following result.

THEOREM 5. Let (hs) hold and let x(t) be a solution of

x"(2) + p()x'(1) + q(1)x"(z(1)) = 0, (44)

where y > 1 is the quotient of two odd positive integers. If

r [Ay‘lsqu)#(s)(r(s) — 1) 4 Pp(s) — e (1= 5%p()) P |ds = 0, (45)

to

2
3v/3s
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for every positive constant A, then x(t) is either oscillatory or satisfies
lim x(z) = 0.

t— 00

REMARK 9. In Theorem 5, it is clear that the condition (45) depends on
the additional constant 4. So it would be interesting to give a result similar to
this theorem without such a constant.

For equation (44), we can use the above calculations and obtain the
following extension of Theorem 1 of Waltman [37] (see condition (9) above).

THEOREM 6. Assume that (hy) holds, p'(t) <0, and y > 1 is the quotient of
two odd positive integers. If

A+ Bt — J[ JS (Tz(v)>yq(v)dvds <0,

2
fo J 1y v

for sufficiently large t, then any continuable solution of (Ey) that has a zero is
oscillatory.

In the following, we extend some oscillation conditions of Kamenev type.
First, we introduce a class of functions . Let

Dy ={(t,s): t>s>1} and D={(t,5):1>5>1,}.

The function H € C(D,R) is said to belong to the class R if:
(i) H(t,t)=0 for t>1ty, and H(t,s) >0 for (z,s) € Dy;

.. 0H(t,s) - .
(i) © a(s Y is continuous on Dy and

_0H(1s) = h(t,s)\/H(t,s) > 0 (46)

S

[}

for a suitable function /.

THEOREM 7. Assume that (h), (h), and (hs) hold and

Jw q(s)t*(s)ds = . (47)

14
If there exist functions H and h satisfying (46) and a function p e C'([ty, ),
[0,00)) such that

lim su
t— o0 P H(t7 [0)

where Q(t,s) = h(t,s) — /H(t,s)[p'(s) — p(s)p(s)s]/p(s), then equation (Ey) sat-
isfies Property P.

! J’ H(Ls)kp(S)CJg(ZS)TZ(S)_p(S)(:?;(t»S) ds— oo (48)

to
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Proor. Let x(7) be a nonoscillatory solution of (Ey) on [fy, 00). Without
loss of generality, we assume that x(7) >0 and x(t(z)) >0 for r>¢. It
follows from Lemma 3 that there exists 7, > #; such that either (i) x(7)x'(¢) > 0,

x"(t) >0, and x"(f) <0 for t>1n, or (i) x(f)x'(f) <0, x"(f) >0, and
x"(t) <0 for t > 1. First consider case (i) and define

(1) = p(1) 3;"((;)) : (49)
Then w(f) >0 and after differentiation satisfies the equation
iy PO xX'(1) Sx(z(@) L X"(OX(0)
/()= S olo) = p(0p(0) ) = pa()) T = o) L (50)
From (h), since f(u)/u >k >0, we see that
: p'(1) x'(1) x(z(1)) x"(0)x"(1)
@ (t) = /)(t) w(t> _p<t>p(l) X(I) - kp(l)q(l) x(t) _p(l) Xz(l) : (51)

As in the proof of Theorem 1, applying Lemma 1, we see that (22) holds.
From (22) and (51), we have

o)~ p(0p(n 1 FPOIOTL ) XX 5p)

'(1) < 2(0)

We will now derive a relation between x’(¢) and x”(¢) to simplify (52). To
do this, we let U(z) := x'(¢) — tx"(¢) and will show that U(¢) > 0 eventually.
Since U'(t) = —tx"(¢t) > 0 for t € [T, o0), we see that U(¢) is strictly increasing
n [T,00). We claim that there is a ¢; € [T, o0) such that U(z) > 0 on [, o).
Assume this is not the case, say U(f) <0 on [f;,o0). Then,

X (0)/1) = tx//(t)tz— x'(f) _ Ut(zl) -0, tel, ),

which implies that x'(z)/¢ is strictly increasing on [f;,00). Choose # €
[t1,0) so that 7(¢) > 7(z;) for ¢ > t,. Since x'(¢)/t is strictly increasing, we
have x’(r(l))/f( ) > X'(z(tr))/7(t2) =: d > 0, so that x'(z(¢)) > dz(¢) for t > t,.
Since x(f) > 5x'(1) > £x'(z(1)) (see (21)), we have

x(2(1)) = dx(1) (53)

N~
\%
S]]
ﬂ
—
N

From (E;) and the fact that we are in case (i), we see that x"'(¢)+
q(0) f(x(z(2))) = —p()x'(t) < 0. By (hy) and (53), we have

x" (1) + %q(r)rz(t) <0. (54)
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Integrating both sides of (54) from #, to ¢, we have
x"(t) = x"(t) + %Jl q(s)7%(s)ds < 0.
6
This implies that
(i) > 5[ g,
n

which contradicts (47). Hence, there is a 7, € [T, o) such that U(¢) >0 on
[t1,0). Consequently,
(x’(l))' (1) = X' (1) U(?)

)= " =- <0, telt, o).

Then,

x'(t) > tx" (). (55)
From (55) and (52), we have

/ / kp(t)q(t)t(t)  tw*(?)
00 < s 19'0) = ploployiot) - LI 10,

Set y(s) = [p'(t) — p(t)p()t]/p(s) and W (s) = s/p(s). Then from (56), we have

kp(s)a(s)7(s)

52

2),
1
0 (56)

J: H(t,s)

< [ HO906) 4 1606) - W)

— _H( 500, + j {“’ 55) o (s) + Ht,8)[p(s)eols) — W(s)wz(S)]}ds

1 0s
t P 2 ) s
H(r,rmw(n)LH ()W (Sols) +5 Q(V;(z)] ¢ vg@)}d&

It follows that

k 72
p(S)qS(ZS) () 4

L[] H(t,s)

< H(l, tl)a)(tl)
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and so

L kp(s)q(s)e>(s)  Q*(t,5)
WJ (H(t,s) 2 - 4W(S)>ds§w(zl)7

which contradicts (48). If case (ii) holds, then by (47) and the second part of
the proof of Theorem 4, we can show that lim, ., x(¢f) =0. This completes
the proof.

141

The following result provides an alternative oscillation criteria when (48)
is difficult to verify. The notations of Theorem 7 and its proof will be used
here.

THEOREM 8. Let the hypotheses of Theorem 7 hold except for condition
(48) and assume that

0 < inf {nminf A, S)} <o and

s>ty | 1—oo H(Z, lo)
t 2
, Q°(1,9)
lim su ds < 0. 58
ron? H(1, 1) L) W (s) 9
If there exists € C([tp, 0),R) such that
t
lim supJ Wl (s)W(s)ds = oo (59)
t— 00 fo
and
. L kp(s)q(s)z>(s)  Q*(t,s)
i g ) L0 P i e wp v

where Y (t) = max{y(?),0}, then equation (E,) satisfies property P.

PrOOF. As in the proof of Theorem 7, we have (57). It follows that

! $)q(s)72(s 2(t,s
[ [y et _geay,,

1
limsup ————
H(Bp H(t, 1)

31

t 2
< () — lim inf ﬁﬁ l H(t,s) W(s)w(s)+4Q(;;/s) )1 ds.

From (60), we obtain

. 2
o(ty) = y(h) + li?_l,ia?f ﬁj{ [ H(t,s)W(s)w(s) +2\Q/(;M’/%1 ds, (61)
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and hence

. 1 !
0 < liminf H(ltl),[ [ H(t,s)W(s)o(s) + ——=

t— 00

o(t) —yY(t) < . (62)
Define the functions « and S by

and

plt) = H(tt1 J VH(t,$)Q(t,s)w
The remainder of the proof is similar to the proof of Theorem 5.2 in [29] and
hence is omitted.

REMARK 10. For the choice H(z,s) = (1 —s)" and h(z,s) = n(t — s)"~ 2/,
Theorem 8 reduces to the Kamenev-type condition. Other possible choices of
H include H(t,s) =(In%)" so that /(z,5) =2 (In f)”/zfl_

ExamMpPLE 3. Consider the delay differential equation

x"(t) + = x()+(ﬁt3+tl4>x(t—4+23int)—0, t>0, (63)

where 0 <a < 1, 9,8>0, f(u) =u, k=1,and 7(1) =t — 4+ 2sin7. We note
that the results in and [34] and [36] cannot be applied to (63) since /() =
1 +2cost oscillates. To apply Theorem 7, first note that z(¢) >1¢/2 for

t > 12. Hence,
JOC Bs® + s i ds < JOC (s)7%(s)ds
12 st)4 7 e 1 ’

o (47) holds. Choosing p(s) =1 and H(t,s) =1, we have

t 2 2
i AT
] [0 2)5 -4

[ e W) P90 (19)]

< limsup s
< 5 )
s 4s

1
— 00 FI(Z‘7 t() to

0 (48) holds. By Theorem 7, any solution x(#) of (63) is either oscillatory or
satisfies lim,_, ., x(¢) = 0.
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