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ABSTRACT. We consider nonnegative solutions of the initial-boundary value problems
in cone domains for the reaction-diffusion systems with inhomogeneous terms dependent
on space-time coordinates. In this paper we show the condition for the existence of
global solutions. Our conditions for the global existence are optimal in view of our
nonexistence results in 2009.

1. Introduction

We consider nonnegative solutions of the initial-boundary value problem
for the reaction-diffusion systems of the form

=Adu+ Ki(x,t)v"", xeD,t>0,
=Av+ Ky (x,)uP?, xeD,t>0,
u(x t)=v(x,t)=0, xedD,t>0, (1)
u(x,0) =up(x) =0, xeD,
>0,

v(x,0) = vo(x) xe D,

where pj,ps > 1 with p;p, > 1. The domain D is a cone in RY such as
D={xeR";x#0 and x/|x| e Q}, (2)

where Q is some region on SV~! satisfying Q # SV~! with C*-boundary Q.
The initial data uo(x) and vo(x) are bounded and continuous in D, and
up(x) =vo(x) =0 on éD. The inhomogeneous terms K; (i=1,2) are non-
negative continuous functions in D x (0, c0).
For a given initial value (ug,vo), let 7" = T*(up,v0) be the maximal
existence time of the solution of (1). If T* = oo, the solution is global in time.
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On the other hand, if 7* < oo, then the solution is not global in time in the
sense that it blows up at t= T,

tim sup (-, )] + limsup [v(-, )], = oo, (3)
t—T* t—T*
where | -||,, denotes the L*-norm with respect to space variable.

Before stating our main results, we recall a history of the studies on the
global existence and nonexistence of solutions to the system (1). The initial
value problems of the form

{utAquK(x,t)uP, xeRY >0,
u(x,0) = up(x) =0, xeRY

)

were studied by many researchers. First, in the case K(x,¢) =1, the initial
value problems (4) were studied by Fujita [4]. Fujita proved that when
p>1+4+2/N the solution of (4) is global in time if |jug]|,, is small enough
and uo(x) has an exponential decay. On the other hand, he also proved that
if l<p<1+2/N, then the solution of (4) is not global in time for any
up#0. In the case p=1+42/N, the global nonexistence was proved by
Hayakawa [9], Kobayashi-Sirao-Tanaka [13] and Weissler [32]. Lee-Ni [16]
proved that when p > 1+2/N and

2
lim sup |x|“uo(x) < 0 with a > FE
|x|— 00
the solution of (4) is global in time if ||{- >“uo|,, is small enough, where
(x> =(1+|x[*)"2. On the other hand, they showed that if

liminf |x|“ug(x) >0  with a < 2
|x|—00 p— 1

or if |lug||,, is large enough, then the solution of (4) is not global in time.
In the case K(x,t) ~|x|® as |x] — oo with ¢ € R, Suzuki [27] proved that if
1 <p<1+(2+0)/N, then all nontrivial solutions of (4) do not exist globally
in time, and that if p > 14 (24 0¢)/N and |ug| is sufficiently small, then a
global solution of (4) exists (see also [1], [18] and [23]). In the case K(x,t) =
t1|x|” with ¢ >0, ¢ >0, Qi [25] proved that if 1< p <1+ (2+0+29)/N,
then there exists no nontrivial global solution of (4), and that if p > 1+
(240 +2q)/N and uy(x) is sufficiently small, then there exists a positive global
solution of (4).

Some researchers also studied the initial-boundary problem of the form

u,=Adu+ K(x,t)yu?, xeD,t>0,
u(x,t) =0, xedD, t>0, (5)
u(x,0) =up(x) >0, xeD,
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with cone domain D defined by (2). In the case K(x,7) =1, Levine-Meier
(18] obtained that if 1 < p <14 2/(N + y,), then (5) has no nontrivial global
solution, where

V-2 + N e

Here, w; > 0 denote the first eigenvalue of —Ag, where Ay denote the Laplace-
Beltrami operator with homogeneous Dirichlet boundary condition in 2. On
the other hand, they also obtained that if p > 1+2/(N + y,), then nontrivial
global solutions of (5) exist. For the case p=1+2/(N +y,), Levine-Meier
[19] proved that the problem (5) possesses no nontrivial global solution. In
the case K(x,¢) = |x|” with ¢ > 0, Levine-Meier [18] obtained that if 1 < p <
1+ (2+0)/(N +7y,), then no nontrivial global solution of (5) exists, and that
if p>1+(2+0)/(N+7y,), then there are nontrivial global solutions of (5).
In the case p=1+(2+0)/(N +y,), Hamada [7] proved that if uo # 0 and
0<o<2(N-2)/(y,+2) for N >3, there is no global solution. For p >
1+ (2+0)/(N+7y,), Hamada [82] showed that if

X

and small m > 0,

up(x) < mlx)~Y, ( ) with a > 2to

| x]

where ¥, (x/|x|) denote the eigenfunction corresponding to w;, then there exists
the unique nontrivial global solution of (5), and that if

X

and arbitrary M > 0

uo(x) = MY, ( ) witha < 217

Jx] p—1
or

X

uo(x) = MO, ( > with a = 2

7 and large M > 0,
|x] 1

then the solution of (5) is not global when 0 <o < (p — 1)(N —2) for N > 2.
In the case K(x,?) ~ t? with ¢ > —1 as t — oo, Levine-Meier [19] asserted that
if p<1+(2+42q9)/(N+y,), there exists no global solution of (5).

The initial value problems for a weakly coupled system

u, = Au+ K (x, t)vP, xeRY >0,
vy = Av+ K> (x,)u”, xeRY >0,
xeRY,
, xeRY
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were studied by many researchers. In the case Kj(x,7) =1 (i = 1,2), Escobedo-
Herrero [3] and Mochizuki [20] proved that if

max{2 + 2p1,2 + 2p»} -

N,
pip2—1
242
liminf |x["up(x) > 0 with @ < ——PL
[x|—00 pP1p2 — 1
L . 242
liminf |x|“vp(x) >0  witha, < ﬂ,
x| pipa—1

uo(x) > M exp(—vo|x|?) for some vy > 0 and large M >0
or
vo(x) = M exp(—vo|x|?) for some vy > 0 and large M > 0,

then the nontrivial solution of (7) is not global in time, and that if

max{2 + 2p1,2 + 2p,} -

N,
pip2—1

: a . 2+2
lim sup |x|“ uo(x) < o0 with a; > ﬁ,
Ix]— o0 pipr —1
. a . 2+2
lim sup |x|“vo(x) < o0 with ay > bk

[x]— o0 Pip2 — 1

and
1<+ > uoll, + 1<+ >“voll, is small enough,

then the solution of (7) is global in time (see also [3]). In the case Kj(x, ) = t¥
(i=1,2), Uda [28] showed that if

max{2 +2q; + (24 2¢2)p1,2 + 2g2 + (2 + 2q1) p2} -
pip2—1 -

N,

then all nontrivial solutions of (7) are nonglobal, and that if

max{2+2q; + (2+2¢2)p1,2 + 29, + 2+ 2q1)

p2}<N
pip2 — 1 ’

then there are global nontrivial solutions in (7) with suitable initial data. In
the case K;(x,7) =|x|” with 0 <g; < N(p;—1) (i =1,2), Mochizuki-Huang
[21] proved that if
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max{2+01 + (2+02)p1,2+0'2 + (2+01)p2} <

N,
pip2—1
liminf |x|“ug(x) > 0 with a; < +o1+2+0)p ’
|x[—o00 PP — 1
lim inf |x|?vp(x) > 0 with ar < +o2+( +01)p2’
i pipr—1

uo(x) > M exp(—vo|x|?) for some vy > 0 and large M >0
or

vo(x) = M exp(—vo|x|?) for some vy >0 and large M >0,
then the nontrivial solution of (7) is not global in time, and that if

max{2+o; +2+a)p1,2+ 0+ 2+0a)
pip2—1

P}y

i . 2 2
lim sup |x|“ ug(x) < o0 with a; > +01+ (2+a2)p
|x|— 00 pips— 1

)

. . 2 2
limsup |x|“vo(x) < o0 with a, > +or+ 2+ 0)p
Jx|— o0 pip2—1

and
1<% uoll, + |I< - >®vol|,, is small enough,

then the solution of (7) is global in time. Thereafter, Igarashi-Umeda [10]
extended the results to the case Kj(x,7) (i=1,2) satisfying

Ki(x,1) < Cyl{x)7(t+ )", (8)
and
Ki(x,t) = Cr|x|" ¢4 9)
for some Cy,Cy; >0, and a;,¢4; > 0. In this case, we obtained that if

max{2 + a1 +2¢1 + 2+ 02+ 2¢2)p1,2 + 02 + 292 + (2 + 01 + 2q1) p2 } -
ppr—1 -

N,

Y

I . 2 2 2 2
liminf |x|“up(x) >0  witha < To1 421+ 2+ 0 +2¢)p
=0 pip2—1

240422+ (2+ 01 +2q1) p2
pip2—1

)

lfr? inf |x|“vo(x) >0  with a, <
X|— 00

uo(x) > M exp(—vo|x|?) for some vy > 0 and large M >0
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or

vo(x) > M exp(—vo|x|?) for some vy > 0 and large M > 0,

then the nontrivial solution of (7) is not global in time, and that if

max{2+ o1 +2q1 + 2+ o2+ 2¢2)p1,2 + 02 + 2q2 + (2 + 01 + 2q1) p2} N
pip2—1 '
. . 2 2 2 2
lim sup |x|“uo(x) < oo with a; > + 014291+ (2+ 02+ 292) p ?
Jx| o0 pip2—1
2 2 2 2
lim sup |x|“vg(x) < o0 with a; > +024+2¢:+ (2401 4+ 2q1)p>
x| — o0 pip2 —1

and
1< DM uoll,, + |I< - >®voll,, is small enough,
then the solution of (7) is global in time.
When D is a cone, that is (1), in the case Kj(x,7) =1 (i = 1,2), Levine [17]
proved that if
max{2 + 2p1,2 + 2p»}
pip2—1

>N+y,,

then (1) has no nontrivial global solutions, and that if

max{2 + 2p1,2 + 2p»}
pp2—1

<N+yy,

then (1) has both global nontrivial solutions as well as solutions which blow
up in a finite time. Thereafter, in the case K;(x,¢) =% (i=1,2), Uda [28]
claimed that if

max{2 +2q; + (2 +2¢2)p1,2 4+ 2¢2 + 2+ 2q1) p2}
pipr—1

>N+y,,

then all nontrivial solutions of (7) are global, and that if

max{2 +2¢q; + (2+2¢2)p1,2+ 292 + (2 + 2q1) p2}
pipr—1

<N+V+7

then there are global nontrivial solutions in (1) with suitable initial data. We
shall extend the results to the case Kj(x,#) (i=1,2) satisfying (8) and (9).
Before introducing theorems, we define the constant

2+0i+2q)+ 2+0 +2q)pi

o = iy 1 (1)) =(1,2),(2,1)).  (10)
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For a > 0, we also define the following function space:

Hoar = {5 e C(D) : é(x) = M{xd ™Y, (i> for x e D}. (11)

[x]
Our result of the global nonexistence for (1) treated in [11] is stated as follows.

THEOREM 0 (Theorem 2 of [11]). Assume that K;(x,t) (i = 1,2) satisfy (9).
Suppose that one of the following two conditions holds;

(i) max{oj, o} >N+7y,,

(i) wo € Hy m for ay <oy or vy € Hy, y for ar < oy with some M >0,
where H, p, y, and o; (i=1,2) are defined in (11), (6) and (10) respectively.
Then there exists no nontrivial nonnegative global solution of (1), that is T* < co.

For a > 0, we define the following function space:

HE _{éeC(ﬁ):é(x) gm(x)“zﬁl(x) for xeD}. (12)

x|

On the other hand, the main result of this paper is the following global
existence theorem.

THEOREM 1. Assume that Ki(x,t) (i=1,2) satisfy (8). Suppose that
max{oi, 0} < N+y,, and that

(uo,v0) € H' x H? for ay > oy, ay > ap with small m > 0, (13)
where HS, v, and o; (i =1,2) are defined by (12), (6) and (10) respectively.
Then the solution (u,v) of (1) is global in time, that is T* = co. Moreover,
there exists a positive constant C such that

u(x,t) < Ca(x,t+1) and  v(x,1) < Co(x,t+ 1) in D x (0, c0),

where u(x,t) and ©(x,t) are the solutions of the problems

i, = Au, xeD,t>0,
u(x,0) = <)y (x/|x]), xeD, (14)
a(x,t) =0, xedD, 1> 0,
and
vy = A0, xeD,t>0,
0(x,0) = x>~y (x/]x]), xeD, (15)

o(x,1) =0, xedD,t>0.
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Theorems 0 and 1 may be summarized in the following table.

max{oy, 0} > N+7y, | max{oy, 0} < N+7y,

ap <oy or a, < o NG NG

a; > o and ay > oy NG G

NG: There exists no global nontrivial solution in time.
G: There exists a global nontrivial solution in time.

REMARK 1. Let D =RY, then the above table holds with vy, =0.
(Q=S"" and w; =0.)

The rest of the paper is organized as follows. Some preliminary lemmata
are given in Section 2. In Section 5 we prove Lemma 2.2 in Section 2 of
this paper. Theorem 1 is proved in Section 3. In Section 4 we confirm the
form of the Green function for the heat equation in the cone domain with the
Dirichlet condition. According to the change of variables (16), we express
function as follow: ({(x,y, 1) ={(r,0,p,0,1), ((x,1)={(r,0,1) or {y(x)=
CO(”? '9)

2. Preliminaries

In this section we prepare some lemmata for proving Theorem 1.

Let 4g denote the Laplace-Beltrami operator with homogeneous Dirichlet
boundary condition in Q. Let v, (0) (0 = x/|x|) denote the n-th eigenfunction
of —Ag with Dirichlet problem in Q satisfying [[i,[|;2o) > 0, where [|]|;2) =
\/J"Q 52(¢)d¢. Let w, > 0 denote the eigenvalue corresponding to ¥,. The
sequence {V, /¥, |l 120 }o=s 15 @ complete orthonormal sequence (see [2, p. 53,
Chapter III, Theorem 18]).

We introduce the Green’s function G(x, y,t) = G(r,0,p, ¢, t) for the linear
heat equation in the cone D, where

X Y
r=|x|, p =1yl 0=— and $p=-—eQ. (16)
[x] |y

The heat kernel is explicitly given by

-(N-2)/2 24,2\ ©
600,98, =" exp(~2 L) St (20w (17
n=1

where

vy = [(N = 2)2/4 + w,) "2, (18)
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= 1/||¢n||§2(9> and I, is the modified Bessel function:

Z L @* (z/2)"/T(v+1), as z— 0" (19)
Krv+k+1) e’/ 2nz, as z — +o0

with the Gamma function I'(z) = [, s*'e * ds (see [19] and for detail Sec-
tion 4).

REMARK 2. The constant y, is the positive root of y(y +N —2) = w; by
(6) and satisfies y, =vi — (N —2)/2 by (18).

2 2
EXAMPLE |. When N =2 or dg = % and Q = (0,a) (a > 0), w; = (g)

namely y, = g, while W, (0) = A sin gb’ for any constant A(# 0).

EXAMPLE 2. When D=R" ' xR,, 0, =N —1 namely y_ = 1.

An operator e’/ is defined by

() = jD Glx, y, E(y)dy = jw jg G(r.0.p. 4.0 (0. $)p" " dpdp. (20)

0

Here, letting w(x, ) = e&(x), w(x,?) is the solution of the initial-boundary
value problem

w, = Aw, xeD, t>0,
{ W(X, 0) = f(X), xeD,
w(x, 1) =0, xedD, t>0.

The solutions of (1) satisfy the following integral equations:

t

u(x, t) = eug(x) + J e (K (x, 5)0P1 (x, 5))ds,
0

v(x, 1) = evy(x) + Jr e (Ky (x, s)uP>(x, 5) )ds.
0

We define for a >0

) = e (o () = | Gt 10w ()
)7, I

N JOC Jg G(r,0,p,4, 1+ 1)(1 +P2)7a/2‘ﬁ1 (¢)PN_1 dodp, 1)

0
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where the heat kernel G(r, 0, p, $,t) and the operator ¢4 are defined by (17) and
(20), respectively.
Lemma 2.1. Let n, be defined in (21) with a>0. Then we have in
D x (0, 00),
>C 7+ t 1 (aty,)/2 -
Mo (X, 1) min{|x|" (1 + 1)~ 1Ty |x|

Proor. From (19), we may estimate

Cz’ 0<z<1
I(z) = ’ - 22
() { Cz V2%, z>1 (22)

with some constant C > 0. By (17) and (20) we see that

o0

na(X, 1) = J

0

w —~(N-2)/2 2., 2
S s (e P
_CIleHb(Q) o 206+ 1) exp 4(t+1)) "\ 2(t+ 1)

x (1+ ") (0)pN " dp.

Note that ¢; = 1/Hzﬁ1||i2(g). By (22) we obtain

jg G(r,0.p. .1+ 1)(1+p>) "y (9)p" " depdp

ﬂa(xv t) = LG)V_H
{2+ 1D}"
2(1+1)/r 2,2
—(N=2)/2 N/24wi (] 4 2y =a/2 ARV 23
XL p (I+p7) eXp< a1 (23)
and
0 (x, 1) Gy (0)
2(t+1)

2
% —(N— 1/2 (N=1)/2(] 4 p2)=a/2 ox _(ﬂ—r) do. 24
LM (1+p7) Pl=agrny)% (24)

If r/v/t+1<1, from (23), by putting s = p/+/t+ 1, then we obtain
2
r

s D)

s> con -

2Vt 1/r S2 )
X J sN/F exp(—z>{1 + 521+ 1)} ds
0



Existence of global solutions in time 277

}’2 .
I S —(a+y,)/2
ZCexp( 4(t+1))r (t+1) v, (0)

2V r
g

2
s/ exp( SZ) (1+ %)~ ds
0

> Cre(r+ 1)@y 0)  for t>0 and r/Vi+1<1. (25)

On the other hand, if r/v/¢t+1 > 1, from (24), by putting s = (p —r)/Vt+ 1,
we have

r

(N-1)/2
*© t+1
5.0 = o) | (M5 +1)
max{2vt+1/r—r/v/1+1,0}

2
x {1+ (sVit1+r)212 exp(%)ds

w (S T N 1)(N—1)/2

r

> C(1+ 1)y, (G)J
max{2v1+1/r—r/\1+1,0}

2 —a/2 2
xal+({s+ d exp ) as
Vir 1 i)™

Letting & =r/v/t+ 1, then we get

ran, (x, 1) > Ciy ()¢ r (1 + f)w_l)/z{l + &+ exp<— %) ds

max{2/¢é—¢,0} ¢

=cno| (1 *%)UV_WZ“ ¥ (éiﬂ 97y ()

> Cy,(0) for t>0 and &=r/vVi+1> 1. (26)
Summarizing (25) and (26), we obtain the inequality in the lemma. O

LemMA 2.2, Let n, be defined in (21) with a > 0. Assume —y, <k <
min{a, N +y,}. Then

(X N, (x, 1) < Ce 4 DNy, (/v

Jor any (x,t) € D x (0,00), any ¢ >0 and some positive constant C = C(¢) =
C(e,o,a,N,y.).

ProoF. See Section 5 of this paper. O
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LemmA 2.3. Let #, be defined in (21) with a > 0. Assume p>1, ¢ >0,
q=0 and b >0 and

pmin{a,N+7y,} —b>2+0+2q. (27)
Then there exists a positive constant C such that
(1 D)) f (v, 1) < C(r 1)l 2rbmmmte Ve oedlZy, o 1), (28)

Jor any (x,t) e D x (0,00), any ¢ >0 and some positive constant C = C(¢) =
C(gvavbvpqu Janer)'

Proor. By Lemma 2.1, we obtain

(14 D)1 (x, 1) = (14 1)1 R, )y (x, )y x, 1)
< Clt+ 1) (x,1)

_ ) _ X
xmax{[x| 7 (1 + )72 1Py (H) (%, )

From Lemma 2.2 we have
(417G g ) < Cla 1o 200 mmte sy et (1)

for any ¢ > 0. If p > 1, then tpf’fl(x/|x|) is bounded. Hence, we obtain (28).
O

3. Existence of a global solution

In this section we treat the existence of global in time solutions of (1).
Here, we take the same strategy as in [21] and [30].

Since max{oj, 00} < N+y,, ai >o; and a > o, hold, there exist
a; € (u,a;] (i=1,2) such that

Di min{[lj,N+})+}*di>2+0i+2q:' ((17]): (172)7(271)) (29)

m —

generality, where H,, are defined in (12).
We define the Banach space X as

Since H% < H% (i=1,2), we may let a=a (i=1,2) without loss of

X ={v=0:lv/n,l, <},
where #, is defined in (21) with ¢ > 0 and

[wil, = sup  |w(x,1)].
(x,2)eDx (0, 00)
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We consider the associated integral system

u(x, 1) = eug(x) + Jte(tA')A(Kl (x, )vP" (x, 5))ds, (30)
0

v(x, 1) = e"vy(x) + J[ e (Ky(x, 8)uP? (x, s))ds (31)
0

with e’ defined in (20). Substituting (30) into (31), we have
v(x, 1) = V(ug, vo, ) (32)
with

t

V (1o, vo, v) = vy (x) + J el
0

S

X {Kz(x, s){e“'uo(x) + J

P2
UKy (x, 7)o" (x, r))dr} } ds.
0

If V is a strict contraction, then its fixed point yields a solution of (1). More-
over, by the fact (a+b)” <27~!(a? +b?) for a >0, b>0 and p>1, we
obtain

V (uo, vo,v) < T'(uo,v0) + I'(v), (33)

where

t
T (ug, vo) = v (x) + 27271 J LK (x, 5) (e*ug (x))P* Vs,
0

A

o e

P2
eBTA(K (x, ) 0P (x, r))dr} ] ds.
0

LemMmA 3.1. Assume the same hypotheses as in Lemma 2.3. Then there
exists a constant C > 0 such that

Jt(s + l)qe(’”)"«x}”ﬂg(x, $))ds < Cnp(x, 1) (34)
0
for any (x,t) e D x (0, 00).

ProOOF. Put

Sipmin{a,N—Hq}—b—Z—a—Zq
= 5 .

Then from (27) there exists ¢ > 0 such that

o+2¢+b—pmin{fa, N+y }+e=p<-2. (35)
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From Lemma 2.3, we have
t t
J (s 4 1)9e94((x) 0P (x, 5))ds < Cy(x, Z)J (s+ 1)Pds.
0 0
From (35) there exists a constant C’ > 0 such that
12
JO(S + 1) 7 Tl (x, 5))ds < Cly(x, 1), O
Lemma 3.2. Let 1, be defined in (21) with a > 0.
(i) Let (ug,vo) satisfy (13). Then T(ug,v9) € X and
1T (0, 00) /114, ]| < Calrm +m")

with some C, >0, where m is the constant appeared in (12).
(i) Let v be the second element of the solution of (1). Then I' maps X
into itself and

1 (0) /14,

» < Gollo/ng, 1227
with some Cp > 0.

Proor. (i) First, it is easily seen that edvg(x) < mp, (x,7). Next, from
Lemma 3.1 and (29), we obtain

J; eI Ky (x,5) (e"ug(x))" }ds

t

<y j (s 1 1)L > m (x,5)) Vs < CmPrg (3, 1).

Thus, we have

|T(u07 UO)| < Cr]ag (X, l)(m =+ m,}z)'

This implies assertion (i).
(i) Similarly as above, it follows from Lemma 3.1 and (29) that

t

1) < Clofn |27 | (5 + 1)7et
0

X |:<X>UZ{JS(T + l)qle(S—T)A<<x>a1’7£2] (X, T))d‘[}lb] s
0
< Clle/m 127 [ (5 )% (0o )i
0

< Cllo/na, 15714, (x, ).

Assertion (ii) thus is established. O
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PrOOF OF THEOREM 1. Let B, = {ve X;|jv/n,ll, < (2C,+ 1)m}, where
C, and m are the constants appeared in Lemma 3.2 and (12), respectively. We
shall show that V'(ug,vo,v) is a strict contraction on B,, into itself provided m is
small enough.

From (33) and Lemma 3.2 we have

1V (0, v0,0) /114, || o < 1T (0, 00) /114, || o0 + [117(0) /114, ||
< Cu(m+m?) + G {(2C, + 1)m}""?* < (2C, + 1)m.
This proves that V' maps B, into Bj,.
Now, we show that V' (ug,v,v) is a strict contraction on B,. By the
definition of ¥ we obtain

|V (uo, vo, v1) — V (uo, vo, v2)]

t
< J =K (x, 5)
0

(e”uo(x) + r eUTIA(K (x, ) (x, r))a’r)p2

0

- <e“"'u0(x) + Js eSTIA(K (x, T)0d (x, T))dr)pz ds.

0

Since |a? — b?| < p(a+b)" |la—b| for a>0, h>0 and p>1, we can esti-
mate the difference as follows,
t

‘V(M(), Vo, Ul) - V(M(), Vo, U2)| <p J e(tisM (KZ(xa S)A(X, S)B(X, S))dS,
0

where

K pa—1
A(x,s) = <Zej'Au0(x) + L eI K (x, 7) (07" (x,7) + U5 (x, z))}dr) ,

B(x,s) =

[ bt e ) = of () e

Since (a+ b)? < 2ma{r=1.0k(gP 4 pP) for a>0, h>0 and p>0, we
obtain

A(x,s) < pmax{p»-2,0} [(Zemuo(x))pzl

0

s n—1
+{Cuj (t+1)7el ()7 28" (x, T))df}p ]
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with & = max{v;,v,} and
s

Bx.9) = Cu | (e 17l of (5,5) = of () e

s

< plCUJ (T—|— l)lhe(xfr)A
0

x {7 (01 (x,T) + 02(x, 7)) oi (%, 7) — va(x, 7))}

From Lemma 3.1 and (29), we have

A(x,s) < 2mxirm20) l(mel (3, )"

n {2CU||ﬁ/naz

s pa—1
o J (T+ )7 (x> P (x, f))df} ]
0
< 2m 200 (am) gt (v, 5) + (2CG3m)™) g (v, 5)}
and

B(x,5) < p1Cu L( 1) e0D Ly (20(x, 7)) Jor (x,7) — eax, 7)Y

< 2p1_1p1CU J (‘L’ + 1)q1e(s—r)A
0

oG ()

We may take m satisfying (2m)”?~" +(2C(3m)P" Y~ < 22m(P2-D/2. We then
have

|V (1o, vo,v1) — V(uo, vo, v2)]

t
< CL(s + 1)Ly (20m 2 (v 5))y, (X, 5) Y
X N8 /ma, 12 o1 /14, = v2/10, ]

t

< P | (s 1)l (o ), 02/
0

< CmP Py () |01 /0, = 02/, |-
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Since pi,p» =1 and p;pr > 1, we obtain for some p < 1
[V (o, vo, 01) /M4, = V (10, 00, 02) /74, ||

< Cmpl+p2/273/2||vl/’7a2 - UZ/’?uz Hoc < p”Ul/’?aZ - Uz/’?ag”czo

with m small enough. Then V' is a strict contraction on B, into itself.
Hence, there exists a unique fixed point v € X which solves (32). Substitute v
into (30). Then (u,v) solves (30) and (31). Moreover, since v e B,,, we find

v(x, 1) < CelrtH4 (<x>“21p1 (%)) = Co(x, 1+ 1),

where ¥(x,?) is the solution of (15). Substituting this into (30), we have
t

u(x, 1) < mg, (x.1) + cj (54 1) (x> (x, 5))ds
0

< mipg, (x,1) + Cny (x, 1) < Cny (X, 1).
We then have
u(x, 1) < CelH4 <<x>‘“ W <%|>> = Ci(x,t+ 1),

where #(x, ) is the solution of (14). The proof of Theorem 1 is completed.

O

4. Appendix A: A heat kernel in a cone domain

In this section we confirm the form of the Green function for the heat
equation in the cone domain with the Dirichlet condition. In [19] the fact had
been shown. In this section, the fact is confirmed.

We consider the initial-boundary value problem for a heat equation

u, = Au, xeD,t>0,
u(x, 0) = Llo(x), xeD, (36)
u=20, xedD,t>0,

where the domain D is a cone in R" such as

D{xeRN:x;éO and ﬁeQ},
X

where Q is some region on SV~! with C*-boundary 0Q. We introduce the
Green’s function G(x, y,t) = G(r,0,p,¢,t) for the linear heat equation in the
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cone D. By the variable transformation (16) the problem (36) is expressed as
the form

N -1 A
:Au:urr+—ur+ﬁ2u, r>0,0eQ,t>0,
r r (37)
u(r,8,0) = uy(r,0), r>0,0¢eQ,
u=20, r>0,0€edQ,

where Ao is Laplace-Beltrami operator on Q < SV-1.

For the Laplace-Beltrami operator with homogeneous Dirichlet boundary
condition on 2 € SV~! we denote by (w,,,(0)) the corresponding eigenpairs.
Then it follows that [,;(0)d0 >0 and

j Y (O,(0)d0 = 0
Q

for m # n.
It is known that the Green’s function associated with (36) is given by

rp)—(N-2/2 240\ =
G(r,0,p,¢,t) :(;))T exp<_p i; )Z Cn v,,( >Wn( )wn(¢)7 (38)

n=1

where ¢, = I/H'ﬁnHiZ(g) and v, = [(N —2)%/4 + a),,]l/z. The function I, is the
modified Bessel function. The functions satisfy

[[eonvmmion=teo FEE(Z) o

with the Bessel functions J, satisfying

2T (x) + xJL(x) + (xF = v J(x) =0

and

9= (3 Stn e

(see [31, p. 395)).
From (38) and (39) we see that

G(r,0,p,¢,t)

(N=-2)/2 =

(rp) chlﬁn W (9 J e Mg, (Var\J, (Vap)di.  (40)
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The solution of (36) is explicitly given by

o0

u(x,t) =u(r,0,t) = J

j G(r,0.p. 4. uolp. P~ didp.
0 Q

We give the proof of (41) below.
Let u# be the inverse Laplace transformed function of u, i.e.

u(r,0,1) = J u(r,0,s)e™" ds.
0

Then this # satisfies the following equation of the form

_ N—-1_ Aou

—SU = Uy +——— U+ —5—, r>0,0eQ,s>0.
r r

Since {¥,,/|[W,ll 20} is @ complete orthonormal system, we have

u(r,0,s) = Ew,,rs

with

a(r,s) = J a(r, ¢ ), (9)d.

Q

From (42) and (43) we see that
(W), + (N = Dr(Wy), + (r*s — w,)w, = 0.
By the Frobenius method we obtain

Wa(r,8) = a,(s)rN=2127, (\/sr)

with some a,(s). From (43) we see that

u(r,0,s) = Z{a SR, (V) (0))-

We thus see that

u(x, 1) =u(r,0,1) = i: Jw an(s)r~N=22g, (\sr)e dsy, (0).

n=1+0

285

(42)

(44)

(45)
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If we let t =0, we have

8

lm@)—udne)—E:LT%@y<N2V%@mﬁom¢Am.

n=1

Then since
%J: J: Jy(Vsp)J(V/sr) f (p)dsdp = J: J: aJ,(ap)J,(or)f(p)dadp
= /0)

for any f e C(0,0) (see [31, p. 453], see also [6, §2]) and {y,/[|Y,[| 20} 1s @
complete orthonormal system (see [2, p. 53, Chapter III, Theorem 18]), we see
that

ls) = 5| |, V20, (S 1 Dy

Then we have (41). ]

5. Appendix B: Proof of Lemma 2.2

In this section we give a proof of Lemma 2.2. This lemma is equivalent
to the following proposition:

ProposITION 5.1.  Let n, be defined in (21) with a > 0. Assume —y, <
kK < min{a, N +y,.}. Let {>0 be

(i) (=a-k, if a<N+y,,
(i) (<N+yp,—x,  ifa=N+y,
(i) {=N+y, —«K, if a>N+y,.
Then there exists a positive constant C such that
W e 1) < Ct+ 1) PUy(x/ll) for xeD, >0, (46)
and
O, (x, 1) < Ct+ 1)y, (x/|x|)  for xe D, t>0. (47)

Proor. We follow the argument of Hamada [8, Lemma 3.1].
By (21), we see that

o0

oy, (x,t) =r" J

0 JQ G(r,0,p, ¢, 1+ 1)(1+ p2) "2 ($)pV " didp.
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Since {y,} is an orthogonal system, we have

) 2Ae+1)/r oo (rp)f<N72>/2 P2+ 12
X" n,(x, 1) = r* +J e ex (——)
(e ) <Jo 2(I+l)/r> 2v 1) TP\ T4

o <ﬁ> (1+p7)"p"" dpyy (6)

= (4+ B)y,(0).
First, we estimate 4. From (19) we have for some constant C > 0

Cz¥ 0<z<l1
L(z) < ’ - 48
2) { Cz %, z>1. (48)

By (48) we obtain

2(t+1)/r (rp)*(N*Z)/Z p> 41’ rp
p(_ A(t+ 1)> (2(z+ 1

A< Cr”J

Vi
A 2\—a/2 N-1
. 2T ) ex )> (L4 p) p™ =" dp.

From the definitions of v; and y,, we have

2
A< CQ2(t+ 1)) V27t exp( 4(,r+1)>

y Jz(m)/r exp( p2 pN—1+V+(1 +p2)_a/2dp_
0 4(t+ 1)

Putting C; =2"V/27+C, we get

T Y S S r’
A<+ 1) S I

Vit+1 4(t+1)
2(141)/r 2
P N—1+y, 2\ —a/2
XL eXp( 4(t+1))p A+ dp.

Since s*7+ exp(—s?) is bounded for s > 0, there exists a constant C; > 0 such
that

A < Gyt + 1)Vl Jz(m)/r exp <— > )pN‘“'h(l +p?) " Pdp
- 0 4(t+1)

= Gyt + )W EG ).

On the hand, the case a < N + y_ is considered. Since by the assumption (i)
and (ii), a > { +x, we see that



288 Takefumi IGArRAsHI and Noriaki UMEDA

, (e o2 N o
E(r,1) <29 Jo exp<—4([+ 1)>p (14 p) T Ndp

2141 /r
<292 J exp (—

Put £ =p/\/4(t+1). Then we have
Vi /r

E(ri) < 2a/2J exp(—E)(VA(t + DOV A 1) dé

0

N4y, —(—x—1 dp.
A1+ 1)>p p

52"/2( 4([+1))N+7+*C”‘J exp(—fz)gN”**gf"’l dé.
0

Since N +7y, —{—x >0, there exists a constant C3 > 0 such that
E(r, 1) < C3(t 4 1) V77972,
On the other hand, if a >N +y_,

/2 2e+1)/r ? v 1
E < 24 —— (1 Temas
<207 | exp( 4(t+1)>< ) dp

< 2“/2J v(l +p) N gy = ¢4 < 0.
0

Since { < N 4y, —x, we obtain for any ¢ >0
A <max{Cs, Cs}(t+1)"%

Next, B is estimated. From (48) we have

12 2
ecl| N R
241 /roo)n2e/3,20  JRe)roon2r3,2 | \2(2+ 1) 4t +1)

> rf(Nfl)/2+Kp(N71)/27a dp

= C(J + K).

On one hand, we compute J. If t+1>7% then J=0. When t+1<r?
since p € [2r/3,2r] we see that

/= JZ/ Em 1))1/2 o ( E(;,;ij) G)W—W ()

R [T A o

< Cs(t+ 1)~
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with some constant Cs > 0. On the other hand, we estimate K. Since
€2(t+1)/r,0)/[2r/3,2r], we have |p—r| >max{r/3,p/2}. We thus ob-
tain

2

(p=r’_ (=1 (p=r) P’ &
TAr D sGr D saxn S 3usn sy @
and
e 204D (50)

p
From (49) and (50) we obtain

1/2 2 2
K < J (41 ) exp(— P — ! )
T Jpanyr o) 3,20 \2(2 4+ 1) 32(¢+1) 72(¢+1)

—(N—1)/2 —a
5 (2(f:1)> N2 (M) dp

—(N=1)/2—a r? r ta gt N—
< (2(t4 1))~ W12 exp(72(t+1))( [H) (Vi 1)rarh-t

<, <ﬁ>/ exn( 32<f2+ ) <wp+—1>N_ld”'

So, there exists a constant Cg > 0 such that

K < Co(t + 1)*(N*1)/2*a+(K+a+N*1)/2 = Gyt + 1)*(“7}()/2.

Then we have

B <max{Cs, Cs}(t+ 1)/

for any 1 > 0. On the other hand from the definition of { we have { < a — .
Then we obtain for any 7> 0

B < max{Cs, Ce}(t + 1)~/
We thus have for any >0
Ix|"n,(x, 1) < max{Cs, Cs4, Cs, Cs}(t + 1) "y, ()

Hence, we obtain (46) for any # > 0. Since ¢;<{x) < |x| < ¢2{x) for some
c1,02 > 0, we also have (47). ]
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