A family of entire functions which determines the splitting behavior of polynomials at primes

Hajime Kuroiwa
(Received July 30, 2010)
(Revised March 28, 2011)

Abstract

In this paper, we prove that there exist entire functions which determines the splitting behavior of polynomials at prime. First, to any monic irreducible polynomial and any prime p, we associate a function defined on the set of primes which determines whether the polynomial splits completely at p or not. Then we extend them to entire functions.

1. Introduction

In an introductory article by Professor Ihara, a problem is introduced. To describe it, let us employ the following notation.

Notation 1. Let P be the set of prime numbers. Let $f(x) \in \mathbf{Z}[x]$ be a monic irreducible polynomial. We define P_{f} to be the set of prime numbers p such that $f(x)$ splits completely on \mathbf{F}_{p}.

Definition 2. A sequence of prime numbers $\left\{p_{i}\right\}$ is said to be of completely splitting type if for any monic irreducible $f(x)$, there exists N_{f} such that $n \geq N_{f}$ implies $p_{n} \in P_{f}$.

Problem 1 [1, Problem 3.1]. Can we construct a family \mathscr{F} of countably many complex valued functions which satisfies the following condition: For any sequence $\left\{p_{i}\right\}$ of prime numbers,
$\left\{p_{i}\right\}$ is of completely splitting type \Leftrightarrow
For any $F \in \mathscr{F}$, there exists a number M_{F} such that $n \geq M_{F}$ implies

$$
F\left(p_{n}\right)=0 .
$$

To solve the above problem affirmatively, we prove the following theorem.
Theorem 2. Let $u(x) \in \mathbf{Z}[x]$ be a monic irreducible polynomial of degree d. Then there exist holomorphic functions $F_{u, 0}, F_{u, 1}, \ldots, F_{u, d-1}$ on \mathbf{C}^{\times}such that for

[^0]any prime $p, u(x)$ splits completely on \mathbf{F}_{p} if and only if $F_{u, 0}(p)=0, F_{u, 1}(p)=$ $0, \ldots, F_{u, d-1}(p)=0$.

The functions $F_{u, 1}, \ldots, F_{u, d-1}$ are entire functions on \mathbf{C}. We may replace $F_{u, 0}$ in Theorem 2 by two other entire functions G_{u} and $G_{u^{(1)}}$, and may use only entire functions. Theorem 3 gives an affirmative answer to Problem 1 as follows. Indeed, we put

$$
\mathscr{F}=\bigcup_{d \geq 1} \mathscr{F}_{d}
$$

$$
\mathscr{\mathscr { F }}_{d}=\left\{G_{u}, G_{u^{(1)}}, F_{u, 1}, \ldots, F_{u, d-1} \mid u \in \mathbf{Z}[x]: \text { monic irreducible, } \operatorname{deg} u=d\right\} .
$$

Then we see that \mathscr{F} satisfies the required condition. Indeed, we notice that \mathscr{F} is denumerable. Then we use the relation

$$
p \in P_{u} \Leftrightarrow G_{u}(p)=0, \quad G_{u^{(1)}}(p)=0, \quad F_{u, 1}(p)=0, \ldots, F_{u, d-1}(p)=0
$$

in Theorem 3. Professor Ihara raised this problem to be solved by some nonabelian class field theory. Thus, the proof here must not be what he wanted to mean. Anyway, it would be not too bad to give an elementary proof.

2. The function r_{u} associated by a polynomial u

Definition 3. Let $u(x) \in \mathbf{Z}[x]$ be a monic irreducible polynomial of degree d. Let

$$
u(x)=\prod_{j=1}^{d}\left(x-\alpha_{j}\right)
$$

be the factorization of $u(x)$ over \mathbf{C}. Let $r_{u}^{(p)}(x)$ be the remainder of x^{p} divided by $u(x)$.

$$
x^{p} \equiv r_{u}^{(p)}(x) \bmod u(x), \quad \operatorname{deg} r_{u}^{(p)}(x)<d
$$

It is worth while to note that the computation above may be done over \mathbf{Z} (instead of the field \mathbf{F}_{p}). Now, we extend the polynomial $r_{u}^{(p)}(x)$. We compute $r_{u}^{(p)}(x)$ in terms of the roots of $u(x)$:

Proposition 1 (Lagrangian interpolation). Let $u(x) \in \mathbf{Z}[x]$ be a monic irreducible polynomial of degree d and let $\alpha_{1}, \ldots, \alpha_{d}$ be the roots of $u(x)$. Then
(1) $\quad r_{u}^{(p)}(x)=\sum_{j=1}^{d} \frac{\alpha_{j}^{p} u(x)}{u^{\prime}\left(\alpha_{j}\right)\left(x-\alpha_{j}\right)}$.

Proof. Let us put

$$
h(x)=\sum_{j=1}^{d} \frac{\alpha_{j}^{p} u(x)}{u^{\prime}\left(\alpha_{j}\right)\left(x-\alpha_{j}\right)}-r_{u}^{(p)}(x) .
$$

Then we have $\operatorname{deg} h(x) \leq d-1, h\left(\alpha_{j}\right)=0$. We thus conclude that $h(x)=0$.

Proposition 2. Let $u(x) \in \mathbf{Z}[x]$ be a monic irreducible polynomial of degree d. Then:
(i) For $u(x) \in \mathbf{Z}[x]$, there exists an entire function $r_{u}^{(z)}(x)$ in z whose special values at primes are equal to the value of $r_{u}^{(p)}(x)$.
(ii) $u(x)$ splits completely on $\mathbf{F}_{p} \Leftrightarrow r_{u}^{(p)}(x)=x$ on \mathbf{F}_{p}.

By using equation (1) and by choosing a $\operatorname{logarithm} \log \left(\alpha_{j}\right)$ of α_{j} for each j, we may extend the function $r_{u}^{(p)}(x)$ to an entire function in complex variable p.

Definition 4. Under the same assumption as in Proposition 2, We define $g_{u, i}^{(p)}$ to be the coefficients of the polynomial $r_{u}^{(p)}(x)$ in x. In other words, we put

$$
\text { (2) } \quad r_{u}^{(p)}(x)=\sum_{i=0}^{d-1} g_{u, i}^{(p)} x^{i}
$$

3. Proof of Theorem 2

Proof. Let us define

$$
F_{u, i}(p)=\exp \left(\frac{2 \pi \sqrt{-1}}{p}\left(g_{u, i}^{(p)}-\delta_{i, 1}\right)\right)-1
$$

where $g_{u, i}^{(p)}$ is the entire function in p-variable defined by the equation (2) in Definition 4. So, $F_{u, i}(p)=0$ if and only if $g_{u, i}^{(p)}-\delta_{i, 1}$ is divisible by p. Thus, $F_{u, i}(p)=0$ for all $0 \leq i \leq d-1$ if and only if $r_{u}^{(p)}(x)-x$ is divisible by p, namely $x^{p}-x \bmod p$ is divisible by $u(x) \bmod p$, which is equivalent to the completely splitting property at p.

4. Use of entire functions

The functions $F_{u, i}(p)$ in Theorem 2 are surely holomorphic functions on \mathbf{C}^{\times}. But they may have singularities at the origin. We may modify our functions so that we only make use of entire functions.

Definition 5. Let $u(x) \in \mathbf{Z}[x]$ be a monic irreducible polynomial of degree d. Then we define

$$
\begin{gathered}
u^{(1)}(x):=u(x+1) \\
G_{u}(p):=\left(F_{u, 0}(p)+1\right)\left(F_{u, 1}(p)+1\right)-1 .
\end{gathered}
$$

Theorem 3. Let $u(x) \in \mathbf{Z}[x]$ be a monic irreducible polynomial of degree d. Then
(i) $F_{u, 2}(p), \ldots, F_{u, d-1}(p), G_{u}(p)$ are entire functions.
(ii) $u(x)$ splits completely on $\mathbf{F}_{p} \Leftrightarrow F_{u, 2}(p)=0, \ldots, F_{u, d-1}(p)=0, \quad G_{u}(p)$ $=0, G_{u^{(1)}}(p)=0$.

Proof. (i) We may compute so that

$$
r_{u}^{(0)}(x)=\sum_{j=1}^{d} \frac{u(x)}{u^{\prime}\left(\alpha_{j}\right)\left(x-\alpha_{j}\right)}=1
$$

holds. Thus,

$$
g_{u, 0}^{(0)}=1, g_{u, 1}^{(0)}=0, \ldots, g_{u, d-1}^{(0)}=0 .
$$

Therefore,

$$
F_{u, 2}(p), \ldots, F_{u, d-1}(p), \quad G_{u}(p)=\exp \left(\frac{2 \pi \sqrt{-1}}{p}\left(g_{u, 0}^{(p)}+g_{u, 1}^{(p)}-1\right)\right)-1
$$

are entire functions.
(ii) (\Leftarrow) obvious from Theorem 2.
(\Rightarrow) From the definition of $F_{u, i}(p)$ and $G_{u}(p)$, we see that

$$
x^{p}=a x+(1-a) \bmod u(x), p
$$

holds. We have furthermore

$$
(x+1)^{p}=a x+1 \bmod u^{(1)}(x), p
$$

Namely, we have

$$
x^{p}=a x \bmod u^{(1)}(x), p
$$

Therefore, we conclude that $r_{u}^{(p)}(x)=x$ on \mathbf{F}_{p}.

5. Example

(1) The case of $u(x)=x^{2}-l(l \in \mathbf{Z})$. We may easily compute by using equation (1) so that

$$
r_{u}^{(p)}(x)=l^{(p-1) / 2} x, \quad g_{u, 0}^{(p)}=0, \quad g_{u, 1}^{(p)}=l^{(p-1) / 2}
$$

holds. Then we see that $F_{u, i}(p)$ and $G_{u}(p)$ are given as follows:

$$
F_{u, 0}(p)=0, \quad F_{u, 1}(p)=G_{u}(p)=\exp \left(\frac{2 \pi \sqrt{-1}}{p}\left(l^{(p-1) / 2}-1\right)\right)-1
$$

The reader may easily verify that

$$
u(x) \text { splits completely on } \mathbf{F}_{p} \Leftrightarrow\left(\frac{l}{p}\right)=1 \Leftrightarrow F_{u, 1}(p)=0
$$

$\left(\left(\frac{l}{p}\right)\right.$ is the quadratic residue symbol.)
Note 4. In general, if $\mathbf{Q}[x] / u(x)$ is abelian extension, then by the class field theory, it is known already that Theorem 2 is solved by periodic functions like

$$
F_{m}(p)=\exp \left(\frac{2 \pi \sqrt{-1}}{m}(p-1)\right)-1
$$

instead of our complicated function $F_{u, i}$. See $[1, \S 3],[3, ~ I ~ § 10, ~ V I] . ~$
(2) The case of $u(x)=x^{2}-x-1$. We may compute similarly

$$
r_{u}^{(p)}(x)=\sum_{j=1}^{d} \frac{\alpha_{j}^{p} u(x)}{u^{\prime}\left(\alpha_{j}\right)\left(x-\alpha_{j}\right)}=F_{p} x+F_{p-1}
$$

when F_{n} is the n-th Fibonacci numbers. $r_{u}^{(p)}$ in this case somehow inherits the properties of the Fibonacci numbers. We may thus expect that even for a general u, our function $F_{u, i}$ has rich contents as the Fibonacci numbers have.
(3) The case of $u(x)=x^{3}-l$.

$$
\begin{aligned}
r_{u}^{(p)}(x) & =\sum_{j=1}^{d} \frac{\alpha_{j}^{p} u(x)}{u^{\prime}\left(\alpha_{j}\right)\left(x-\alpha_{j}\right)}=\sum_{j=1}^{3} \frac{1}{3} \alpha_{j}^{p-2} \frac{u(x)}{\left(x-\alpha_{j}\right)} \\
& =\frac{1}{3} l^{(p-2) / 3}\left(1+\omega^{p-2}+\omega^{2(p-2)}\right) x^{2}+\frac{1}{3} l^{(p-1) / 3}\left(1+\omega^{p-1}+\omega^{2(p-1)}\right) x
\end{aligned}
$$

(4) The case of $u(x)=x^{n}-l$.

$$
r_{u}^{(p)}(x)=\sum_{j=1}^{d} \frac{\alpha_{j}^{p} u(x)}{u^{\prime}\left(\alpha_{j}\right)\left(x-\alpha_{j}\right)}=\sum_{j=1}^{n} \frac{1}{n} \alpha_{j}^{p-n+1} \frac{u(x)}{\left(x-\alpha_{j}\right)}
$$

References

[1] Y. Ihara, "Koremoaremo...imadatoketeimasen (Neither this nor that is yet solved)" (in Japanese), Suurikagaku (Mathematical science), saiensu-sya, Tokyo, August 1994.
[2] D. E. Knuth, The Art of Computer Programming volume 2 SEMINUMERICAL ALGORITHMS Arithmetic, Addison-Wesley, 1969.
[3] J. Neukirch, Algebraische Zahlentheorie, Springer-Verlag, 1992.

Hajime Kuroiwa
Department of Mathematics
Faculty of Science
Kochi University
Kochi, 780-8520, Japan
E-mail: b10d6a05@s.kochi-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. 11A41, 11A51.
 Key words and phrases. entire function, completely splitting, non-abelian class field theory.

