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Regularly varying solutions of second order nonlinear functional

di¤erential equations with retarded argument
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Abstract. The existence of slowly and regularly varying solutions in the sense of

Karamata implying nonoscillation is proved for a class of second order nonlinear

retarded functional di¤erential equations of Thomas-Fermi type. A motivation for

such study is the extensively developed theory o¤ering a number of properties of

regularly and slowly varying functions ([2])—consequently of such solutions of di¤er-

ential equations. As an illustration, the precise asymptotic behaviour for t ! y of the

slowly varying solutions for a subclass of considered equations is presented.

1. Introduction

Theory of regular variation in the sense of Karamata has proved to be a

powerful tool for the asymptotic analysis (e.g. nonoscillation, precise asymp-

totic behaviour), of solutions of second order linear and nonlinear ordinary

di¤erential equations, see [7]. For the reader’s convenience we recall that a

measurable function L : ½0;yÞ ! ð0;yÞ is said to be slowly varying if it satisfies

LðltÞ=LðtÞ ! 1; as t ! y for El > 0:

Furthermore, the function

f ðtÞ ¼ trLðtÞ; for r A R

is said to be regularly varying of index r. The totality of these functions is

denoted by RVðrÞ, and in particular SVð¼ RVð0ÞÞ stands for the totality of

slowly varying functions.

One of the most important properties of slowly varying functions is the

following representation theorem (see e.g. [2, Ch. 1]).

Proposition 1.1. LðtÞ A SV if and only if LðtÞ is expressed in the form

LðtÞ ¼ cðtÞ exp
ð t

a

dðsÞds=s
� �

; tb a; ð1:1Þ
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for some a > 0 and some measurable functions cðtÞ and dðtÞ such that

cðtÞ ! c0 A ð0;yÞ and dðtÞ ! 0 as t ! y:

If in particular cðtÞ ¼ c0, then LðtÞ is called a normalized slowly varying

function. The order of growth or decay of LðtÞ is severely limited in the sense

that, for any e > 0,

teLðtÞ ! y and t�eLðtÞ ! 0 as t ! y: ð1:2Þ

Throughout the paper write ds=s as shorthand for s�1 ds.

We quote here the following result which is, on one hand, a typical one on

the subject and on the other one, along with the Schauder-Tychono¤ fixed

point theorem, the main means for proving the results of this paper, [7, Th. 1.1].

Proposition 1.2. Consider the linear ordinary di¤erential equation

x 00ðtÞ ¼ qðtÞxðtÞ; ðAÞ

where q : ½a;yÞ ! ð0;yÞ is continuous and integrable in ½a;yÞ. Then there

hold:

(a) Equation (A) possesses a fundamental set of solutions consisting of a

decreasing normalized slowly varying solution x0ðtÞ ¼ L0ðtÞ and an increasing

regularly varying solution of index 1, x1ðtÞ ¼ tL1ðtÞ with L1ðtÞ@L�1
0 ðtÞ as

t ! y, if and only if

QðtÞ :¼ t

ðy
t

qðsÞds ! 0; as t ! y: ð1:3Þ

(b) These solutions can be for each T b a, respectively represented as

x0ðtÞ ¼ exp

ð t

T

ðvðsÞ �QðsÞÞds=s
� �

; ð1:4Þ

where vðtÞ ! 0 as t ! y and satisfies the integral equation

vðtÞ ¼ t

ðy
t

ððvðsÞ �QðsÞÞ=sÞ2ds; ð1:5Þ

and

x1ðtÞ ¼ exp

ð t

T

ð1�QðsÞ þ wðsÞÞds=s
� �

; ð1:6Þ

where wðtÞ ! 0 as t ! y and satisfies the integral equation

wðtÞ ¼ t�1

ð t

T

½2QðsÞ � ðwðsÞ �QðsÞÞ2�ds: ð1:7Þ
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Here the symbol @ denotes the asymptotic equivalence: f ðtÞ@ gðtÞ ,
f ðtÞ=gðtÞ ! 1, as t ! y.

The study of second order functional di¤erential equations by means of

regular variation has been attempted for the first time by the present authors

in [5]. There and in its continuation [6] the above Proposition has been

generalized as follows:

Proposition 1.3. Consider the linear functional di¤erential equation

x 00ðtÞ ¼ qðtÞxðgðtÞÞ;

where q is as in Proposition 1.2 and g : ½a;yÞ ! ð0;yÞ is continuous, increasing

and satisfies gðtÞ < t, gðtÞ ! y as t ! y and lim supt!y t=gðtÞ < y. Then,

the considered equation possesses a slowly varying solution and a regularly

varying solution of index 1 if and only if (1.3) is satisfied.

The aim of this paper is to obtain results similar to those of Proposition

1.3 for the nonlinear (retarded, i.e. for gðtÞ < t) equation

x 00ðtÞ ¼ qðtÞxðgðtÞÞg ðBÞ

for both the superlinear ðg > 1Þ and the sublinear cases ðg < 1Þ.
Note that for gðtÞ ¼ t, equation (B) is reduced to the celebrated Thomas-

Fermi atomic model

x 00ðtÞ ¼ qðtÞxðtÞg: ðCÞ

The structure of positive solutions of the retarded di¤erential equation (B)

is radically di¤erent from that of the ordinary di¤erential equation (C). E.g.,

the superlinear equation (C) ðg > 1Þ always possesses a solution xðtÞ which is

defined and positive on a finite interval ½t0; t1Þ and blows up at t1 in the sense

that xðtÞ and x 0ðtÞ ! y as t ! t1 � 0. On the other hand equation (B) admits

no such solutions. In fact, suppose that xðtÞ is a solution of (B) ðg > 1Þ on

½t0; t1Þ which blows up at t1. Integrating (B) from t0 to t yields

x 0ðtÞ ¼ x 0ðt0Þ þ
ð t

t0

qðsÞxðgðsÞÞgds; t < t1:

Letting t ! t1 � 0 and using gðtÞ < t, we have for t ! t1 � 0,

y >

ð t1

t0

qðsÞxðgðsÞÞgds >
ð t

t0

qðsÞxðgðsÞÞgds ! y;

which is a contradiction. For some additional di¤erences see e.g. [1].

To avoid repetition we state here the following conditions on q and g valid

throughout the text:
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q : ½a;yÞ ! ð0;yÞ is a continuous; integrable function;

g : ½a;yÞ ! ð0;yÞ is a continuous function which is increasing and satisfies

gðtÞ < t and gðtÞ ! y; as t ! y: ð1:8Þ

Throughout the text all statements expressed by inequalities hold for tbT

and this adjective will be occasionally omitted. Also the number T need not

be the same at each occurrence.

2. The superlinear case ðg > 1Þ

Let xðtÞ be a positive solution of (B) on ½t0;yÞ. Since by (B), x 00ðtÞ > 0

for tb t1, where t1 is such that gðt1Þ ¼ t0, x 0ðtÞ is increasing for tb t1. It

follows that either x 0ðtÞ < 0 on ½t1;yÞ or x 0ðtÞ > 0 on some ½t2;yÞH ½t1;yÞ,
which means that a positive solution of (B) is either decreasing or eventually

increasing.

If x 0ðtÞ < 0 on ½t1;yÞ, then we must have x 0ðtÞ ! 0. In fact, if

x 0ðtÞ ! c < 0, then x 0ðtÞ < c for tb t1, and integrating this inequality from

t1 to t gives xðtÞ < xðt1Þ þ cðt� t1Þ ! �y, as t ! y contradicting the

positivity of xðtÞ. Hence, in this case xðtÞ tends to a finite limit xðyÞb 0

as t ! y.

If on the other hand x 0ðtÞ > 0 on ½t2;yÞ then, due to x 00ðtÞ > 0, x 0ðtÞ is

eventually positive and increases to a finite or infinite limit x 0ðyÞ as t ! y.

In case x 0ðyÞ is finite, then xðtÞ satisfies xðtÞ=t ! x 0ðyÞ, that is, xðtÞ is

asymptotic to a constant multiple of t as t ! y. If x 0ðyÞ is infinite, then for

any M, one has for su‰ciently large t, x 0ðtÞ > M and so xðtÞ > Mt, whence

xðtÞ ¼ tjðtÞ with jðtÞ ! y as t ! y.

We first consider slowly varying solutions and prove:

Theorem 2.1. In addition to (1.8) suppose that

lim sup
t!y

ð t

gðtÞ
QðsÞds=s < 1=e: ð2:1Þ

If

QðtÞ ¼ t

ðy
t

qðsÞds ! 0; as t ! y; ð2:2Þ

then equation (B) possesses a slowly varying solution.

Proof. First notice that SV solutions cannot increase, for being convex,

they would violate (1.2). Let l be a positive constant less than 1=ð4eÞ. By
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(2.1) and (2.2) one can choose T > a so large that gðTÞ > a and the inequalities

QðtÞa l < 1=ð4eÞ and
Ð t

gðtÞ QðsÞds=s < 1=e hold for tbT .

Let X denote the set of positive continuous functions xðtÞ on ½gðTÞ;yÞ
which are nonincreasing and satisfy

xðtÞ ¼ 1 for gðTÞa taT ; xðgðtÞÞ=xðtÞa e for tbT : ð2:3Þ

It is clear that X is a closed and convex subset of C½gðTÞ;yÞ which is a

locally convex space equipped with the topology of uniform convergence on

compact subintervals of ½gðTÞ;yÞ.
For each x A X we define for tbT , qxðtÞ ¼ qðtÞxðgðtÞÞg=xðtÞ. Using (2.3)

and the fact that g > 1 and xðtÞa 1, we have

xðgðtÞÞg=xðtÞ ¼ xðgðtÞÞg�1xðgðtÞÞ=xðtÞa e; ð2:4Þ

which implies that for tbT , qxðtÞa eqðtÞ and so due to (2.2) and the

subsequent inequality,

QxðtÞ :¼ t

ðy
t

qxðsÞds ! 0 as t ! y ð2:5Þ

and QxðtÞ < 1=4. Consequently, Proposition 1.2 applies to the family of linear

ordinary di¤erential equations

x 00ðtÞ ¼ qxðtÞxðtÞ; x A X ð2:6Þ

and ensures that for each x A X equation (2.6) has a decreasing SV-solution

xxðtÞ expressed in the form

xxðtÞ ¼ exp

ð t

T

ðvxðsÞ �QxðsÞÞds=s
� �

; ð2:7Þ

where vxðtÞ satisfies the integral equation (1.5) with vx and Qx replacing v and

Q respectively.

We will show that there exists at least one x A X for which the function

xxðtÞ given by (2.7) exactly provides an SV-solution of equation (B). Use is

made of the Schauder-Tychono¤ fixed point theorem for this purpose. Let us

define F to be the mapping which assigns to every x A X the function Fx given

by

FxðtÞ ¼ 1 for gðTÞa taT ; FxðtÞ ¼ xxðtÞ for tbT :

Our task is to show that F is continuous and maps X into a relatively compact

subset of X.

(i) F maps X into itself: We divide ½T ;yÞ into two subintervals ½T ;T1�
and ½T1;yÞ where T1 > T and such that T ¼ gðT1Þ. If x A X, then for

T a taT1 we have by observing the choice of T1,
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FxðgðtÞÞ=FxðtÞ ¼ 1=xxðtÞ ¼ exp

ð t

T

ðQxðsÞ � vxðsÞÞds=s
� �

a exp

ðT1

gðT1Þ
eQðsÞds=s

( )
a e;

and for tbT1, arguing in the same way we get

FxðgðtÞÞ=FxðtÞ ¼ exp

ð t

gðtÞ
ðQxðsÞ � vxðsÞÞds=s

( )
a e:

This implies that Fx A X, that is, FðXÞHX.

(ii) FðXÞ is relatively compact in C½gðTÞ;yÞ: The inclusion FðXÞHX

shows that FðXÞ is locally uniformly bounded on ½gðTÞ;yÞ. If x A X, then for

tbT ,

ðFxÞ0ðtÞ ¼ xxðtÞðvxðtÞ �QxðtÞÞ=tb xxðtÞð�QxðtÞ=tÞb�eQðtÞ=t;

which implies that FðxÞ is locally equicontinuous on ½gðTÞ;yÞ. The relative

compactness of FðXÞ in C½gðTÞ;yÞ follows from Arzela-Ascoli lemma.

(iii) F is a continuous mapping: Let fxng be a sequence in X converging

to x A X, which means that the sequence fxnðtÞg converges to xðtÞ uniformly on

compact subintervals of ½gðTÞ;yÞ. To show continuity of F we have to prove

that fFxnðtÞg converges to FxðtÞ on any compact interval of ½gðTÞ;yÞ. Nat-

urally it su‰ces to restrict our attention to the interval ½T ;yÞ. Noting that by

using (2.7) and applying the mean value theorem, one obtains

jFxnðtÞ �FxðtÞj ¼ jxxnðtÞ � xxðtÞja
ð t

T

ðjvxnðsÞ � vxðsÞj þ jQxnðsÞ �QxðsÞjÞds=s:

We need to verify that the two sequences An ¼ t�1jvxnðtÞ � vxðtÞj, Bn ¼
t�1jQxnðtÞ �QxðtÞj converge to 0 uniformly on compact subintervals of ½T ;yÞ.
The sequence Bn is easier to handle. In fact, we have the inequality

Bn a

ðy
t

jqxnðsÞ � qxðsÞjdsa
ðy
t

qðsÞjxnðgðsÞÞg=xnðsÞ � xðgðsÞÞg=xðsÞjds:

Since the integrand of the last integral, denoted by FnðtÞ, satisfies FnðtÞa 2eqðtÞ,
by (2.4) and FnðtÞ ! 0, t A ½T ;yÞ as n ! y, we conclude using the Lebesgue

dominated convergence theorem that Bn ! 0 uniformly on ½T ;yÞ as n ! y.

To deal with the sequence An we first note that in virtue of (1.5),

An a 4el

ðy
t

jvxnðsÞ � vxðsÞjs�2 dsþ 4el

ðy
t

jQxnðsÞ �QxðsÞjs�2 ds ð2:8Þ
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for tbT , where we have used the fact that QxnðtÞ and QxðtÞ are less than or

equal to el < 1=4 on ½T ;yÞ which then holds also for vxnðtÞ and vxðtÞ since

vxnðtÞaQxnðtÞ, vxðtÞaQxðtÞ, xxðtÞ given by (2.7) being decreasing. Denoting

the first integral in (2.8) by wðtÞ we are able to transform (2.8) into the

following di¤erential inequality

ðt4elwðtÞÞ0 b�4elt4el�1

ðy
t

jQxnðsÞ �QxðsÞjs�2 ds: ð2:9Þ

Integrating (2.9) from t to y and noting that t4elwðtÞ ! 0 as t ! y, since vxðtÞ
does we obtain

wðtÞa t�4el

ðy
t

jQxnðsÞ �QxðsÞjs4el�2 ds: ð2:10Þ

Combining (2.10) with (2.8) yields for tbT

t�1jvxnðtÞ � vxðtÞja 4elt�4el

ðy
t

jQxnðsÞ �QxðsÞjs4el�2 ds

þ 4el

ðy
t

jQxnðsÞ �QxðsÞjs�2 ds;

which ensures that An also tends to zero uniformly on ½T ;yÞ as n ! y, since

Bn is such. We thus conclude that the sequence fFxng converges to Fx in the

topology of C½gðTÞ;yÞ.
Therefore, applying the Schauder-Tychono¤ fixed point theorem, we see

that there exists x A X such that x ¼ Fx, which implies that xðtÞ ¼ xxðtÞ
for tbT , that is, xðtÞ satisfies the di¤erential equation x 00ðtÞ ¼ qxðtÞxðtÞ or

equivalently x 00ðtÞ ¼ qðtÞxðgðtÞÞg. Since xðtÞ is slowly varying due to the

definition of F, we have established the existence of an SV-solution for

equation (B). This completes the proof of Theorem 2.1.

Remark 2.1. It is directly concluded that condition (2.1) is implied by

lim sup
t!y

t=gðtÞ < y ð2:11Þ

which is less general but simpler.

The preceding theorem gives only a su‰cient condition for the existence of

an SV solution which might tend to zero or to a positive constant i.e., the

simplest (‘‘trivial’’) SV solution. For the latter case there holds:

Theorem 2.2. Let (1.8) and (2.11) hold, then equation (B) has a slowly

varying solution xðtÞ such that xðtÞ ! const: > 0, as t ! y, if and only ifðy
a

tqðtÞdt < y: ð2:12Þ
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Proof. ‘‘Only if ’’. Let xðtÞ ! c > 0 as t ! y. Then, integrating equa-

tion (B) twice over ðt;yÞ and integrating by part, one concludes that the

integral
Ðy
t
ðs� tÞqðsÞds converges. Since also

Ðy
t
qðsÞds does by hypothesis,

condition (2.12) follows.

‘‘If ’’. Condition (2.12) implies condition (2.2). Hence, by Theorem 2.1

and Remark 2.1, equation (B) has an SV solution which decreases and tends

either to zero or to c > 0. Suppose xðtÞ ! 0. Then in virtue of the mean

value theorem applied to the integral representation of xðtÞ, after dividing by

xðtÞ, one has

1a xðgðtÞÞg�1
xðgðtÞÞ=xðtÞ

ðy
t

ðs� tÞqðsÞds:

But, due to the representation (1.2) and (2.11), the quotient xðgðtÞÞ=xðtÞ is

bounded and so, by letting t ! y in the preceding inequality, one has

1a 0. Thus xðtÞ ! c > 0, qed.

This result generalizes P. K. Wong’s Theorem 1.2 in [8] for the equation

without deviating argument x 00 ¼ xF ðx; tÞ when xF ðx; tÞ ¼ qðtÞxg.

Corollary 2.1. Let qðtÞ A RVðaÞ, aa�2. Suppose that (1.3) holds and,

instead of (2.1) that ð t

gðtÞ
QðsÞds=s ! 0; as t ! y: ð2:13Þ

Then, the slowly varying solutions of equation (B) obtained in the above theorems,

have the following asymptotic behaviour

xðtÞ@ ðg� 1Þ
ð t

T

sqðsÞds
� �1=ð1�gÞ

as t ! y:

Proof. Since condition (2.13) implies (2.1), Theorem 2.1 ensures for some

xðtÞ A X, the existence of a slowly varying solution xðtÞ of equation (B) having

the representation (2.7). Noting that xðtÞ is decreasing and that QxðtÞa eQðtÞ,
by using (2.13) we obtain for t ! y

1a xðgðtÞÞ=xðtÞa exp e

ð t

gðtÞ
QðsÞds=s

( )
! 1;

whence xðgðtÞÞ@ xðtÞ, as t ! y.

Integrating (A) over ½t;yÞ and observing that qðtÞ A RVðaÞ, aa�2, and

applying Karamata theorem ([7], Prop. 1) we get for t ! y

x 0ðtÞ@�
ðy
t

qðsÞðxðsÞÞgds@�tqðtÞðxðtÞÞg:

Another integration over ðT ; tÞ gives the desired result.
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Remark 2.2. Note that condition (2.13) holds for any retarded argument

gðtÞ if QðtÞ=t is integrable on ½a;yÞ, which is true for a < �2. But then

condition (2.13) implies (2.12) so that equation (B) has a trivial solution xðtÞ
i.e. tending to a positive constant. Hence only the case a ¼ �2 might lead to

an SV solution tending to zero.

Example 2.1.

x 00ðtÞ ¼ qðtÞxðt=log tÞg; g > 1; 0 < da 1

where qðtÞ ¼ rðtÞ=t2ðlog tÞd and rðtÞ is a continuous positive function such that

rðtÞ ! r > 0 as t ! y.

It is clear that qðtÞ A RVð�2Þ and QðtÞ@ r=ðlog tÞd as t ! y, so that (1.3)

holds.

One can, moreover, show that (2.13) is satisfied and an application of

Corollary 2.1 gives for 0 < d < 1

xðtÞ@ ðð1� dÞ=rðg� 1ÞÞ1=ðg�1Þðlog tÞð1�dÞ=ð1�gÞ:

If in particular, 1 < g < 2, d ¼ 2� g and r ¼ 1, then xðtÞ@ ðlog tÞ�1 as t ! y.

If in addition

rðtÞ ¼ ððlog t� log log tÞ=log tÞgð1þ 2=log tÞ;

then the considered equation possesses an exact SV solution xðtÞ ¼ ðlog tÞ�1.

For d ¼ 1, Corollary 2.1 leads to

xðtÞ@ ðrðg� 1Þ log log tÞ1=ð1�gÞ as t ! y:

It is easy to check that if rðtÞ is given by

rðtÞ ¼ ððlog log t� log log log tÞ=log log tÞg=ðg�1Þ

� ð1þ 1=log tþ g=ðg� 1Þ log t log log tÞ;

then, the equation has an exact SV solution xðtÞ ¼ ððg� 1Þ log log tÞ1=ð1�gÞ.

Next we consider the existence of an RV(1) solution i.e. of the form

xðtÞ ¼ tlðtÞ where lðtÞ is some SV function and prove

Theorem 2.3. Let (1.8) hold and let LðtÞ be a normalized slowly varying

function with dðsÞ as in (1.1) and such that L 0ðtÞ > 0, LðtÞ ! y, as t ! y.

Suppose that there exists a constant K > 0 such that for tbT > a,

t

ðy
t

qðsÞðgðsÞLðgðsÞÞÞg�1
dsaKdðtÞ: ð2:14Þ

Then, equation (B) possesses a regularly varying solution of index 1 satisfying

xðtÞa tLðtÞ; for tbT : ð2:15Þ
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Proof. First observe that, due to the assumptions on L, the function

dðtÞ ¼ tL 0ðtÞ=LðtÞ is positive, tends to zero and the integral defining L is

divergent.

Next put

qLðtÞ ¼ qðtÞðgðtÞLðgðtÞÞÞg�1; QLðtÞ ¼ t

ðy
t

qLðsÞds: ð2:16Þ

Hence, due to (2.14) QLðtÞ ! 0, as t ! y and so there exists T > a such that

LðTÞb 1 and K=LðTÞg�1
a 1, and for tbT , QLðtÞa 1=8.

Now the proof mimics the one of Theorem 2.1 with a di¤erent choice of

the set X and of the mapping F. Namely, this time we define X to be the set

of positive continuous functions xðtÞ A C½gðTÞ;yÞ which are nondecreasing and

satisfy

T a xðtÞa tLðtÞ=LðTÞ; tbT ; xðtÞ ¼ tLðtÞ=LðTÞ; gðTÞa taT : ð2:17Þ

It is clear that X is a closed convex subset of the locally convex space

C½gðTÞ;yÞ. For each x A X put

qxðtÞ ¼ qðtÞxðgðtÞÞg=xðtÞ; QxðtÞ ¼ t

ðy
t

qxðsÞds:

Using the increasing nature of xðtÞ, the inequality gðtÞ < t and (2.17), we have

xðgðtÞÞg=xðtÞa xðgðtÞÞg�1
a ðgðtÞLðgðtÞÞ=LðTÞÞg�1; tbT ; ð2:18Þ

which implies that

QxðtÞaQLðtÞ=LðTÞg�1
a 1=8; tbT ; for all x A X

and that by (2.14), QxðtÞ ! 0, as t ! y.

It then follows from Proposition 1.2 that every member of the family of

linear di¤erential equations

x 00ðtÞ ¼ qxðtÞxðtÞ; x A X; ð2:19Þ

possesses an RV(1)-solution XxðtÞ having the representation

XxðtÞ ¼ exp

ð t

T

ð1þ wxðsÞ �QxðsÞÞds=s
� �

; ð2:20Þ

where wxðtÞ is a solution of the integral equation (1.7) with wxðsÞ and QxðsÞ
replacing wðsÞ and QðsÞ respectively, satisfying wxðtÞ ! 0, t ! y and so by

QxðtÞa 1=8, we have jwxðtÞja 1=4.

We shall estimate XxðtÞ given by (2.20) from below and above. First we

have XxðTÞ ¼ 1 and so XxðtÞb 1 for tbT . Next, using the inequality
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ð t

T

wxðsÞds=sa
ð t

T

s�2

ð s

T

2QxðrÞdrdsa 2

ð t

T

QxðsÞds=s;

following from the representation of wxðtÞ, we find thatð t

T

ðwxðsÞ �QxðsÞÞds=sa
ð t

T

QxðsÞds=saKLðTÞ1�g

ð t

T

ðL 0ðsÞ=LðsÞÞds

a logðLðtÞ=LðTÞÞ;

where (2.14), the expression for dðtÞ, the inequality KLðTÞ1�g
a 1 and the

preceding one have been used. Thus we obtain

XxðtÞa tLðtÞ=TLðTÞ: ð2:21Þ

Let us now define the mapping F : X ! C½gðTÞ;yÞ by

FxðtÞ ¼ TXxðtÞ; tbT ; and FxðtÞ ¼ tLðtÞ=LðTÞ; gðTÞa taT :

In view of the definition F and (2.21) we see that F maps X into itself.

The inclusion FðXÞHX shows that the set FðXÞ is locally uniformly

bounded on ½gðTÞ;yÞ. Formulas (2.20), (2.21) and jwxðtÞja 1=4 lead to the

inequality ðFxÞ0ðtÞ ¼ TX 0
xðtÞa 5LðtÞ=4LðTÞ for tbT , holding for all x A X

which implies that FðXÞ is locally equicontinuous on ½gðTÞ;yÞ. From these

facts it follows via the Arzela-Ascoli lemma that FðXÞ is relatively compact in

C½gðTÞ;yÞ.
Finally it can be verified that F is a continuous mapping in the topology

of C½T ;yÞ. Let fxnðtÞg be any sequence in X converging to xðtÞ A X uniformly

on compact subintervals of ½T ;yÞ. We shall prove that FxnðtÞ ! FxðtÞ
uniformly on any compact subinterval of ½T ;yÞ.

To do so, we note that

jFxnðtÞ �FxðtÞjaT jXxnðtÞ � XxðtÞja tLðtÞ=LðTÞ
ð t

T

ðjwxnðsÞ � wxðsÞj

þ jQxnðsÞ �QxðsÞjÞds=s:

Therefore, to establish the above mentioned convergence, it su‰ces to show

that for n ! y

An ¼ t�1jwxnðtÞ � wxðtÞj ! 0 and Bn ¼ t�1jQxnðtÞ �QxðtÞj ! 0

uniformly on compact subintervals of ½T ;yÞ. The convergence of Bn follows

by applying the Lebesgue dominated convergence theorem as in the proof of

Theorem 2.1, using inequality (2.18) instead of (2.4).

To obtain the convergence of An one repeats the argument leading to the

convergence of the sequence An in the proof of Theorem 2.1, using this time the
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representation for wxðtÞ instead of the representation for vxðtÞ and the in-

equality QxðtÞa 1=8 instead of QxðtÞa 1=4.

Thus all the hypotheses of the Schauder-Tychono¤ fixed point theorem are

fulfilled, so that there exists xðtÞ A X such that xðtÞ ¼ FxðtÞ. By the definition

of F this function xðtÞ satisfies x 00ðtÞ ¼ qxðtÞxðtÞ ¼ qðtÞxðgðtÞÞg, tbT and hence

is a solution of equation (B). In view of (2.20) it is clear that xðtÞ A RVð1Þ.
The estimate (2.15) follows from (2.21) due to the definition of F.

Remark 2.3. If condition (2.11) is assumed, then Theorem 2.3 holds

when in (2.14) gðsÞ is replaced by s.

Condition (2.14) requires that QLðtÞ tends to zero at a particular rate.

One can remove that request at the cost of restricting the coe‰cient qðtÞ in

equation (B).

To wit, there holds

Theorem 2.4. If, in addition to (1.8), the condition

IeðtÞ :¼ t

ðy
t

qðsÞgðsÞg�1þe
ds ! 0; as t ! y

is satisfied for some e > 0, then equation (B) has a regularly varying solution of

index 1.

The proof is much the same as the one of Theorem 2.3. The only

di¤erence is the choice of the function xðtÞ which here satisfies for some m > 0,

xðtÞ ¼ xðTÞ for gðtÞa taT , ta xðtÞa t1þm for tbT and of the mapping

F : X ! C½gðTÞ;yÞ being here FxðtÞ ¼ T 1þm for gðTÞa taT and FxðtÞ ¼
XxðtÞ for tbT . Also, property (1.2) is used to get an inequality analogous to

QxðtÞa 1=8.

Remark 2.4. If condition (2.11) is assumed, then Theorem 2.4 holds

when in the condition IeðtÞ ! 0 as t ! y, gðsÞ is replaced by s.

As in the SV case we want to obtain a necessary and su‰cient condition

for the existence of the simplest case of RV(1) solutions of equation (B) i.e. of

the form xðtÞ ¼ tLðtÞ with LðtÞ ! c > 0 as t ! y. We prove

Theorem 2.5. Let (1.8) and (2.11) hold. Then equation (B) has a reg-

ularly varying solution xðtÞ of index 1 such that

xðtÞ=t ! c > 0; as t ! y ð2:22Þ
if and only if

IðaÞ :¼
ðy
a

qðtÞgðtÞgdt < y: ð2:23Þ
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Proof. The ‘‘only if ’’ part. This follows directly from the integral

representation for x 0ðtÞ obtained by integrating equation (B) over ½t;yÞ since

x 0ðtÞ ! x 0ðyÞ ¼ c as t ! y, and xðgðsÞÞ@ cgðsÞ due to (2.22).

The ‘‘if ’’ part. First notice that (2.23) implies IðtÞ ! 0 as t ! y, whence

due to (2.11),

QgðtÞ :¼ t

ðy
t

qðsÞgðsÞg�1
ds ! 0 as t ! y: ð2:24Þ

Moreoverð x

a

QgðsÞds=s ¼
ð x

a

ðy
t

qðsÞgðsÞg�1
dsdt ¼ QgðxÞ �QgðaÞ þ

ð x

a

qðsÞsgðsÞg�1
ds:

Due to (2.23) and (2.11) the right-hand integral and so the left hand one

converges to a constant A > 0.

Now we form the set X of positive functions xðtÞ A C½gðTÞ;yÞ which are

nondecreasing and satisfy

xðtÞ ¼ T for gðTÞa taT and T a xðtÞaBt for t > T ; ð2:25Þ

where B > 1 is an arbitrary fixed constant, and define the mapping F : X !
C½gðTÞ;yÞ by

FxðtÞ ¼ T for gðTÞa taT and FxðtÞ ¼ TXxðtÞ for tbT ;

where XxðtÞ is the solution (2.20) of the equation (2.19) with

qxðtÞ ¼ qðtÞxðgðtÞÞg=xðtÞa qðtÞxðgðtÞÞg�1
aMqðtÞgðtÞg�1; M ¼ Bg�1:

Hence

QxðtÞ ¼ t

ðy
t

qxðsÞdsa t

ðy
t

MqðsÞgðsÞg�1
ds ¼ MQgðtÞ:

Thus by (2.24), QxðtÞ ! 0 as t ! y and so QxðtÞa 1=8 for tbT and for each

x which is needed here as in the previous proof.

We follow the same line of proof as before.

The mapping F maps X into itself. The left-hand side inequality in (2.25)

for FxðtÞ is proved as before and the right-hand one is obtained as follows:

First we construct the normalized slowly varying function LðtÞ with

dðsÞ ¼ MQgðsÞ=s, so that MQgðsÞ=s ¼ L 0ðsÞ=LðsÞ.
Also due to the convergence of the relevant integral, LðtÞ ! C > 0.

Arguing as in obtaining (2.21) we obtain for tbT , XxðtÞa tLðtÞ=TLðTÞ.
The right-hand inequality in (2.25) for FxðtÞ follows by LðtÞ=LðTÞaB for

tbT , provided T > a is chosen su‰ciently large. Hence FðXÞHX.
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Now, from (2.25) one concludes that the set FðXÞ is locally uniformly

bounded on ½gðTÞ;yÞ.
Also, it follows from ðFxÞ0ðtÞ ¼ TX 0

xðtÞa 5B=4, tbT , that FðXÞ is locally
equicontinuous on ½gðTÞ;yÞ.

The proof of the continuity of mapping F is the same as in Theorem

2.1. An application of the Schauder-Tychono¤ fixed point theorem leads to

the desired result as before.

This result generalizes P. K. Wong’s Theorem 2.3 in [8] for the corre-

sponding equation without deviating argument.

Note that if (2.11) holds, then in (2.23) gðtÞ may be replaced by t.

3. The sublinear case ðg < 1Þ

The proofs of results in this section simply re-use the main idea of the

previous ones in this paper. Namely, to combine Proposition 1.2 pertinent to

the equation (A) (i.e. without the deviating argument) with the Schauder-

Tychono¤ fixed point theorem. The di¤erences between these and the previous

proofs in the text, consist in the construction of the set X and of the operator

F. It is our aim to stress only these facts and to neglect the calculations.

As in Section 2 we begin with consideration of SV solutions:

Theorem 3.1. Let (1.8) hold and let MðtÞ denote a normalized slowly

varying function which decreases to zero, with dðtÞ ¼ tM 0ðtÞ=MðtÞ < 0. Assume

in addition that there exists a constant k > 1 such that MðgðtÞÞ=MðtÞa k.

If there exist a constant K > 0 and T b a such that for tbT,

t

ðy
t

qðsÞMðgðsÞÞg�1
dsa�KdðtÞ;

then, equation (B) possesses a slowly varying solution xðtÞ such that xðtÞbMðtÞ
for tbT.

Here, for the proof we form the set X of continuous nonincreasing

functions xðtÞ on ½gðTÞ;yÞ which satisfy xðtÞ ¼ 1, for gðTÞa taT , and

xðtÞbMðtÞ=MðTÞ, and xðgðtÞÞ=xðtÞa k, for tbT .

The mapping F : X ! C½gðTÞ;yÞ is in this case defined exactly as in the

proof of Theorem 2.1 and the proof runs in the line of proof of Theorem 2.3.

Example 3.1. It is left to the reader to show that Theorem 3.1 applies to

the sublinear di¤erential equation

x 00ðtÞ ¼ qðtÞxðtyÞg; 0 < g < 1; 0 < y < 1;

where

qðtÞ ¼ ðlogðy log tÞÞgðt2 log tðlog log tÞ2Þ�1ð1þ 1=log tþ 2=log t log log tÞ:

150 Kusano Takaŝi and V. Marić



One chooses here MðtÞ ¼ 1=log log t. (One exact SV solution is xðtÞ ¼
1=log log t).

Next, we consider RV(1) solutions:

Theorem 3.2. Let (1.8) hold. If

t

ðy
t

qðsÞsg�1 ds ! 0 as t ! y;

then equation (B) possesses a regularly varying solution of index 1.

Here, choose T b a so that ð1�mÞTm b 1 for some 0 < m < 1, define the

set X of positive continuous functions xðtÞ to be exactly the same as in the

proof of Theorem 2.4. Also, define the mapping F : X ! C½gðTÞ;yÞ by

FxðtÞ ¼ T 1þm, for gðTÞa taT , FxðtÞ ¼ T 1þmXxðtÞ for tbT , where XxðtÞ is

given by (2.20).

Example 3.2. The sublinear retarded di¤erential equation

x 00ðtÞ ¼ qðtÞxðstÞg; 0 < g < 1; 0 < s < 1;

where qðtÞ@ k=t1þgðlog tÞd as t ! y, serves as an example when Theorem 3.2

can be applied.

If k ¼ 1=sg, d ¼ g and qðtÞ ¼ 1=sgt1þgðlog stÞg, it is easily checked that

xðtÞ ¼ t log t is one relevant solution.
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