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Abstract. Hopf surfaces with the infinite cyclic fundamental group are said to be

primary and their moduli spaces are studied by K. Dabrowski. We extend his results

to the moduli spaces for the secondary Hopf surfaces with abelian fundamental groups

which are di¤eomorphic to Lðp; qÞ � S1. The punctured disk D� is the moduli space

for the other cases.

1. Introduction

A Hopf surface is a compact complex surface whose universal covering is

W ¼ C2 � fð0; 0Þg. Hopf surfaces with the infinite cyclic fundamental group

are said to be primary and the others secondary. The holomorphic auto-

morphism groups of primary Hopf surfaces are determined by Namba [10] and

Wehler [12]. In the same papers the versal deformations of primary Hopf

surfaces are also given. Although the moduli space of all primary Hopf

surfaces does not exist, Dabrowski [2] gave the fine moduli space for h0 ¼ 2

primary Hopf surfaces and the coarse moduli space for degree zero primary

Hopf surfaces.

In the case of secondary Hopf surfaces with abelian fundamental groups,

there are the same kinds of moduli spaces for the complex structures on

Lðp; qÞ � S1. As we studied in [9], they are connected if and only if

q2 1�1 mod p.

In the case of secondary Hopf surfaces with non-abelian fundamental

groups, we review more explicitly the description of the covering transforma-

tions in [7] so that each family forms a fine moduli space. Li and Zhang [6]

also studied this case, but they were not concerned with the cases (D2) and

(D7).
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2. Versal families for secondary Hopf surfaces

For a compact complex surface X we denote hp;q ¼ dim HqðX ;WpÞ.
Then,

P
pþq¼k h

p;q ¼ dim HkðX ;CÞ. Now let X be a secondary Hopf surface.

Then, we have

dim H 1ðX ;CÞ ¼ 1

and hence h0;1 ¼ h1;0 þ 1. So, h0;0 ¼ h0;1 ¼ h2;1 ¼ h2;2 ¼ 1 and hp;q ¼ 0 for

the other ðp; qÞ. Therefore, the statement of Lemma 1 of [12] is still valid for

a secondary Hopf surface X :

h0 ¼ dim H 0ðX ;YÞ ¼ dim H 1ðX ;YÞ and H 2ðX ;YÞ ¼ 0;

where Y is the sheaf of holomorphic vector fields on X .

This means that for each secondary Hopf surface X there is a versal family

for X whose parameter dimension at X is equal to h0. We studied h0 in [9], as

we will state in the next section.

3. Moduli space for the complex structures on Lðp; qÞ � S1

Let pb 2, 0 < q < p, ðp; qÞ ¼ 1 and r ¼ expð2pi=pÞ. Any complex struc-

ture on Lðp; qÞ � S1 induces a complex structure on S3 � S1 as a finite

covering, which is a primary Hopf surface by Kodaira [5]. So, it is a quotient

of a primary Hopf surface by a torsion element gr ¼ g½r; r� with r A N and

r1GqG1 mod p defined by

grðz1; z2Þ ¼ ðr rz1; rz2Þ:

Remember that a primary Hopf surface is a quotient of W ¼ C2 � fð0; 0Þg by

f ¼ f ½a; b; l; s�, which is defined by

f ðz1; z2Þ ¼ ðaz1 þ lzs2; bz2Þ

with a; b; l A C, 0 < jaj; jbj < 1 and s A N [12].

So, we know that the secondary Hopf surface homeomorphic to

Lðp; qÞ � S1 is given as X ¼ W=G where p1ðXÞ ¼ G is generated by a torsion

element gr with r1GqG1 mod p and a contraction f ½a; b; l; s� which are

commutative, that is, f ½a; b; l; s� � gr ¼ gr � f ½a; b; l; s�. By a simple calculation

the commutativity condition is equivalent to

ð1Þ l ¼ 0; or ð2Þ l0 0 and s1 r mod p:

We use the abbreviation f0½a; b� for the diagonal contraction f ½a; b; 0; ��.
We call W=h f0½a; b�; gri a degree zero Hopf surface. A degree zero Hopf

surface W=h f0½b s; b�; gri has h0 ¼ 4 for s ¼ 11 r mod p and h0 ¼ 3 for
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s1 r mod p with sb 2 and h0 ¼ 2 for sD r mod p. A degree zero Hopf

surface W=h f0½a; b�; gri with a0 b s, b0 a s for any s1 r mod p has h0 ¼ 2.

The Hopf surface Xs ¼ W=h f ½g s; g; l; s�; gri with l0 0 has h0 ¼ 2 and is called

a degree sðb 1Þ or a non-diagonal Hopf surface. For the proof of the result

on h0 we refer to [9] Lemma 2.2.

Let s > 0 and s1 r mod p. The group Gs ¼ h f ½a; b; 1; s�; gri operates

freely and discontinuously on W �D� �D� by f ðz1; z2Þ ¼ ðaz1 þ zs2; bz2Þ and

grðz1; z2Þ ¼ ðrrz1; rz2Þ for ðz1; z2Þ A W and ða; bÞ A D� �D�. The complex

manifold Vs ¼ ðW �D� �D�Þ=Gs and the induced map ps : Vs ! D� �D�

from the projection form a versal family for Xs ¼ W=h f ½gs; g; 1; s�; gri by [9]

Theorem 2.5 (iii)(b).

We have also an analytic family V0 ¼ W �D� �D�=G0 with p0 : V0 !
D� �D� by taking G0 ¼ h f0½a; b�; gri. Note that if a0 b s then f ½a; b; l; s� is
conjugate to the diagonal contraction f0½a; b� ¼ f ½a; b; 0; ��; in fact, f0½a; b� � hs
¼ hs � f ½a; b; l; s� for hsðz1; z2Þ ¼ ðz1 þ lzs2=ða� b sÞ; z2Þ. Let N1 ¼ fða; bÞ A
D� �D� j a0 bk for any k1 r mod pg. Then, we can glue the family

p�1
0 ðN1Þ ! N1 of degree zero Hopf surfaces with the restriction of the above

versal family for Xs ¼ W=h f ½gs; g; 1; s�; gri on a su‰ciently small neighborhood

of ðgs; gÞ A D� �D� for each s > 1 with s1 r mod p. This is a basic technique

to construct the moduli space for h0 ¼ 2 Hopf surfaces.

Since there are still ‘‘jump’’ at l ¼ 0 in the family fXlgl AC with Xl ¼
W=h f ½gs; g; l; s�; gri and s1 r mod p, there are no global moduli spaces. In

fact, the degree s Hopf surfaces W=h f ½gs; g; l; s�; gri with l0 0 are biholo-

morphic to each other.

Let M ¼ kðD� �D�Þ be a Stein domain in C2 given in [2], where D� ¼
fz A C j 0 < jzj < 1g is the punctured open unit disk in the complex plane, and

kða; bÞ ¼
�
1
2 ðaþ bÞ; 14 ða� bÞ2

�
.

Theorem 1. We consider the complex structures on Lðp; qÞ � S1.

(1) When q ¼ 1 and p ¼ 2, we can fix r ¼ 1. There is an analytic family

of Hopf surfaces over M with non-diagonal Hopf surfaces at kðgs; gÞ with

s1 1 mod 2 which forms a fine moduli space for h0 ¼ 2 Hopf surfaces. M

gives also a coarse moduli space for degree zero Hopf surfaces.

(2) When q2 1 1 mod p and pb 3, we can take r1Gq mod p because

q�1 1 q mod p. There is no fine moduli space for h0 ¼ 2 Hopf surfaces.

MqM gives a coarse moduli space for h0 ¼ 2 Hopf surfaces and also a coarse

moduli space for degree zero Hopf surfaces.

(3) When q2 1�1 mod p and pb 3, we can take r1 qG1 mod p because

�q1 q�1 mod p. There is an analytic family of Hopf surfaces with r ¼ q over

D� �D� with non-diagonal Hopf surfaces at ðgs; gÞ for s1 q mod p and at

ðg; gsÞ for s1 q�1 mod p which forms a fine moduli space for h0 ¼ 2 Hopf
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surfaces. D� �D� gives also a coarse moduli space for degree zero Hopf

surfaces.

(4) When q2 D 1, q2 D�1 mod p and pb 3, we have to take r1
GqG1 mod p. There are an analytic family of Hopf surfaces with r ¼ q

over D� �D� with non-diagonal Hopf surfaces at ðgs; gÞ for s1 q mod p

and at ðg; gsÞ for s1 q�1 mod p and an analytic family of Hopf surfaces

with r ¼ p� q over D� �D� with non-diagonal Hopf surfaces at ðgs; gÞ for

s1�q mod p and at ðg; gsÞ for s1�q�1 mod p which form a fine moduli

space for h0 ¼ 2 Hopf surfaces. D� �D� qD� �D� gives also a coarse moduli

space for degree zero Hopf surfaces.

Here, in (3) and (4) we have to consider N2 ¼ fða; bÞ A D� �D� j a0 bk

for any k1 r mod p and al 0 b for any l1 r�1 mod pg and uðz1; z2Þ ¼
ðz2; z1Þ. We glue the family of degree zero Hopf surfaces p�1

0 ðN2Þ ! N2 with

the restriction of the versal family for Xs ¼ W=h f ½gs; g; 1; s�; gri on a su‰ciently

small neighborhood of ðgs; gÞ A D� �D� for each s > 1 with s1 r mod p and

also with the restriction of the versal family for W=hu � f ½g s;
g; 1; s� � u; u � gr�1 � ui on a su‰ciently small neighborhood of ðg; gsÞ for

each s > 1 with s1 r�1 mod p.

Proof. First we consider the moduli space for the degree zero Hopf

surfaces. Recall that the coarse moduli space for the primary degree zero

Hopf surfaces is given by M by the map W=h f0½a; b�i@W=h f0½b; a�i 7!
kða; bÞ A M. The degree zero Hopf surface di¤eomorphic to Lðp; qÞ � S1

is given by W=h f0½a; b�; gri with r1HqH1 mod p. Since the conjugation

by uðz1; z2Þ ¼ ðz2; z1Þ gives a biholomorphic map of W=h f0½a; b�; gri to

W=h f0½b; a�; gr�1i, we mainly consider the cases r1 q mod p and r1�q

mod p. They are contained in di¤erent connected components if and only

if q2 D�1 mod p as shown in [9]. In the cases (1) and (2) where q�1 1 q

mod p we have r�1 1 r mod p for any r1GqG1 mod p. So, on each con-

nected component the map W=h f0½a; b�; gri@W=h f0½b; a�; gri 7! kða; bÞ A M

gives a bijection between the set of biholomorphic classes of the secondary

degree zero Hopf surfaces and M, because its composite with the quotient map

from the set of biholomorphic classes of the primary degree zero Hopf surfaces

is bijective and the quotient map is surjective. In the case (2) we consider the

cases r1 q mod p and r1�q mod p separately and get two connected com-

ponents. In the case (3) we can fix r1 q mod p and see W=h f0½a; b�; griS
W=h f0½b; a�; gri if a0 b by [9] Lemma 1.1. Hence, D� �D� gives a coarse

moduli space. In the case (4) we consider the cases r1 q mod p and r1�q

mod p separately and get the result as in the case (2).

To get the moduli space for h0 ¼ 2 secondary Hopf surfaces we fix r at

first and consider W 0 ¼ W=hgri. In the case (1) where p ¼ 2 and q ¼ 1 we
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can fix r ¼ 1 and get gr ¼ gr�1 ¼ g�r ¼ g�r�1 ¼ �I . So, the family of h0 ¼ 2

Hopf surfaces over M is constructed in almost the same way as in the primary

case. We take a family of degree zero Hopf surfaces over M� fkðgs; gÞ for

some s > 0 with s1 1 mod 2g. For each s > 1 with s1 1 mod 2 we can glue

the above family with the restriction of the versal family for the degree s Hopf

surfaces W 0=h f ½g s; g; 1; s�i on a su‰ciently small neighborhood of kðgs; gÞ by

the basic technique mentioned above Theorem. Moreover, the argument of [2]

§ 9 for gluing together the versal families for the degree one (s ¼ 1) Hopf

surfaces can apply because gr ¼ �I commutes with any matrix. The con-

structed family contains every h0 ¼ 2 Hopf surface up to biholomorphic

equivalence and is versal at each fiber. So, it is a fine moduli space for

h0 ¼ 2 Hopf spaces. Only the di¤erence from the primary case is that the

family for the case (1) does not contain degree positive and even Hopf surfaces.

Also, it is easy to see that Hopf surfaces X ¼ W 0=h f0½b2n; b�i have h0 ¼ 2 in

this case.

In the case (2) we have q�1 1 q mod p. So, for any r1GqG1 mod p we

have r�1 1 r mod p and W=h f0½a; b�; gri@W=h f0½b; a�; gri. Hence, it is not

di‰cult to see that M qM gives also a coarse moduli space for h0 ¼ 2 Hopf

surfaces. Assume now that a fine moduli space for h0 ¼ 2 Hopf surfaces

exists. The congruence r1 1 mod p does not hold for at least one of r ¼ q

or r ¼ p� q. So, the degree zero Hopf surface X0 ¼ W=h f0½g; g�; gri with

rD 1 mod p must be contained in the family of the fine moduli space. Since

the versal family for X0 is W �D� �D�=G0, the family over MqM cannot be

fine at X0 by the argument of the proof of [2] Theorem 10.2. This depends on

the fact that k : D� �D� ! M does not have any local section near kða; aÞ ¼
½ða; 0Þ� A M.

Note again that in the cases (3) and (4) W=h f0½a; b�; gri is not biholo-

morphic to W=h f0½b; a�; gri if a0 b by [9] Lemma 1.1. So, each connected

component of the moduli space is not M but D� �D�. Also any degree s

Hopf surfaces with s1GqG1 mod p should be considered. Since W=h f0½b; a�;
gr�1i is biholomorphic to W=h f0½a; b�; gri, the versal family W � D� �D�=Gs

with Gs ¼ h f ½b; a; 1; s�; gr�1i for the degree s Hopf surface W=h f ½gs; g; 1; s�;
gr�1i with s1 r�1 mod p can be glued together with the family of degree zero

Hopf surfaces p�1
0 ðN2Þ ¼ W �N2=h f0½a; b�; gri, where N2 ¼ fða; bÞ A D� �D� j

a0 bk for any k1 r mod p and al 0 b for any l1 r�1 mod pg as before

by the basic technique. Now, we get easily a fine moduli space by gluing

the versal families for the h0 ¼ 2 Hopf surfaces together. The fiber over

ða; bÞ A D� �D� is W=h f0½a; b�; gri except W=h f ½b s; b; 1; s�; gri over ðb s; bÞ
and W=h f ½a s; a; 1; s�; gr�1i over ða; asÞ. In the case (4) we consider the

cases r1 q mod p and r1�q mod p separately and get two connected

components.
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Before ending this section we remark some misprints in [9]: p. 428 l.9

ðid þ f�Þy should read ðid � f�Þy and p. 430 l.6 qF=qsðH�1ðz1; z2; a; 0; a; 0ÞÞ
should read qF=qsðH�1ðz1; z2; a; 0; 0; aÞÞ.

4. Moduli spaces for Hopf surfaces with non-abelian fundamental groups

In the cases that the fundamental groups are not abelian, we know that the

secondary Hopf surfaces, having the isomorphic fundamental group G, are

di¤eomorphic to each other essentially by [3] Theorem 10. We see moreover

that the moduli space is D� for each di¤eomorphic class, where D� ¼ fz A C :

0 < jzj < 1g is the punctured open unit disk in the complex plane.

The covering transformation groups G can be embedded in GLð2;CÞ due

to Kodaira [5]. We put H ¼ fg A G j jdet gj ¼ 1g and K ¼ fg A G j det g ¼ 1g.
Recall that G is an extension of H by Z and is said to be decomposable if it

is isomorphic to the product group Z�H and indecomposable otherwise. We

may assume that H is a finite subgroup of Uð2Þ.
When G is decomposable and non-abelian we gave in [7] complete families

(C1) to (C6) with the contraction parameter g in the punctured disk D�. They

are actually the moduli spaces, since the di¤erent contractions have di¤erent

determinants and hence their groups G are not conjugate each other in

GLð2;CÞ.
When G is indecomposable we also gave in [7] the families (D1) to (D7)

with the contraction parameter g in the punctured disk D�.

In both cases only the constant multiple of the identity matrix gives their

holomorphic automorphisms and hence h0 ¼ 1. So, it is not di‰cult to see

that the family is a versal family for each fiber (cf. [6]).

To be complete we review the explicit families of such Hopf surfaces over

D� which form fine moduli spaces with some corrections to [7] (cf. [8]).

Let a be a primitive m-th root of 1, e ¼ expð2pi=5Þ, rn ¼ expðpi=nÞ, z ¼ r4,

g A C with 0 < jgj < 1 and I ¼ 1 0

0 1

� �
. We denote by hh1; . . . ; hki the sub-

group generated by h1; . . . ; hk.

(C) The case when G is decomposable and not abelian: G ¼ hgIi�H

where H ¼ Hi is a finite subgroup of Uð2Þ which operates freely on S3

classified by Hopf and Threlfall-Seifert (Cf. [11] p. 111 Th. 1 or [1] p. 347).

(C1) G ¼ hgIi�H1 where H1 ¼ haIi� B 0
2kð2lþ1Þ and K ¼ A2ð2lþ1Þ with

ð2kð2lþ 1Þ;mÞ ¼ 1, 2lþ 1b 3 and kb 3. Note that B 0
2kð2lþ1Þ ¼

�
h 0 ¼

b 0

0 b�1

� �
; h ¼ 0 d

d 0

� ��
such that b and d have finite orders 2lþ 1 and 2k

respectively. Note also that K ¼ A2ð2lþ1Þ is generated by �h 0.
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(C2) G ¼ hgIi�H2 where H2 ¼ haIi� Bn and K ¼ Bn with ðm; 4nÞ ¼ 1

and nb 2. Here Bn ¼
0 i

i 0

� �
;

rn 0

0 r�1
n

� �� �
is the binary dihedral group

of order 4n.

(C3) G ¼ hgIi�H3 where H3 ¼ haIi� C and K ¼ C with ðm; 6Þ ¼ 1.

Here C ¼ i 0

0 �i

� �
;
1ffiffiffi
2

p z3 z3

z �z

� �� �
is the binary tetrahedral group of order

24.

(C4) G ¼ hgIi�H4 where H4 ¼ haIi� C 0
8�3k and K ¼ B2 with ðm; 6Þ ¼

1 and kb 2. Here C 0
8�3k ¼

i 0

0 �i

� �
;
offiffiffi
2

p z3 z3

z �z

� �� �
is a group of order

8 � 3k and o is a primitive 3k-th root of 1.

(C5) G ¼ hgIi�H5 where H5 ¼ haIi�D and K ¼ D with ðm; 6Þ ¼ 1.

Here D ¼ z 0

0 z�1

� �
;
1ffiffiffi
2

p z3 z3

z �z

� �� �
is the binary octahedral group of

order 48.

(C6) G ¼ hgIi�H6 where H6 ¼ haIi� E and K ¼ E with ðm; 30Þ ¼ 1.

Here E ¼ e3 0

0 e2

� �
;

0 �1

1 0

� �
;
1ffiffiffi
5

p e4 � e e2 � e3

e2 � e3 e� e4

� �� �
is the binary icosa-

hedral group of order 120.

(D) The case when G is indecomposable: G is given as

G ¼ G0 U gG0; G0 ¼ hg2Ii�H and g ¼ gu

in the following cases from (D1) to (D6) and in the exceptional case (D7)

G ¼ G0 U gG0 U g2G0; G0 ¼ hg3Ii�H and g ¼ gu;

where H is a finite cyclic group or one of H in the case (C) and u A GLð2;CÞ.
(D1) The case H is abelian and K is of order mK b 3: We can take

u ¼ 0 1

1 0

� �
and the case is divided into the following three cases.

(D1-1) H ¼ haIi� K with K ¼ b 0

0 b�1

� �� �
where b has the finite

order mK b 3 and ðm;mKÞ ¼ 1.

(D1-2) H ¼ haIi� b 0

0 b�1

� �� �
� c 0

0 �c�1

� �� �
where b and c have

finite orders 2lþ 1b 1 and 2k0 with k0 b 3 respectively. Moreover, we have

ðm; 2lþ 1Þ ¼ ðm; 2Þ ¼ 1 and mK ¼ 2k0�1ð2lþ 1Þ.

(D1-3) H ¼ haIi� b 0

0 b�1

� �� �
� c 0

0 �c

� �� �
where b and c have

finite orders 2lþ 1b 3 and 2k0 with k0 b 3 respectively. Moreover,

ðm; 2lþ 1Þ ¼ ðm; 2Þ ¼ 1 and mK ¼ 2ð2lþ 1Þ.
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(D2) The case H is abelian and K ¼ fGIg: H ¼ haIi� c 0

0 �c

� �� �

and u ¼ 0 1

1 0

� �
, where c is a primitive 2k-th root of 1 with kb 3 and

ð2;mÞ ¼ 1.

(D3-1) H ¼ H1 as in (C1) and u ¼ 0 1

1 0

� �
.

(D3-2) H ¼ H1 as in (C1) and u ¼ 0 �i

i 0

� �
.

(D4 & D5) H ¼ haIi� Bn, K ¼ Bn as in (C2) and u ¼
r2n 0

0 r�1
2n

� �
where (D4) is the case nb 3 and (D5) is the case n ¼ 2.

(D6-1) H ¼ haIi� C, K ¼ C as in (C3) and u ¼ z 0

0 z�1

� �
.

(D6-2) H ¼ haIi� C 0
8�3k with kb 2, K ¼ B2 as in (C4) and u ¼

z 0

0 z�1

� �
.

(D7) H ¼ haIi� B2, K ¼ B2 as in (D5) and u ¼ 1ffiffiffi
2

p z3 z3

z �z

� �
.

We will give an outline of proof for the indecomposable cases (D1) to

(D7). We may assume K0 fIg, since G is abelian otherwise.

Let H be a cyclic group of order mH at first. We may assume that the

generator is
d 0

0 d n

� �
. The matrix u is also determined as u ¼ 0 t�1

t 0

� �
in

this case by [3] Lemma 6 and Proposition 8. We need the condition n2 1 1

mod mH because the conjugation of the generator by u should be contained in

H. Since u does not commute with H, we get the condition nD 1 mod mH .

Note that n2 1 1 mod pk implies n1G1 mod pk for odd prime p. In case

p ¼ 2, n2 1 1 mod 2k implies n1G1 mod 2k for k ¼ 1; 2 and n1G1 or n1
G1þ 2k�1 mod 2k for kb 3. Let mH ¼ pk0

0 pk1
1 . . . pkl

l be the prime decom-

position with p0 ¼ 2.

(D1) Assume first that n1G1 mod 2k0 . Then, we get the case (D1-1).

When k0 b 3 and n1�1þ 2k0�1 mod 2k0 , we get the case (D1-2). When

n1 1þ 2k0�1 mod 2k0 with k0 b 3, it is easy to see that K ¼ fGIg if and only

if n1 1 mod p
kj
j for every odd prime pj. Since we treat the case K0 fGIg in

(D1), the case when n1 1þ 2k0�1 mod 2k0 with k0 b 3 and nD 1 mod p
kj
j for

some odd prime pj is named (D1-3). We see also that the matrix u above with

any t A C� is conjugate to u with t ¼ 1 in these three cases.

(D2) This is the remaining case when n1 1þ 2k0�1 mod 2k0 with k0 b 3

and n1 1 mod p
kj
j for every odd prime pj. Note that the case K ¼ fGIg is

studied separately in [3] p. 229 and u is determined as above in the inde-

composable case. Also, mH ¼ 2ð2lþ 1Þb 6 in the case (D2) in [7] should be
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corrected to mH ¼ 2k0ð2lþ 1Þ with k0 b 3. For the matrix u we can take

t ¼ 1 in the same way as in the case (D1).

When K is not abelian, [3] Lemma 7 and [4] Lemma 7 0 showed that K and

u are uniquely determined in the cases (D4) to (D7). In [7] the case (D6-2)

was missing. Remark that we have to take kb 2 for C 0
8�3k in the cases (C4)

and (D6-2) because the action has fixed points when k ¼ 1.

Now, we have only to check the case where K is abelian and H is not

abelian. So, we may assume that H ¼ H1 as in (C1). Since K ¼ A2ð2lþ1Þ, we

are concerned only with Step 3 of [3] pp. 235–236. Hence, the group G is

isomorphic to one of the non-isomorphic groups hh 0; h; gu1i and hh 0; h; gu2i,

where h 0 ¼ b 0

0 b�1

� �
, h ¼ 0 d

d 0

� �
, u1 ¼

0 1

1 0

� �
and u2 ¼

0 �i

i 0

� �
. We

get the case (D3) and no others.
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