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ABSTRACT. Let p e (0,0) and BY be the class of analytic functions f in the unit disk
D with f(0) = 0 satisfying | /()] < 1/(1 —|z/*)?. For zo,z1 € D, w; € C with zy # 2,
and |wi| < 1/(1 = |21*)?, put V?(z0;z1,w1) be the variability region of f'(z9) when f
ranges over the class Bf with f7(z1) = wy, ie., VP(z0;z1,w1) = {f'(z0) : f € B and
f'(z1) =wi}. In 1988 M. Bonk showed that V'!(zg;z;,w;) is a convex closed Jordan
domain and determined it by giving a parametrization of the simple closed curve
0V1(zo;2z1,w1). He also derived distortion theorems for %11 as corollaries. In the
present article we shall refine Bonk’s method and explicitly determine V7 (zo;zy,w;).

1. Introduction

For aeC and r >0, set D(a,r) ={zeC:|z—a| <r} and D=D(0,1).
For ceD and 0<p<1 we also set A(c,p) ={zeD:|z—c|/|l —¢z| < p}.
Let (D) be the class of analytic functions in the unit disk D endowed with
the topology of uniform convergence on compact subsets of D. Let pe
(0,0). For a function f e # (D), we put

w(f:2) = (1= 12)1f'(2)l,  zeD.

A function f is called a p-Bloch function provided

1/ llgr = sup ,(f,2) = sup(1 = |z1*)”| /' (2)]
zeD zeD
is finite. We denote by B” the complex Banach space consisting of p-Bloch
functions f on D normalized by f(0) =0: B’ ={fe#(D): f(0)=0,| /g
< w}. We also denote by Bf the closed unit ball of B, ie.,

B ={/eB":|fllg <1}

In [6] and [2], Avhadiev, Schulte and Wirths studied some extremal problems
on B and derived sharp inequalities for the first and the second coefficients of
analytic functions f(z) = a1z + az*> + a3z> +--- in BY.
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If p=1, then a function f e Bl s simply called a Bloch function. In
[3], Bonk proved that the variability region V'(zo;z1,wi) = {f"(z0) : f € B',
f'(z1) =wy and ||f|lg <1} for zp,z; €D, w; e C with z5 # 2z and |w| <
(1- |zl|2)_1 is a compact convex subset of C, and that it is a closed Jordan
domain. He also determined it by giving a parametrization of the simple
closed curve 0V (zg;z1,wy).

In the present article we shall determine the variability region V?(zy;z1,w;)
for f’(zo) when f ranges over the class B with f'(z;)=w, ie,
VP (zg;z1,wi1) == {f"(z0) : £ € BY, f'(z1) = w1}, where zp,z; €D, w; e C with
z0 # z; and |wi| < 1/(1 — |z|*)”.  We shall also give sharp distortion estimates
as its corollary. When p = 1, for related results see [4], [5], [7] and [8]. For
aeD set

74(2) = IZ—;;’ zeD.
Then 7, is a conformal automorphism of D and r;l =1_,. For aeD and
f e # (D) put

z

z _ _ 2\p
Sl Q)TL0)PdC = JO r <1C ;2) ((11 - 2)2” i,  zeD.

It is easy to see that 7,!=T_, From the identity |c/(z)|/(1 — l7a(2)]?) =
1/(1 = |z]*) we have

tp(Taf,2) = (1= |27 1f " (2al2))] [24(2))”
= (1= [w(@) )1 (@) = #,(f 7a(2)- (1)

Therefore T, acts on B’ as an isometry.
It is not difficult to see that for any #,¢p € R

1,16 = |

0

V"(eiq’zo; ez, emwl) =l VP (zo; 21, w1). (2)
For any ae D we also have

1

7}(20)"

By virtue of (2) and (3), without loss of generality we may assume z; = 0,
wy =ae[0,1] and zo =re (0,1). We put for zpeD and 0 <a <1

Vi(zo) = V7(20;0,) = {f(z0) : f € B ()}, (4)
where B! (x) = {f € B”: f'(0) = o, || f]lgr < 1}. Note that V?(zo) = V7 (|z|).

VP (t4(z0); Ta(z1), w1 /7 (21)") = VP(z521, wy). (3)
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For any fixed o« € [0,1] and r € (0, 1) it is easy to see that the set V7 (r) is a
compact convex subset of C. This is a consequence of the fact that B! (a) is
also compact and convex in #(D). We next see that « is an interior point of
VP(r). It is proved by using

w2 3

G(z) =az+ 3,2

for w which belongs to D(, pr?). Then we have G € BY(a), because G(0) = 0,
G'(0) = o and

G/ (N(1 =) =] 221 - |2y

< (a+ plzl)(1 = |21)7 < (14 plz*)(1 = |21 <
Furthermore it follows from

v — o
G’(r):oz—l—‘ —rr=w
r

that we V2(r). As a result, since D(a, pr?) = V?(r), « is an interior point of
Vi)

Thus V7 (r) is a closed Jordan domain, i.e., 0V?(r) is a simple closed curve
and V7 (r) is the union of 0V (r) and its inner domain.

We note the following trivial but useful fact:

LemMa 1. If | f'(z0)| = — = for some f € B (x), then f'(zy) € VI (zo).

(IH

2. Extremal functions and main results

To state our theorem explicitly we need to introduce some functions which
are extremal for the results in this article.

Let M(1) = \/2p+1(21’“) (1—), 0<t<1. Then M(z) is strictly
increasing on [0,1/4/2p+ 1], strictly decreasing on [1/4/2p+1,1] and
M(1/4/2p+1)=1. The function

P
B(Z):_\/2p+l(2p+l> 2, ,eD

2 2p

satisfies

2 1\’
w83 =TT (T EO - Y = () <1, zeD
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with equality if and only if |z|=1/y/2p+1. Let m:[0,1] — [0,1/4/2p + 1]
be the inverse function of the restriction M |[011 ik The function m is
strictly increasing with m(0) =0, m(1) =1//2p + 1.
A half class of extremal functions is obtained by putting for o € [0, 1]
Bl(Z) = Tm(a)B(Z)

= JO B/(Tm(a) (é,))fr/n(a) (é’)Pdé’

_ 2+ 1\ [ (1= m(2)*)! (m(2) = )
=Vt 1( 2p ) Jo (1 —m(a)) ™! o ®)

Precisely by integration and M (m(a)) = o we have

2p(2p — Dm(x)’

" {1 + (2p — Ym(2)* = 2pm(a)z
2
(1 =m(2)2)”

B,(z) =

—1-(2p- 1>m(a)2},

when p # 1, and
o m(a)(1 — m(x)?)z

1

when p=13. By (1) we have p,(B,,z) <1 with equality if and only if

tm@(2)] = 1/1/2p +1. From
B)(z) = m(@; 1)”0 — m(2)>) (m(x) - 2)

(1 = m(a)z)**!

we obtain
B)(0) = +/2p+ 1(%) m(a)(1 —m(2)*)? = M(m(x)) = a. (6)

Thus for each «€[0,1] the function B, satisfies B,(0) =0, B.(0) =« and
Uy(By,z) <1 on D with equality if and only if |7, (2)]=1/y/2p+1. In
particular B, € B (x).

THEOREM 1. For zpe A(m(a),1/+/2p + 1) the relation B)(zo) € 0V (zo)
holds. ~ Furthermore for f € B! (), f'(z0) = BL(zo) holds if and only if f = B,.

We shall prove Theorem 1 in Section 3. By Theorem 1 and V?(zp) =
VP(|zo]) we have for fixed re (0,1) the mapping 0 — B.(re') gives an arc
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contained in 0V,(r), whenever re e A(m(x),1/y/2p +1). By an elementary
calculation we have

) (g A 1<1—m<a>2>>_

2+ 1—mx)?  2p+1—m(x)?

Hence
D 071— 2p + 1lm(a)
V2p+ 1 —m(a)
is the largest disk with center 0 which is contained in A(m(x),1/4/2p + 1) and
1 2p+1
p(o. +/2p + Im(a)
2p + 1+ m(a)
is the smallest disk w1th center 0 which contains A(m(«),1/4/2p +1). Fur-
thermore if zp € 04(m(x),1/+/2p + 1), then we have
:up(vaZO) = ﬂp(Tm(a)B» z0) = /‘p(Ba Trn(oz)(zo)) = M(|Tm (o) (ZO)D =1 (7)
By Lemma 1, this shows B.(z) € dV?(zp), when zo € dd(m(a),1/1/2p + 1

From these considerations it seems natural that the followmg theorem holds.

THEOREM 2. For o €0,1] and re (0,1) the variability region VI(r) is a
convex closed Jordan domain bounded by OVI(r).

2p+1m(a)
Tm(m

(—m, 7] 3 0 — B.(re").

(ii) For 71\7/%?:(? —lj/zp%ilm(“ , the boundary OV?P(r) is the union
of two arcs I'y and I'y. Here I'y is given by the mapping [—0,(r),
0,(r)] 2 0 — B.(re), where

2p+1—m(@)r? + 2p+ Dm(x)* — 1
4prm(or) '

(1) ForO<r< the boundary VP (r) is given by the mapping

0,(r) = arccos

The arc Ty is the circular arc contained in 0D(0,(1 —r?)7") with
endpoints B! (re"’")) and B!(re"")) that passes through the point

(1—r3)7".
(iif) Forwz\/.—*i m < r < 1, the boundary OV (r) coincides with the whole
Y m(a

circle dD(0, (1 —r?)77).
Furthermore f'(r) = B.(re') holds for some f e B (x) and

(r.0) ¢ <0’1 —V2p+ 1m(oc)> <R

2p+1—m(a)
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or

2p+ 1m(ar) 14 /2p+ lm(a)
V2 +1=m(a) /2p+ 1+ m(x)

if and only if f(z) = e B,(e"z).

To show I'; = dVP(r) in case (i) and dD(0, (1 —r?)™") = VP (r) in case
(iii), we shall construct a function f € BY(«) satisfying f’(r) =wy for any
wo € I’y in case (i) and for any wpe dD(0,(1 —r*)™") in case (iii). For
ael0,1), 1e(0,p] and 6 € R put

(r,0)e|l—

X (=0:(r), 0x(r)),

_[ (1-a)(a=0)
Fu,0(2) = Jo h, 1/\/2,1“1{)(1 — aC)HH{l _ (e—i()é’)z}ﬂ*i d

¢, (®)

where h(Z,x) = x(1 —x2)* 0<x <1, is strictly increasing on [0,1/v27 + 1]
and strictly decreasing on [1/v24+ 1,1]. We note that

: __ NMAa)
F(IAO(O) - h(;n, l/m) (9)

and

(1 —a*)’|a—z|

(O 1NV2A+ D)1 — az|* 1 = (e-i02)*)P~

ty(Fai.0,2) = (1 — \z|2)”h

= (1—|z%7 Ja(2)] [74(2)]
h(, 1)V27 + D1 = (e=02)* |7~
! (1= |23

TR NI [1 = (e02)2P"

2 p=2
@) [ 1-F
h(, 1/V22+ 1) \|1 = (e70z)?
<1 (10)
with equality if and only if |z,(z)| = 1/v24+1 and e “z€eR.

ProposITION 1. Let a € [0,1].

(1) If a€[0,1), then for any zoeD\A(m(a),1/\/2p+1) there exists
a unique pair (a(zo),A(z0)) with 0 < A(zg) < p and 0 < a(zp) <

1/v/2p+ 1 such that



Sharp distortion estimates for p-Bloch functions 23

h(A(z0),a(z0)) = ah(A(z0), 1/4/24(z0) + 1), (11)
1

|Ta(z) (20)| = m (12)

The functions a(zg) and A(zg) are continuous on D\A(m(a),

1/4/2p+1).
(i) If a=1, then for any zo e D(1/2,1/2\[4(1/+/2p +1,1/3/2p + 1)U
{0,1}] there uniquely exists A(zo) such that

1
LN el BN ER S (13)

The function A(zy) is continuous on D(1/2,1/2\[4(1/\/2p + 1,

1//2p + 1) U{0,1}].

Combining Proposition 1, (9) and (10) it follows that F,.) 5z, € B} («)
and Fu/(zo).,i(m)ﬂo (z0) € OD(.O7 1/(1 — |z0/%)?), where 99 = argzp. This and some
more analysis on behavior of Fu’(ZO)’ A(:O),BO(ZO) will complete the proof of
Theorem 2. See Section 4 for details. Furthermore as a consequence of

Theorem 2, we obtain the following corollary.
COROLLARY 1. Suppose a€[0,1] and f € B} (x).

(1) For |Z| < 14++/2p+1m(a)

V2t 14m()
P(1 = m(e)®) (m(a) — |z
Re f'(z) = B(|2]) = \/m<2p2; 1) (1 (0)°)" (m() — |2])

(1= m(e)|z})**!

. . ) 1++/2p+1m(a) . . -
with equality at z=re", re <0,4\/m+m(a)) if and only if f(z) =

eB,(e7z). In particular, we have Re f'(z) > 0 for |z| < m(«).

(i) For |z| < V2t

\ 2p+1—m(a)

Pl _ 2\p Z
= Bi(-leh = VT () B

with equality at z=re”, re (O,l— M), if and only if f(z) =
0B a0z ViG]

The proof of Corollary 1 will be given in Section 3. The following
corollary is obtained directly by integrating inequalities in Corollary 1.
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COROLLARY 2. Suppose o€ [0,1] and f € B (a).

. 144/ 2p+1m(a)

(i) For |z| < By Ty
z=re", if and only if f(z) = e"B,(e7z).

.. 1—+/2p+1m(x) . .

(i) For |z| < arriomi)’ we have |f(z)| < —B,(—|z|) with equality at
z=re", if and only if f(z) = —e?B,(—e "z).

, we have Re f(z) > B,(|z|) with equality at

From Corollary 1 and the Wolff-Warschawski-Noshiro Theorem it follows
that f € B7(a) is univalent in D(0,m(x)), when 0 < o < 1. Since Bl (m(x)) =
0, B, is not univalent in any larger disk D(0,m(«) +¢) for any &> 0.

COROLLARY 3. The radius of univalence for BY(«) is m(x). More pre-
cisely, if o€ (0,1] and f e B («), then f is univalent in D(0,r) for some
r > m(e) unless f(z) = eB,(e7"z) for some 0eR.

3. Proof of Theorem 1 and Corollary 1

First, we consider the case that o« €[0,1) in Theorem 1. We need the
following lemma.

Lemma 2.  Let Dy and D, be disks with ¢; € Dy and ¢, € D,.  Suppose that
F :D) — Dy is a conformal mapping with F(c1) = c3. Let op, and Jp, be the
hyperbolic distances on Dy and D, respectively. If f : Dy — D, is an analytic
Sfunction with f(c1) = ¢z, then

op,(f(2),¢2) <op,(z,c1), zeDy.
Furthermore f(z9) = F(zo) at some zy € Di\{c1} holds if and only if f =F.
We can easily verify Lemma 2, and so we omit its proof.

PROOF (Proof of Theorem 1 in the case then 0 <o < 1). Let f e B/ (a).
Then from 7_,,, f € BY(«) we have for |z < 1/4/2p+1

/ 1 2p+ 1V
|(T—m(a)f) (Z)| =< (1 - |Z|2)[7 < < 2p )

and by M(m(x)) = o, we have

N 2 I
(o) (m) = 2 = /T (%) () = ym(),

_ i1\’ - _ : 1 -
where y, = /2p + lp< 5 ) . Letting D = {ze C:|z| < m} and D, =
{w eC:|wl < (2’;—;1> }, (T,m@)f)' is an analytic mapping of D; into D, with
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(T /) (—m(2)) = y,m(2). Applying Lemma 2 we have for |z| < 1//2p + 1

5D2((Tfm(a)f)'(2)7 7pm(2)) < 0, (2, =m(a)). (14)
Take zo € A(m(x),1//2p + 1) = 1_(,y(D1) with z # 0 arbitrarily and put

21 = Tpu(x) (20) (€ Dl). Let Dy be the closed hyperbolic subdisk of D, with
center y,m(a) and radius dp, (z1, —m(e)). Then by (14) we have (T- f)'(z1)
e Dy. Thus

f/(T—m(a) (Zl))fl_m(a) (Zl)p € Dy.
This implies
ey L=m@Y) o
f(zo) € (1— m(oc)Zo)zp Do.
Hence we have
%ﬁ .
(1 —m(a)zo)™

Since B(z) = (T B)'(z), we have (T_,,,B,) (z) = B'(z) = —ypz.  Thus
(T,,n(a)Bz)’ is a conformal mapping of D; onto D, with (T m(I)Ba)'(—m(oc)) =
yp,m(2). In particular we have (T_()B2)'(z1) € 3Dy and hence

Vap(Z()) c

(15)

/ (1= m(2)*)"
P e

Since B} (zp) € VP(zp), it follows from (15) and (16) that B (zo) € VP (zo).
Next, we prove the uniqueness. Assume that zoe A(m(x),1/v/2p + 1)
with zg #0 and f'(z)) = Bl(z) for some feB)(a). Then we have
(T_p /) (21) = (T—p)B) (z1), Where z; = 7,5(z0). Applying the unique-
ness part of Lemma 2 at z;(# —m(x)) we obtain (7, /)" = (T_pxB.)" and
hence f' = B,. Since f(0) = B,(0) =0 we have f = B,. O

Dy, (16)

ProOF (Proof of Corollary 1 in the case that 0 <a < 1). We use the
14++/2p+1m(x)
,/2p+1+m(7,)> and put
21 = Ty (r).  Since (T B,)'(z) = —7,z maps D; conformally onto D, and
=771 < y,m(x), we have

same notation as in the above. Take zyp=re (O,

min Rew = —VpZ1 = V,;Tm(a)(r)
w eDo

and hence for f e BY(x)

Re [ (T (o) (21)) T (21)7 = Re(T (o) ) (1) = =7 Tin(o) (1)
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This implies
Re f/(r) = Re [ (T m(z)(21)) = =7 Timo) (1) Ty ()" = By (7). (17)
It is not difficult to see that equality holds in (17) if and only if f = B,.

p _ i0 14++/2p+1m(a)
Now let fe®B{(a) and {y=rpe™ with 0<ry < \/Eﬁﬂnu) and 6) e R.
Applying (17) to f(z) = e f(e™z) e B (o) at ro we have

Re f'(¢o) = Re f'(ro) > B}(ro) = B,(|%])
B,

with equality if and only if f = ie., f(z) =e®B,(e"z).
%)

Take zyp = —r with re L Ve ARG P 21 = Ty (—7). Since 0 <
\/2p+1 m(a)
ypm(e) < —7,z1, we have

max |W| = =1 = _ypfm(a)(_r)'
weDy

Hence for f € BY(x) we have

(2o (20) ) (20)°] < =0Ty (—7)

and thus
1/ (=1)] < =7pTn(e) (=) Ty (=7)" = By (=7) (18)

with equality if and only if f = B,.

e B : — _roei® Wi 1=y/2pt1m(e)
Let fe®Bi(x) and {; = —rpe’™ with 0 <ry < T and 0 eR.

Applying (18) to f(z) = —e f(—e™z) e B (x) at —ry we have
f'(&o) = | (=ro)l < Bl(=ro) = Bi(~[&l)
with equality if and only if f = B, ie., f(z) = —e™B,(—e z). N

In order to prove Theorem 1 in the case that o = 1, we need the following
result known as Julia’s lemma.

Lemma 3 (Julia). Let g be an analytic function on DU {1} with g(1) =1
and |g(z)| <1 for zeD. Then f=g¢g'(1) >0 and

1 -9()° |1—Z|
L=y~ 1=z

Equality occurs in (19) at zyp € D with wy = g(zo) if and only if

zeD. (19)

l—wyl—-12p

T (9(2)) =

TZU (Z)

1—wp1—12z
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For a proof of the inequality (19) see [1, Theorem 1-5]. For a proof of
the uniqueness part see [8].

PrOOF (Proof of Theorem 1 in the case that « =1). First we note that
m(1)=1/4/2p+1. We consider the following composite functions to apply
Julia’s lemma in the disk A(m(1),1/y/2p+1). For f e BI(1) put

(Y (o =
gf(Z) - <2p + 1) (T*m(wf) ( \/2[7—+1_)
_< 2» f?(M@+IU@> 1 (20)

2p+1 Cp+1)—z J(1-z/2p+1)7

Then we have for |z| < 1

01 = (5227) (2o { ~ o)) | e ( -
=\ +1 - V2 +1 W\ 2p
(2p/(2p + 1))pﬂp(fa T_,,,(])(—Z/ V Zp + 1))
(1= Iz/v2p + 11
< p/p+ 1))”2 <1
(I =lz/v2p + 119"
and ¢gr(1) = f/(0) =1. In view of the inequality
" e — / =z 1 — z 2 N
14+ Re(f"(0)2) + VGRS e L+ plz[”+--,
/"(0) =0 holds for each f e ®B7(1). From this and (20)
() V21 17(0)
gr(1) 2 f'(0)
Applying Lemma 3, we have

P

+1=1

g7(1)

g -
T 2l

Since we can rewrite (21) as
(2) - 1
I 1050

it follows that

— 1 o(z)
9(z) € D<1 1002’1 +5(z)> (22)
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for all zeD. Take zoe A(m(l),1/4/2p+ 1) arbitrarily. Substituting z =
—v/2p + 17,1)(20) in (22), we obtain

/ p+1 ! / D 1 5(20)
Sz e ( 2p > ) (0) D(l +8(z0) 1 +5~(zo)>’ @)

where
5(20) = 5(—\/ 2p + lfm(l)(Z())).
Thus we have
2p+ 1\’ — 1 d(z0)
VP ( ) / D _ , _ . 24
1(20) < 2p ) (20) (1 +d(z0) 1+(z0) @)

Now let us consider the case that f = By. Since By = T, B, we have

2p \ / z
g&(ﬂ::(mr+1>(7lmm(ﬂmnBD <_v6;i7>

)7 (5)-
2p+1 2p+1 '

This implies gp, (z) € ID(1/(1 +(z)),0(z)/(1 +(z))) for all zeD. Hence we

have
2+ 1>” 51 3(z0)
B! = ! 76D s ’ 5 ' >
1(z0) € < 2% 1) (20) <1 +6(z0) 1+9(z0) )

Since Bj(zo) € VI (z0), we infer from (24) and (25) that B{(z) € aV{(zo).
Finally, we deal with uniqueness. Suppose f’(zo) = Bj(zo) for some
feBY(1) and zpe A(m(1),1/\/2p+1). Then we have gr(z1) =gp (z1) =
z1, where z; = —/2p + 17,,1)(20). By Lemma 3 we obtain gs(z) =z in D
and hence f'(z) = B{(z) in 4(m(1),1/4/2p+1). By the identity theorem for
analytic functions, the relation f’(z) = Bj(z) holds on D. From this and f(0)
= Bj(0) =0 we have /' = B;. Therefore we complete the proof of Theorem 1.
O

1

2p+1’

(ii) in Corollary 1 never occurs. We use the same notation as in the proof of

Theorem 1 in the case that a =1. Letzg=r¢ (O,lj/z_ ﬁl"}(lg) ) = <(), V;f#).
m
Then by (23) we have !

PRrOOF (Proof of Corollary 1 in the case that « = 1). Since m(1) =

,1—6(r)
1+6(r)

P
Re £'2) > (252 10,0
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Since {12 = Rle ZRiz,l and 0(r) =0(—/2p + 17,01)(r)),
2p + 1\
Re )2~/ #1250 oy (00 ()" = 310,

The rest of the proof is quite similar as in the case that 0 < o < 1 and we omit
it. O

4. Proofs of Proposition 1 and Theorem 2

We need a technical lemma characterizing a monotone property of a
family of subdisks of D.

LemMmA 4. Let c(t) and p(t) be continuously differentiable functions on an
interval I satisfying c(t) e D and p(t) € (0,1) on I. Then the family of disks
{4(c(2),p(1))},e; is nondecreasing if and only if

<" (1) p'(1)
L JeF = T (07
on I.  Furthermore if |¢'(1)]/(1 —|c()|?) < p'(1)/(1 = p(£)*) holds on I, then

{A(c(2), p(0)},<; is strictly increasing in the sense that A(c(ty),p(ty)) < A(c(t),
p(t)) for any ty,ty € I with ty < t,.

Proor. Let 1y, € I with fy < t;. Put

) )
) = r (€)= TS Bl
Then we have 7., (4(c(t),p(t))) = 4(c(t),p(t)) and &(t) = 0.
Assume that {4(c(¢),p(?))},.; is nondecreasing. Then {4(¢(¢),p(2))},; 18
also nondecreasing and hence

D(0,p(10)) = 4(¢(t0), p(t0)) = A(e(tr), p(11))

D(( p(t)*)é(n) <1—|c<r1>| )pm))
27 2]
e(t)Pp(e)* " 1= le(en)Pp(n)

This implies

(L= Je@)))p(n) (1= pa))e(e)l _ pltr) = |é(n)]
L—je(n)Pp(n)® 1= e()Pp(n)* 1= le(n)lp(n)

p(to) <
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From this it follows that

p(t1) — plto)

|é(11) = é(no)| = |é(n)] < 1= plio)p(n)”

Dividing both sides of the above inequality by #; — 7y and then letting #; | 7, we
obtain
c'(t _ p'(to
| (0)|2:|C,(l())|ﬁ ( )2.
L= le(t) 1= plto)
Conversely assume that |¢/(z)|/(1 — |¢(2)]*) < p/(1)/(1 — p(£)*) holds on I.
We note that

1€'(0)] '@l _ _r)
L=le@)> 1=le@® ~ 1-p()°

and &(f9) = 0. Since [£]é(1)|| <|4¢(r)|, we have
W 1+E(z)} ‘
. m{ MFO]
nLe(n)]
)i 1= e(0)]?

")

o L= e)?

1 140
= Jog — 1AWV _
2 BT (e

dt

dt

IA

n !
(1) i =
w1 —=p(1)

IA
N —
—
|
)
—~
=
~—
—_—
Jr
)
—~
~
=3
=~

Thus we have

Ltle(m)] _ 14p(n) 1= plo)
L—le(n)] = 1=p(n) 1+ p(io)

and hence from an elementary calculation it follows that

p(ll) —p([()) (26)

)= )

Now we put

(1= p(11)*)é(n) I jé())p(nr)

= Je(n)Pp(n)” L= e(n)p(n)?
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Then we have A4(é(t1),p(t1)) = D(a,r) and

(L= Je(e)[))p(nn) — (1= p(a))e(n)] _ pltr) = |é(n)]

. gl = _ |
a 1— () p(n1)? 1 —le(n)p(t)|

We claim that r — |a| > p(%) holds, which is a simple consequence of (26).
Thus we have

Te() (A(c(t0), p(t9))) = 4(0,p(t0)) = D(0,7 — |a)
< D(a,r)
= A(e(t1), p(t1)) = Te(u) (A(c(tr), p(t1)))

and hence A(c(t),p(to)) = A(c(t1),p(t1)).

If |¢'(0)|/(1 = |e(2)]?) < p'(£)/(1 — p(2)*) holds on I, then it is easy to see
that strict inequality sign holds in (26). This implies r — |a| > p(fp) and thus
we conclude A(c(ty),p(to)) = A(c(t)), p(t1)). ]

Let E={(A,x):0<Ai<pand 0<x<1/v2i+1} and

hi) :{x(l )% (4,x) e E\{(0,1)}
’ L (4,x) = (0,1).

LemMmA 5. The function h(A,x) is nonnegative and continuous on E, and
satisfies h(4,x) < 1 with equality if and only if (1,x) = (0,1). Furthermore for
fixed 2€[0,p], h(A,x) is a strictly increasing function of x¢€[0,1/v21+ 1]
and for fixed xe€(0,1), h(A,x) is a strictly decreasing function of A€ |0,
min{2~'(x2 - 1), p}].

ProoF. The monotonic properties of A(4,x) is clear. And it is also clear
that /i(4, x) is continuous and satisfies (4,x) < 1 on E\{(0,1)}. Thus we only
have to show that i(4,x) is continuous at (0,1). To show this let 0 <J < 1.
Then for (4,x) e E\{(0,1)} with 1 —d <x <1 and 0 <1 <J we have

1> h(2,x) > h(A,1—=0)>h(6,1-06)=(1-06)0°2-0)° —1

as 0] 0. ]

Let « € [0,1]. For each fixed A € [0, p] let x = ¢(4) be the unique solution
of the equation

h(,x) = ah(2,1/V22+ 1), 0

IA
=
IA

V2i+1
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LEmMMA 6. If a =0 or o =1, then ¢(1) =0 or ¢(1) = 1/V2A+ 1, respecti-
vely. If 0<a<1, then the functlon c(A) is a continuously differentiable
Sunction of A€ (0,p) satisfying 0 < c(A) <1/vV24+1 and ¢'(1) <0 in (0, p).
Furthermore we have ¢(0) =1lim; |y ¢(A) = o and c(p) = limyy, ¢(4) = m(a).

Proor. We shall only show the assertions, when 0 < a < 1. In this
case it is easy to see that 0<c¢(4) <1/v2i+1. Put H(Ax)=h(1,x)/
h(A,1/v/2A+1). Then by Lemma 5, H(A, x) is continuous on E and con-
tinuously differentiable in Int E. Since

0 {22+ DR (1 - 2!
o) = h(3,1/V2A+1) >0 @

in Int E, it follows from the implicit function theorem that ¢(1) is continuously
differentiable in (0, p). Since

h(h,e(2)) = ah(A,1/V27 + 1), (28)

we have

: 2 _ 1
log ¢(A) + Alog(l — ¢(4)") =loga 3 log(2A+ 1) + 4 log 1

By differentiating both sides of the above formula and 0 < ¢(1) < 1/v24+1
we obtain

d(A) = ()1 = e()’) log 24 <0. (29)

— (244 De(A)? T A+ D1 = (X))

Thus ¢(4) is strictly decreasing and hence ¢(0+) = lim, ) ¢(4) and ¢(p —0) =
lim;y, c(4) exist. By continuity of A(4,x) on E we have ¢(0+)=o and

c(p—0)(1—c(p—0)*)? =ah(p,1/3/2p +1). These imply c(0+)=a=c(0)
and ¢(p —0) = m(x) = ¢(p). O

Lemma 7. If 0<a<]l, then the family of disks {4(c(4),
1/V24+ V)}og;, is strictly decreasing and

U 4(c(2),1/v2i+1) = A(a, 1) = D,

0<A<p

N A(c(2), 1N+ 1) = A(m(x),1//2p + 1)

0<A<p
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If o=1, then ¢(1)=1/V2l+1 and {A(l/\/2/1+171/\/2/1—1—1)}0@15[, is de-

creasing and satisfies

) 4(0/V22+1,1/V2i+1) =D(1/2,1/2),

0<A<p

( A(/V22+1,1/V20+1) = A(1/\/2p + 1,1/1/2p + 1)\{0}.

0<A<p

Proor. If o =1, then ¢(41) =1/v24+1 and it is not difficult to see that
the assertion of the lemma holds in this case.

Suppose that 0 <a < 1. Put p(1)=1/v21+1, 0<i<p. Applying
Lemma 4 to {4(c(—1),p(=1))}_,<,<o it suffices to show [c’(4)]/(1 — le(A)]%)
< —p'(A)/(1 = p(A)?). By (29) and 0 < ¢(4) < p(A) = 1/v/27.+ 1 we obtain
1—c(2)?
1= p(2)?

Thus by making use of the inequality 1 + x < e* and p’(1) = —p(/l)3 we have

[¢'(4) (p(4)’ 1og<1 L) - cu)z)
2 2

S~—
o
—~
~
S—
X
~
~
N~—
0o

< 0.

c'(A I e i log
(=)’ ) —ch)

¢ )
L=l p(2)* = e(2) 1= p(2)®

_ i)’
= 2
1—p(4)
RN 10
L=p(A)?  1—p2)?
PrOOF (Proof of Proposition 1). Suppose that 0 <o < 1. Then by
Lemma 7, for any zeD\A4(m(a),1/+/2p+1) there exists a unique A=
A(z) € (0, p] such that

O

ze dd(c(2),1/V2i+1). (30)

We define a(z) = ¢(A(z)). Then by (28) and (30), (a(z), A(z)) satisfies (11) and
(12). Uniqueness and continuity of (a(z),A(z)) on D\A(m(a),1/+/2p+1)
follow from the monotone property of the function [0,1/4/2p+1]3x—
h(2,x) for fixed 1€[0,p] and the strictly decreasing property of {4(c(4),
V2ZF Dhocsey

Next suppose that o« = 1. Note that ¢(4) = 1/v22+ 1. Then by Lemma
7, for any z e D(1/2,1/2)\4(1/\/2p + 1,1/+/2p + 1) there exists a unique A =
A(z) € (0, p] such that

z€dA(1/V2i+1,1/V2i+1).
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Then it is easy to see that a(z) =1/v24+1 and A(z) satisfy (11) and (13).
For ze dD(1/2,1/2)\{0,1} we define A(z) =0 and a(z) = 1. Then it is not
difﬁcult to see that A(z) is unique, and that it is continuous on D(1/2,1/2)\

A(1/\/2p+1,1/3/2p + 1) U{0, 1}]. O
Proor (Proof of Theorem 2). Let a«€[0,1). Suppose that 0<r<
1_2\/_7%. Then, since

D@f‘ ”*mmvcam@uM@+m
V2p+1—m(a)
we have re® e A(m(«),1/1/2p + 1) for all 0 € (—n,n]. Thus by Theorem 1 and
VP(re®) = VP(r ), the mapping ( n,7 30— B.(re”) gives a closed curve
contained in O0V7?(r). We show that it is a simple curve. Assume that
B!(re'®) = B!(re’®) for some 0j,0,€ (—m,n] with 0, <0, Put f(z)=
e =00, (e"%=0)z). Then f’(re™) = B.(re) = B.(re). Applying the
uniqueness part of Theorem 1 at re’, we have f(z) = B,(z) and hence
e 10:=0) B (¢%2=01)7) = B,(z) on D, which is a contradiction.

Now we have shown that the simple closed curve given by (—=, 7|3
0 +— B!(re") is contained in the simple closed curve dV7(r). Since a simple
closed curve cannot contain any simple closed curve other than itself, 077 (r)
coincides with the curve given as the mapping (-7, 7] 3 6 — B.(re).

Suppose  that ﬁ <r< % Then  re e A(m(a),
1/v/2p+1) if and only if |0] < 0,(r). As in the above argument, it can be
shown that the arc I'; given by the mapping [—0,(r),0,(r)] > 0 — B.(re)
is simple and contained in dV7(r). We note that from (7) B.(ret’:())e
aD(0,1/(1 —r2)").

Combining Proposition 1,

(9) and (10) we have for —n<9< H(r) or
0,(r) <6 <z that Famm) Mre),0 €

931(“) and |F) ) ;,0m o(re”)| = 1/(1=1?)".
Since A(ret%:()) = p and a(ref ")) = m(a), we “have
F;(mimx( ), Hret060), 10, )(reiz() L (r )) — B (reit() (1 ))_

Furthermore since by (8) we have
Fal(fr),l(fr),n(ir)
1 (1—a(=n")*""(a(=r) +1)
22(=r)+1 o\ 1=4(=r) >
h(A(=r),\/2A(=r) + 1) (1 + a(—r)r) (1 —72)

it follows that F, ., , (-r)=1/(1- r?)P. Thus the circular arc
Iy(< aD(0,1/(1 —r?)?)) with endpoints B! (re*’:(")) that passes through
1/(1 —r*)? is contained in 0V72(r).
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Since the union I';UT; is a simple closed curve contained in dV7(r), it
coincides with 0V?(r).

Suppose that %:m(w)) r<1. Then as in the above argument
p m(o
we have |F/ pre) =1/(1 = r?)? for all Oe(—n,n] and that

(rei), ;(,Lzo
Fi (-1 =1/(1 - )P, Since redd(a I/W we have

=), A=
( ) < r. This implies

, B 1 (1 —a(®)*(a(r) - 1)
Fa, 2m,0(r) = WO 20 1) (1= a(r)) 20 (1 — y2) 120 <0

and Fy,) ) 0(r)=—=1/(1=1%)". It is easy to see that a(re”) = a(re”) and
A(re”™) = J(re). Thus we have

Ft;(,.(,fi())’i(req())‘_g(l’e_m) = Fa/ BN (i (re“’). (31)

(rei?), i(rei?),0

By a continuity argument we infer from

Fyy a0 = =1/ =) Fyy s (=) =1/(1 =)
and the above symmetric property, that the image of the mapping (—=, 7] > 0
— Fa’(mm)’i(mm)‘H(re”’) contains the circle 0D(0,1/(1 —r?)?) and hence V7 (r)
=0D(0,1/(1 —r*)?).
Finally let « = 1. Then since m(1) =1/4/2p + 1, the case (i) in Theorem
2 does not occur. Suppose that 0 < r < Lov2pitml) _ V241 - Then as in the

,/2p+1+m(1) P+l
case that 0 <o < 1, the arc I'; given by the mapping [— 91( ),01(r)] 20—

Bj(re") is simple and contained in ¥/ (r), and |Bj(re )| =1/(1 —r?)".
For Oe(—m, x|, re’ eD(1/2,1/2\4(1/\/2p +1,1/\/2p +1) holds if and
only if 6,(r) =arccosr/(24/2p + 1) < |0] < arccos r. Since A0) — 0 as
|0 T arccos r, we have

1

i())g)m7

/
Fl/ 2).(re”’)+1,A(ref())_()(re as |0] 1 arccos r. (32)

Thus the circular arc I'; which has endpoints at Bj (re*(")) and passes through

1/(1 —r?)” is contained in 0V} (r). Hence the simple closed curve I'y U T, is
contained in the simple closed curve dV7(r) and we have oV2(r) =TI UT,.

Suppose that - pszl <r<1. Then we claim that the image of
the mapping [—arccos r,arccos 1] > 6 — (re”)  contains

2)(re)+1, i(reit), 0
oD(0,1/(1 —r*)"), which implies 0V{(r) = dD(0,1/(1 —r*)”). This is a con-

sequence of (32), (31) and Fl//\/”—“’ o ( ) < 0.

We note that the uniqueness part of Theorem 2 directly follows from the
uniqueness part of Theorem 1. O
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