
Hiroshima Math. J.

39 (2009), 443–450
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Abstract. After the works of Kau¤man-Bancho¤ and Yamasaki, it is known that a

local move called the pass move is strongly related to the Arf invariant, which is

equivalent to the parity of the coe‰cient of the degree two term in the Conway

polynomial. Our main result is the following: There exists a pair of knots such that

their Conway polynomials coincide, and that the sets of Conway polynomials of knots

obtained from them by a single pass move do not coincide.

1. Introduction

Erle [1] introduced a notion of operation for knots and links by an

exchange of band crossing. Kau¤man [3] studied the structure of knots and

links by the move. We usually call the operation a pass move, which is defined

to be a local move between two knot diagrams K1 and K2 which are identical

except near one crossing point as in Fig. 1. Furthermore, we consider its

spatial realization as follows: For two knots k1 and k2 represented by K1 and

K2, k1 and k2 are said to be transformed into each other by a pass move.

Kau¤man [3] shows that a G move as in Fig. 2 is realized by a single pass

move. It is known by Kau¤man-Bancho¤ [4] and Yamasaki [13] that a pass

move keeps the Arf invariant, which is equivalent to the parity of the coe‰cient

of z2 term in the Conway polynomial, a2 mod 2. Furthermore, two knots have

the same Arf invariant if and only if the two knots can be transformed into

each other by a finite sequence of pass moves. We can consider the Gordian
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complex with pass moves in a parallel manner to the Gordian complex in

Hirasawa-Uchida [2]. We consider a knot as a 0-simplex (or vertex). For a

positive integer m, we consider a set of mþ 1 knots, each pair of which can be

transformed into each other by a single pass move, as an m-simplex.

It can be easily seen that every 0-simplex of the Gordian complex with

pass moves has the degree y. It is shown in Section 5 that there are infinitely

many knots with mutually distinct Conway polynomials, which can be trans-

formed into a trivial knot by a single pass move. By the connected sum with

the given knot, the proof is given. The following has an information on the

Gordian complex with pass moves.

Theorem 1. Every 0-simplex of the Gordian complex with pass moves is a

face of arbitrarily large dimensional simplex.

The proof is given in Section 3.

The following is our main result.

Theorem 2. There exists a pair of knots K1, K2 such that ‘K1
ðzÞ ¼ ‘K2

ðzÞ,
and ‘K P

1 0‘K P
2 .

Here K P means the set of knots obtained from a knot K by a single pass

move. ‘K means the set of the Conway polynomials f‘KðzÞgK AK for a set

of knots K. The proof is given in Section 4.

2. Surgical description

It is well-known that any knot can be transformed to a trivial knot by

crossing-changes at suitable crossing points. Every crossing-change is obtained

Fig. 2
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444 Yasutaka Nakanishi and Yoshiyuki Ohyama



by a G1 surgery along a small trivial knot around the crossing point with

linking number 0. Levine [6] and Rolfsen [10, 11] introduced a surgery

description of a knot and a surgical view of Alexander matrix and Alexander

polynomial as follows:

Proposition 3. Let K be a knot, K0 a trivial knot. Then, there exist

n disjoint solid tori T1; . . . ;Tn in S3 � K0 and a homeomorphism f from

S3 � �T1 U � � �U �Tn to itself such that

(1) fðK0Þ ¼ K,

(2) T1 U � � �UTn is a trivial link,

(3) lkðTi;K0Þ ¼ lkðTi;KÞ ¼ 0 for each i, and

(4) fðqTiÞ ¼ qTi and lkðm 0
i ;TiÞ ¼ 1 where mi H qTi is a meridian of Ti and

m 0
i ¼ f�1ðmiÞ.

From a surgery description, we have a surgical view of Alexander matrix

of the knot as follows:

Proposition 4. Let K be a knot. Then, K has an Alexander matrix

MK ¼ ðmijðtÞÞ of the following form:

(1) mijðtÞ ¼ mjiðt�1Þ, and (2) jmijð1Þj ¼ dij ,

where dij ¼ 1 (if i ¼ j), 0 (if i0 j) is Kronecker’s delta.

Here, the size of MK is given by the number n in Proposition 3. The

Alexander polynomial of a knot K is given by the determinant of an Alexander

matrix of K up to units.

3. Proof of Theorem 1

In a parallel manner to the argument in [9], we consider the case that the

given knot is a trivial knot. Otherwise, by considering the connected sum with

the given knot, we can obtain the required result.

The knot in Fig. 3 is a trivial knot, which can be considered as the tangle

T with ears as in the right side. Let Ki be the knot in Fig. 4, which is

Fig. 3
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constructed by using i copies of T ’s in Fig. 3. The knot K0 is a trivial knot

and the family fK0;K1; . . . ;Kng satisfies the condition that each pair in the

family can be transformed into each other by a single pass move at one of the

dotted circles. The calculation of the HOMFLY polynomials in [9] shows that

the knots in the family are mutually distinct. The proof is complete. r

4. Proof of Theorem 2

It is known that there is a close relationship between the Alexander

polynomial DKðtÞ and the Conway polynomial ‘KðzÞ for a knot K : DKðtÞ ¼
‘Kðt�1=2 � t1=2Þ. The proof of Theorem 2 is given by a modification of the

proof of the following Theorem 5.

Theorem 5. For j polynomials with variables z, ‘iðzÞ ¼ 1þ a2z
2 þ a

ðiÞ
4 z4

þ � � � þ a
ðiÞ
2lj
z2lj ð1a ia jÞ, there exists a pair of knots K1 and K2 such that

‘K1
ðzÞ ¼ ‘K2

ðzÞ, ‘K P
1 d ‘1ðzÞ; . . . ;‘jðzÞ, and ‘K P

2 C ‘1ðzÞ; . . . ;‘jðzÞ.

The reason why the coe‰cients of the z2 term in ‘i’s are identical follows

from a technical argument.

Proof. Let DiðtÞ ¼ ‘iðt�1=2 � t1=2Þ ð1a ia jÞ. It is also known that

any Alexander polynomial can be realized by a knot with unknotting number

1 by Kondo [5] and Sakai [12]. For the polynomial ‘jþ1ðzÞ ¼ 1� ja2z
2, let

Djþ1ðtÞ ¼ ‘jþ1ðt�1=2 � t1=2Þ. Let K � be a knot with unknotting number 1 and

DK � ðtÞ ¼
Qjþ1

i¼1

DiðtÞ2. For the polynomial ‘jþ2ðzÞ ¼ 1� ða2 G 1Þz2, let Djþ2ðtÞ ¼

‘jþ2ðt�1=2 � t1=2Þ. Let K �� be a knot with unknotting number 1 and DK �� ðtÞ ¼
Djþ2ðtÞ. Let K1 ¼ K �aK �aK �aK �aK �aK ��. Then, K1 has a surgical

view of Alexander matrix of the following form:

Fig. 4
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Q
D2
i 0 0 0 0 0

0
Q

D2
i 0 0 0 0

0 0
Q

D2
i 0 0 0

0 0 0
Q

D2
i 0 0

0 0 0 0
Q

D2
i 0

0 0 0 0 0 Djþ2ðtÞ

0
BBBBBBBB@

1
CCCCCCCCA
:

Here,
Q

D2
i means

Qjþ1

i¼1

DiðtÞ2.

A pass move is realized by aG1 surgery along the three component trivial

link having linking number 0 with the given knot as in Fig. 5.

If K 0
1 is obtained from K1 by a single pass move, then K 0

1 is obtained from

K1 by three surgeries. Therefore, K 0
1 has a surgical view of Alexander matrix

of the following form:

Q
D2
i 0 0 0 0 0 � � �

0
Q

D2
i 0 0 0 0 � � �

0 0
Q

D2
i 0 0 0 � � �

0 0 0
Q

D2
i 0 0 � � �

0 0 0 0
Q

D2
i 0 � � �

0 0 0 0 0 Djþ2ðtÞ � � �
� � � � � � � � �
� � � � � � � � �
� � � � � � � � �

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

:

If DK 0
1
ðtÞ ¼ DiðtÞ, then we have the determinant of the above matrix is

GDiðtÞ. In the case DiðtÞ0 1, we consider the equation modulo DiðtÞ2, which
becomes a contradiction. In the case DiðtÞ ¼ 1, we take another nontrivial

Di 0 ðtÞ and consider the equation modulo Di 0 ðtÞ2, which becomes a contradic-

tion. Therefore, we have ‘K P
1 d ‘1ðzÞ;‘2ðzÞ; . . . ;‘jðzÞ.

Let K2 be a knot with unknotting number 1 and DK2
ðtÞ ¼ DK1

ðtÞ. By the

following Lemma, it can be seen that ‘K P
2 C ‘1ðzÞ;‘2ðzÞ; . . . ;‘jðzÞ. Hence the

proof is complete. r

Fig. 5
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Lemma 6. Let K be a knot with unknotting number 1. For a set of

integers a 0
2 ¼ a2ðKÞG 2, and arbitrary integers a 0

2i ði ¼ 2; 3; . . . ; lÞ, there exists a

knot K 0 A K P with ‘K 0 ðzÞ ¼ 1þ a 0
2z

2 þ a 0
4z

4 þ � � � þ a 0
2lz

2l.

Proof. Since K is a knot with unknotting number 1, there exists a

crossing point at which the crossing-change yields a trivial knot. We consider

such a crossing point as in the left of Fig. 6. We transform this part of K to

the right of Fig. 6 by a single G move. Here, m2; . . . ;ml are numbers of left-

handed full-twists, respectively. In a negative case, it means jmij right-handed
full-twists. By the parallel argument to that in Murakami [7], the di¤erence

of the Conway polynomials is 2z2 � ðm2 þ 1Þz4 � � � þ ð�1Þl�2ðml�1 þ 1Þz2l�2 þ
ð�1Þl�1

mlz
2l. The proof is complete. r

5. Questions

5.1. The Gordian complex with pass moves has two components, one of

which contains all knots with the Arf invariant 0, and the other all knots with

the Arf invariant 1. We denote the former subcomplex by K0, and the latter

by K1. The following question is natural and open.

Question 7. Are K0 and K1 isomorphic as complexes?

If isomorphic, it is an interesting problem that which kind of knots in K1

are corresponding to a trivial knot.

5.2. There are infinitely many knots with mutually distinct Conway poly-

nomials, which can be transformed into a trivial knot by a single pass move.

We raise the following question:

Question 8. For a set of an even integer a2 and arbitrary integers ai
ði ¼ 4; . . . ; 2lÞ, does there exist a knot K with ‘KðtÞ ¼ 1þ a2z

2 þ a4z
4 þ � � � þ

a2lz
2l, which can be transformed into a trivial knot by a single pass move?

We will construct knots in the cases (1) a2 ¼ 0, (2) a2 ¼G2, (3) a2 ¼ 2p

and all the other integers ai ði ¼ 4; . . . ; 2lÞ are divisible by 2, and (4) a2 ¼ 2p

Fig. 6
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and all the other integers ai ði ¼ 4; . . . ; 2lÞ are divisible by p. We remark that

the construction in the case (4) is strongly inspired by the idea of Nakamura

[8].

Let K be a knot as illustrated in Fig. 7. Here, b; b2;�b4; . . . ; ð�1Þn�1
b2l

are numbers of right-handed full-twists, respectively.

We calculate a Seifert matrix V as follows:

V ¼

b 1 0 0 0 � � � 0 0

0 b2 �1 0 0 � � � 0 0

0 �1 0 1 0 � � � 0 0

0 0 0 �b4 0 � � � 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 0 0 �1 0 1

0 0 0 0 0 0 0 ð�1Þl�1
b2l

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

Therefore, the Alexander polynomial DðtÞ ¼ tl þ bb2t
l�1ðt� 1Þ2 þ

bb4t
l�2ðt� 1Þ4 þ � � � þ bb2lðt� 1Þ2l, and then the Conway polynomial ‘ðzÞ ¼

1þ bb2z
2 þ bb4z

4 þ � � � þ bb2lz
2l.

In the case (1) a2 ¼ 0, we consider that b ¼ 1; b2 ¼ 0; b4 ¼ a4; . . . ;

b2l ¼ a2l. Operate a single pass move at the part surrounded by dotted

circle A, and the knot is transformed into a trivial knot.

In the case (2) a2 ¼G2, we consider that b ¼G1; b2 ¼ 2; b4 ¼Ga4; . . . ;

b2l ¼Ga2l. Operate a single G move at the part surrounded by dotted circle

B, and the knot is transformed into a trivial knot. Otherwise, the argument

parallel to that in the proof of Lemma in Section 4 gives the proof.

In the case (3) a2 ¼ 2p and all the other integers ai ði ¼ 4; . . . ; 2lÞ are

divisible by 2, we consider that b ¼ 2; b2 ¼ p; b4 ¼ a4=2; . . . ; b2l ¼ a2l=2. Op-

erate a single pass move at the left-most band and remove 2 full-twists, and the

knot is transformed into a trivial knot.

In the case (4) a2 ¼ 2p and all the other integers ai ði ¼ 4; . . . ; 2lÞ are

divisible by p, we consider that b ¼ p; b2 ¼ 2; b4 ¼ a4=p; . . . ; b2l ¼ a2l=p. Op-

erate a single G move at the part surrounded by dotted circle B, and the knot is

transformed into a trivial knot.

Fig. 7

449Gordian complex with pass moves



References

[ 1 ] D. Erle, Die quadratische Form eines Knotens und ein Satz uber Knotenmanningfaltigkei-

ten, J. Reine Angrew. Math. 235 (1969), 174–217.

[ 2 ] M. Hirasawa and Y. Uchida, The Gordian complex of knots, J. Knot Theory Ramifi-

cations 11 (2002), 363–368.

[ 3 ] L. H. Kau¤man, Formal Knot Theory, Math. Notes 30, Princeton, Princeton Univ. Press,

1983.

[ 4 ] L. H. Kau¤man and T. F. Bancho¤, Immersions and mod-2 quadratic forms, Amer.

Math. Month. 84 (1977), 168–185.

[ 5 ] H. Kondo, Knots of unknotting number 1 and their Alexander polynomials, Osaka J.

Math. 16 (1979), 551–559.

[ 6 ] J. Levine, A characterization of knot polynomials, Topology 4 (1965), 135–141.

[ 7 ] H. Murakami, Delta-unknotting number and the Conway polynomials, Kobe J. Math. 10

(1993), 17–22.

[ 8 ] T. Nakamura, Personal communication (2007).

[ 9 ] Y. Ohyama, The Ck Gordian complex of knots, J. Knot Theory Ramifications 15 (2006),

73–80.

[10] D. Rolfsen, A surgical view of Alexander’s polynomial, in Geometric Topology (Proc.

Park City, 1974), Lecture Notes in Math. 438, Springer-Verlag, Berlin and New York, 1974,

pp. 415–423.

[11] D. Rolfsen, Knots and Links, Math. Lecture Series 7, Publish or Perish Inc., Berkeley,

1976.

[12] T. Sakai, A remark on the Alexander polynomials of knots, Math. Seminar Notes Kobe

Univ. 5 (1977), 451–456.

[13] M. Yamasaki, On a surface in S3, in Japanese, Sûrikaisekikenkyûsho Kôkyûroku 297
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