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Abstract. Let Mg; n and Hg; n, for 2g� 2þ n > 0, be, respectively, the moduli stack of

n-pointed, genus g smooth curves and its closed substack consisting of hyperelliptic

curves. Their topological fundamental groups can be identified, respectively, with Gg; n

and Hg; n, the so called Teichmüller modular group and hyperelliptic modular group. A

choice of base point on Hg; n defines a monomorphism Hg; n ,! Gg; n.

Let Sg; n be a compact Riemann surface of genus g with n points removed. The

Teichmüller group Gg; n is the group of isotopy classes of di¤eomorphisms of the surface

Sg; n which preserve the orientation and a given order of the punctures. As a subgroup

of Gg; n, the hyperelliptic modular group then admits a natural faithful representation

Hg; n ,! Outðp1ðSg; nÞÞ.
The congruence subgroup problem for Hg; n asks whether, for any given finite index

subgroup Hl of Hg; n, there exists a finite index characteristic subgroup K of p1ðSg; nÞ
such that the kernel of the induced representation Hg; n ! Outðp1ðSg; nÞ=KÞ is contained

in Hl. The main result of the paper is an a‰rmative answer to this question for nb 1.

1. Introduction

Let Sg;n, for 2g� 2þ n > 0, be the di¤erentiable surface obtained from a

compact Riemann surface Sg of genus g removing n distinct points Pi A Sg, for

i ¼ 1; . . . ; n. The Teichmüller modular group of Sg;n is defined to be the group

of isotopy classes of di¤eomorphisms or, equivalently, of homeomorphisms of

the surface Sg;n which preserve the orientation and the given order of the

punctures:

Gg;n :¼ Di¤þðSg;nÞ=Di¤0ðSg;nÞGHomþðSg;nÞ=Hom0ðSg;nÞ;

where Di¤0ðSg;nÞ and Hom0ðSg;nÞ denote the connected components of the

identity in the topological groups of di¤eomorphisms Di¤þðSg;nÞ and of

homeomorphisms HomþðSg;nÞ.
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Let Pg;n denote the fundamental group of Sg;n for some choice of base

point. From the above definition and some elementary topology, it follows

that there is a faithful representation:

r : Gg;n ,! OutðPg;nÞ:

A level of Gg;n is just a finite index subgroup H < Gg;n. A characteristic finite

index subgroup Pl of Pg;n determines the geometric level Gl, defined to be the

kernel of the induced representation:

rl : Gg;n ! OutðPg;n=P
lÞ:

The congruence subgroup problem asks whether geometric levels are cofinal in

the set of all finite index subgroups of Gg;n, ordered by inclusion.

This problem is better formulated in the geometric context of moduli

spaces of curves. Let Mg;n, for 2g� 2þ n > 0, be the moduli stack of n-

pointed, genus g, smooth algebraic complex curves. It is a smooth connected

Deligne-Mumford stack (briefly D-M stack) over C of dimension 3g� 3þ n,

whose associated underlying complex analytic and topological étale groupoids,

we both denote by Mg;n as well.

In the category of analytic étale groupoids, there are natural and general

definitions of topological homotopy groups (see [8]). However, for stacks of

the kind of Mg;n, such groups can be described in a simpler way. In fact, Mg;n

has a universal cover Tg;n in the category of analytic manifolds. The fun-

damental group p1ðMg;n; ½C �Þ is then identified with the deck transformations’

group of the cover Tg;n ! Mg;n and the higher homotopy groups are naturally

isomorphic to those of Tg;n.

From this perspective, Teichmüller theory is the study of the geometry

of the universal cover Tg;n of the moduli space Mg;n, called Teichmüller

space, and of its topological fundamental group p1ðMg;n; ½C �Þ. The basic facts

of Teichmüller theory are that Tg;n is contractible, thus making of Mg;n a

classifying space for Gg;n, and that the choice of a lift of a point ½C � A Mg;n to

Tg;n and of a di¤eomorphism Sg;n ! Cnfmarked pointsg identifies the Teich-

müller modular group Gg;n with p1ðMg;n; ½C �Þ. The representation:

r : p1ðMg;n; ½C �Þ ! OutðPg;nÞ;

induced by the identification of Gg;n with p1ðMg;n; ½C �Þ, is equivalent to the

universal topological monodromy representation associated with the universal

punctured curve Mg;nþ1 ! Mg;n. Algebraically, this may be recovered as the

outer representation associated to the short exact sequence determined on

topological fundamental groups by this curve:

1 ! Pg;n ! p1ðMg;nþ1Þ ! p1ðMg;nÞ ! 1:
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The algebraic fundamental group of a D-M stack X over C is naturally

isomorphic to the profinite completion p̂p1ðX Þ of its topological fundamental

group p1ðX Þ. It basically follows from the triviality of the center of the

profinite completion P̂Pg;n of Pg;n that the above fibration induces on algebraic

fundamental groups the short exact sequence:

1 ! P̂Pg;n ! p̂p1ðMg;nþ1Þ ! p̂p1ðMg;nÞ ! 1:

The universal algebraic monodromy representation is the outer representation:

r̂r : p̂p1ðMg;nÞ ! OutðP̂Pg;nÞ;

associated to the above short exact sequence. It is not hard to see that the

congruence subgroup property holds for Gg;n if and only if the representation r̂r

is faithful.

In [2], a positive answer to the above question was claimed but a gap

emerged in an essential step of the proof (more precisely, in the proof of

Theorem 5.4). As it is explained in detail below, this paper recovers some of

the results of [2].

Indeed, the congruence subgroup problem can be formulated for any

special subgroup of the Teichmüller group. The case we will deal with in this

paper is that of the fundamental group of the closed sub-stack Hg;n of Mg;n

parametrizing smooth hyperelliptic complex curves, for gb 1. Observe that,

for g ¼ 1; 2, all curves are hyperelliptic, i.e. admit a degree 2 morphism onto

P1. We then define the hyperelliptic modular group to be the topological

fundamental group of the stack Hg;n.

It is a classical fact of Teichmüller theory that the subspace of the

Teichmüller space Tg;n, parametrizing hyperelliptic curves, consists of a disjoint

union of contractible analytic subspaces. The natural embedding Hg;n HMg;n

then induces, choosing for base points the isomorphism class ½C � of a

hyperelliptic curve, a monomorphism of topological fundamental groups

p1ðHg;n; ½C �Þ ,! p1ðMg;n; ½C �Þ. Let us remark that the image of the latter

map, in general, is not a normal subgroup of p1ðMg;n; ½C �Þ.
After the identification of p1ðMg;n; ½C �Þ with Gg;n, we denote the subgroup

corresponding to p1ðHg;n; ½C �Þ simply by Hg;n. Let then i be the element of

Gg;n corresponding to the hyperelliptic involution on C. For gb 2 and n ¼ 0

or g ¼ 1 and n ¼ 1, the subgroup Hg;n is the centralizer of i in Gg;n.

For a given characteristic subgroup of finite index Pl of Pg;n, let us define

Hl :¼ Hg;n VGl and call it the geometric level of Hg;n associated to Pl. The

congruence subgroup problem for the hyperelliptic modular group asks whether

geometric levels of Hg;n are cofinal in the set of finite index subgroups of Hg;n.

The natural morphism Hg;nþ1 ! Hg;n (forgetting the last marked point) is

naturally isomorphic to the universal n-punctured, genus g curve over Hg;n and
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the fiber over any closed point ½C � A Hg;n is di¤eomorphic to Sg;n. Identifying

its fundamental group with Pg;n, we get, as above, a faithful topological

monodromy representation:

rg;n : p1ðHg;n; ½C �Þ ! OutðPg;nÞ:

Instead, the faithfulness of the corresponding algebraic monodromy represen-

tation:

r̂rg;n : p̂p1ðHg;n; ½C �Þ ! OutðP̂Pg;nÞ:

is a much deeper statement, equivalent to the congruence subgroup property for

Hg;n.

The main result of this paper is that r̂rg;n is faithful for all g and n such

that gb 1 and nb 1. In particular, we prove that the congruence subgroup

property holds for the genus 2 Teichmüller modular group for nb 1 (the genus

0 and 1 cases have been proved by Asada in [1]).

2. The geometric profinite completion of Gg;n

Let us assume that the fundamental group Pg;n of Sg;n has Pnþ1 as base

point. For 2g� 2þ n > 0, the short exact sequence of topological fundamen-

tal groups, associated to the Serre fibration Mg;nþ1 ! Mg;n, is then identified

with the classical short exact sequence of modular groups

1 ! Pg;n ! Gg;nþ1 ! Gg;n ! 1;

while the corresponding short exact sequence of algebraic fundamental groups

is identified with the short exact sequence

1 ! P̂Pg;n ! ĜGg;nþ1 ! ĜGg;n ! 1:

The action by inner automorphisms of ĜGg;nþ1 on its normal subgroup

P̂Pg;n induces the representations ~rrg;n : ĜGg;nþ1 ! AutðP̂Pg;nÞ and r̂rg;n : ĜGg;n !
OutðP̂Pg;nÞ.

Let us mention here a fundamental result of Nikolov and Segal [7] which

asserts that any finite index subgroup of any topologically finitely generated

profinite group G is open. Since such a profinite group G has also a basis of

neighborhoods of the identity consisting of open characteristic subgroups, it

follows that all automorphisms of G are continuous and that AutðGÞ is a

profinite group as well. Let us then give the following definitions:

Definition 2.1. Let us define the profinite groups ~GGg;nþ1 and �GGg;n, for

2g� 2þ n > 0, to be, respectively, the image of ~rrg;n in AutðP̂Pg;nÞ and of r̂rg;n in

OutðP̂Pg;nÞ.
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By definition, there are natural maps with dense image Gg;n ! �GGg;n and

Gg;nþ1 ! ~GGg;nþ1, but it is a deep result by Grossman [3] that these maps are

also injective.

By Definition 2.1, the representation ~GGg;nþ1 ! AutðP̂Pg;nÞ, induced by

the action of inner automorphisms of ~GGg;nþ1 on its normal subgroup P̂Pg;n,

is injective. Therefore, it holds:

Proposition 2.2. The center of ~GGg;nþ1 is trivial for 2g� 2þ n > 0.

Another consequence of Definition 2.1 is the following:

Proposition 2.3. For 2g� 2þ n > 0, there is a natural short exact

sequence:

1 ! P̂Pg;n ! ~GGg;nþ1 ! �GGg;n ! 1:

In particular, �GGg;n 1 ĜGg;n if and only if ~GGg;nþ1 1 ĜGg;nþ1.

We then have the interesting corollary:

Corollary 2.4. If the congruence subgroup property holds for Gg;n, then

ĜGg;nþ1 has trivial center.

A natural guess is that, for 2g� 2þ n > 0, the two profinite completions
�GGg;nþ1 and ~GGg;nþ1 of Gg;nþ1 coincide. For n > 0, this is a direct consequence of

Theorem 2.2 in [5]:

Theorem 2.5 (Matsumoto). For 2g� 2þ n > 0 and nb 1, there is a

natural isomorphism F : �GGg;nþ1 !
@ ~GGg;nþ1. Hence, a short exact sequence:

1 ! P̂Pg;n ! �GGg;nþ1 ! �GGg;n ! 1.

The existence of a natural epimorphism �GGg;nþ1 ! ~GGg;nþ1, for all nb 0, was

already remarked in the proof of Theorem 1 in [1] and, as an immediate

consequence, the genus 0 case of the subgroup congruence property followed:

Proposition 2.6 (Asada). For nb 3, it holds ~GG0;n 1 �GG0;n 1 ĜG0;n.

Proof. The case n ¼ 3 is trivial, since G0;3 ¼ f1g. The general case

follows by Proposition 2.3, the epimorphism F : �GG0;n !! ~GG0;n and induction on

n.

By Theorem 2.5, for 2g� 2þ n > 0 and nb 1, we can define unambig-

uously, the geometric profinite completion of Gg;n to be the group �GGg;n. An

important corollary of the theorem is also the following:

Corollary 2.7. For 2g� 2þ n > 0 and nb 2, the geometric profinite

completion �GGg;n has trivial center.
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Asada in [1] has proved the genus 1 case of the subgroup congruence

conjecture:

Theorem 2.8 (Asada). It holds �GG1;n 1 ĜG1;n, for nb 1.

Let us remark, however, that the natural epimorphism ĜG1;1 ! SL2ðẐZÞ is

not injective (see § 8.8 in [9] for details). This is not a surprise, since S1 is not

a hyperbolic surface.

In the next section, in particular, we will also provide an alternative proof

of Asada’s Theorem.

3. The hyperelliptic modular group

In this section, we are going to prove the results announced in the

introduction. The main feature of the moduli stack of n-pointed, genus g

smooth hyperelliptic complex curves Hg;n is that it can be described in terms of

moduli of pointed genus 0 curves. More precisely, there is a natural Z=2-gerbe

Hg ! M0; ½2gþ2�, for gb 2, defined assigning, to a genus g hyperelliptic curve C,

the genus zero curve C=i, where i is the hyperelliptic involution of C, labeled

by the branch points of the cover C ! C=i. In the genus 1 case, there is a

Z=2-gerbe M1;1 ! M0;1½3�, where, by the notation ‘‘1½3�’’, we mean that one

label is distinguished while the others are unordered. For 2g� 2þ n > 0,

there is also a natural representable morphism Hg;nþ1 ! Hg;n, forgetting the

ðnþ 1Þ-th labeled point, which is isomorphic to the universal n-punctured curve

over Hg;n. So, the fiber above an arbitrary closed point x A Hg;n is di¤eo-

morphic to Sg;n and its fundamental group is isomorphic to Pg;n. These

morphisms induce, on topological fundamental groups, the short exact se-

quences, for gb 2:

1 ! Z=2 ! Hg ! G0; ½2gþ2� ! 1 and 1 ! Pg;n ! Hg;nþ1 ! Hg;n ! 1:

Similarly, for the algebraic fundamental groups, there are short exact sequences:

1 ! Z=2 ! ĤHg ! ĜG0; ½2gþ2� ! 1 and 1 ! P̂Pg;n ! ĤHg;nþ1 ! ĤHg;n ! 1:

The outer representation r̂rg;n : ĤHg;n ! OutðP̂Pg;nÞ, induced by the last of

the above short exact sequences, is the algebraic monodromy representation of

the punctured universalcurve over Hg;n. As already remarked, the congruence

subgroup property for Hg;n isequivalent to the faithfullness of r̂rg;n.

Let us prove some general properties of the groups Hg;n. For definitions

and elementary properties of good groups, we refer to exercise 1 in Section 2.6

of [11]. From the above exact sequences, it then follows immediately:

Proposition 3.1. For 2g� 2þ n > 0 and gb 1, the group Hg;n is good.
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It is well known that the centralizer of a finite index subgroup U of Hg;n,

for gb 2 and n ¼ 0 or g ¼ 1 and n ¼ 1, is spanned by the hyperelliptic

involution i while it is trivial for gb 2 and nb 1 or g ¼ 1 and nb 2. An

analogous statement holds for the profinite completion ĤHg;n.

Proposition 3.2. Let U be an open subgroup of ĤHg;n, for 2g� 2þ n > 0.

Then, for gb 2 and n ¼ 0 or g ¼ 1 and n ¼ 1, the centralizer of U in ĤHg;n is

spanned by the hyperelliptic involution. In all the other cases, the centralizer of

U in ĤHg;n is trivial.

Proof. Let us consider first the cases gb 2 and n ¼ 0 or g ¼ 1 and

n ¼ 1. It is clearly enough to prove that for any open subgroup U of ĤHg;n,

which contains the hyperelliptic involution i, the center ZðUÞ is equal to the

subgroup spanned by i.

The center of any open subgroup of ĜG0; ½2gþ2� is trivial. From the exact

sequences:

1 ! Z=2 � i ! ĤHg ! ĜG0; ½2gþ2� ! 1 and 1 ! Z=2 � i ! ĜG1;1 ! ĜG0; ½4�;

it then follows that ZðUÞ ¼ hii.
For the cases gb 2 and nb 1 or g ¼ 1 and nb 2, we have to prove that

the center is trivial for any open subgroup U of ĤHg;n. By induction on n,

thanks to the short exact sequences:

1 ! P̂Pg;n�1 ! ĤHg;n ! ĤHg;n�1 ! 1;

it is enough to prove the proposition for the cases gb 2, n ¼ 1 and g ¼ 1,

n ¼ 2.

From the above short exact sequence, we then see that the center ZðUÞ, if
non-trivial, projects to the subgroup of ĤHg;n�1 spanned by the hyperelliptic

involution.

In this case, the subgroup ZðUÞ � P̂Pg;n�1 of ĤHg;n would be generated by a

hyperelliptic involution m in Hg;n and P̂Pg;n�1. So, ZðUÞ would be generated

by a conjugate f mf �1 for some f A P̂Pg;n�1. Let U 0 :¼ fUf �1, then it is clear

that ZðU 0Þ ¼ hmi.
Hence, such m would commute with the elements of the finite index

subgroup U 0 VPg;n�1 of Pg;n�1. By the simple topological description of a

hyperelliptic involution, there is a simple loop g A Pg;n�1 such that mðgÞ ¼ g�1.

As already remarked in § 2, if we identify P̂Pg;n�1 with its image in ĤHg;n,

then it holds mðgÞ ¼ mgm�1. For some k > 0, it also holds gk A U 0 VPg;n�1 and

then:

g�k ¼ mðgkÞ ¼ mgkm�1;

which contradicts the fact that ZðU 0Þ ¼ hmi. Therefore, it holds ZðUÞ ¼ f1g.
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We call a finite index subgroup Hl of Hg;n a level of Hg;n and the

corresponding étale cover Hl ! Hg;n a level structure over Hg;n. Geometric

levels of Hg;n are defined by means of the monodromy representation

r : Hg;n ! OutðPg;nÞ. For a characteristic subgroup Pl of Pg;n, the geomet-

ric level Hl is defined to be the kernel of the induced representation

rl : Hg;n ! OutðPg;n=P
lÞ. The abelian level HðmÞ of order mb 2 is then

defined to be the kernel of the representation rðmÞ : Hg;n ! Sp2gðZ=mÞ and

we let HðmÞ be the corresponding abelian level structure.

There is a standard procedure to simplify the structure of an algebraic

stack X by erasing a generic group of automorphisms G (see, for instance,

[10]). The algebraic stack thus obtained is usually denoted by X==G. So, the

natural map Hg ! M0; ½2gþ2� yields an isomorphism Hg==hiiGM0; ½2gþ2�. A

natural question is then which level structure over Hg corresponds to the

Galois étale cover M0;2gþ2 ! M0; ½2gþ2�.

Proposition 3.3. For gb 2, there is a natural isomorphism Hð2Þ==hiiG
M0;2gþ2.

Proof. The groups Hg=hii and G0; ½2gþ2� are naturally isomorphic. By

means of this isomorphism, the normal subgroup G0;2gþ2 pG0; ½2gþ2� identifies

with the subgroup of Hg=hii spanned by squares of Dehn twists along non-

separating s.c.c. on Sg;n. Squares of Dehn twists, all act trivially on homology

with Z=2-coe‰cients. Therefore, G0;2gþ2 identifies with a normal finite index

subgroup of Hð2Þ=hii. So, there are a natural étale morphism F : M0;2gþ2 !
Hð2Þ==hii and a commutative diagram with exact rows:

1 ! G0;2gþ2 ! G0; ½2gþ2� ! S2gþ2 ! 1

V ko #r
1 ! Hð2Þ=hii ! Hg=hii ! PGL2gðZ=2Þ:

At this point, observe that the representation r : S2gþ2 ! PGL2gðZ=2Þ is

induced by the permutation of 2gþ 2 points in general position in the

projective space P
2g�1
Z=2 and so is faithful. Thus, the injection G0;2gþ2 ,!

Hð2Þ=hii is actually an isomorphism and then F is an isomorphism as well.

Remark 3.4. Likewise, it is not hard to prove that, for the abelian level

structure Mð2Þ over M1;1, there is a natural isomorphism Mð2Þ==hiiGM0;4,

where i here denotes the generic elliptic involution.

From now on, we will mostly stick to moduli spaces of hyperelliptic curves

Hg;n, with gb 2, and leave to the reader the formulation and the proof of the

analogous statements for g ¼ 1, nb 1.

Let Cg ! Hg, for gb 2, be the universal curve. Removing Weierstrass

points from its fibers, we obtain a ð2gþ 2Þ-punctured, genus g curve C0 ! Hg.
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A weak version of the congruence subgroup property for Hg is then the

assertion that the algebraic monodromy representation, associated to C0 ! Hg,

is faithful:

r̂r0 : p̂p1ðHg; xÞ ,! Outðp̂p1ðC0; xÞÞ;

where C0 is the fiber of C0 ! Hg over the closed point x. Let us show how

this assertion reduces to Corollary 2.6.

Let us denote by Cl ! Hl the pull-back of the universal curve Cg ! Hg

to the level structure Hl ! Hg and by Cl
0 ! Hl the pull-back of the

punctured curve C0 ! Hg.

By Proposition 3.3, there is a natural étale Galois morphism Hð4Þ !
M0;2gþ2 which is also representable, since i B Hð4Þ. Let R ! Hð4Þ be the pull-

back of the universal ð2gþ 2Þ-punctured, genus 0 curve M0;2gþ3 ! M0;2gþ2.

There is then a commutative diagram:

C
ð4Þ
0 ���!c R

?
?
?
y

Hð4Þ;

������!

where c is the étale, degree 2 map which, fiberwise, is the quotient by the

hyperelliptic involution. The algebraic monodromy representation p̂p1ðHð4Þ; aÞ
! Outðp̂p1ðRa; aÞÞ, associated to the rational curve R ! Hð4Þ, is faithful by

Corollary 2.6. Then, by Lemma 8 in [1], the algebraic monodromy repre-

sentation p̂p1ðHð4Þ; aÞ ! Outðp̂p1ðCð4Þ
0 ; ~aaÞÞ, associated to the curve C

ð4Þ
0 ! Hð4Þ, is

faithful as well, where C0 denotes the fiber over the closed point a. This

immediately implies the faithfulness of the representation r̂r0.

We can now state and prove the main result of the paper:

Theorem 3.5. Let Hg;n, for 2g� 2þ n > 0 and gb 1, be the moduli stack

of n-pointed, genus g hyperelliptic complex curves. For nb 1, the universal

algebraic monodromy representation r̂rg;n : p̂p1ðHg;nÞ ! OutðP̂Pg;nÞ, associated to

the universal n-punctured, genus g hyperelliptic curve Hg;nþ1 ! Hg;n, is faithful.

Proof. The proof of Theorem 3.5 consists of two steps. In the first, we

show that the faithfulness of r̂rg;n, for a given gb 1 and all nb 1, can be

deduced from that of r̂rg;n 0 , for any given n 0 b 1. In the second, we prove that

r̂rg;2gþ2 is faithful for all gb 1. The first step is accomplished, by induction, in

the following lemma:

Lemma 3.6. Let gb 1 and nb 1. Then, the monodromy representation

r̂rg;n is faithful if and only if r̂rg;nþ1 is.
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Proof. By Theorem 2.5, for nb 1, there is a commutative diagram with

exact rows:

1 ���! P̂Pg;n ���! ĤHg;nþ1 ���! ĤHg;n ���! 1
�
�
�
�

?
?
?
yr̂rg; nþ1

?
?
?
yr̂rg; n

1 ���! P̂Pg;n ���! �GGg;nþ1 ���! �GGg;n ���! 1

and the lemma follows immediately.

Lemma 3.7. For gb 1, the algebraic monodromy representation r̂rg;2gþ2 is

faithful.

Proof. Here, as usual, for notational reason, we assume gb 2 and leave

to the reader the transposition of the argument to the genus 1 case.

The universal curve Cð2Þ ! Hð2Þ
g is endowed with 2gþ 2 ordered sections,

corresponding to the Weierstrass points on the fibers. So, by the universal

property of Hð2Þ
g;n , there is a morphism s : Hð2Þ

g ! H
ð2Þ
g;2gþ2 which is a section of

the natural projection p : H
ð2Þ
g;2gþ2 ! Hð2Þ

g (forgetting the labels). The mor-

phism p is smooth and its fiber above a closed point ½C � A Hg is the

configuration space of 2gþ 2 points on the curve C. Let us denote by

SgðnÞ the configuration space of n points on the compact Riemann surface

Sg and by PgðnÞ its fundamental group. Then, all fibers of p above closed

points of Hg are di¤eomorphic to SgðnÞ. Therefore, the fundamental group

Hg;2gþ2ð2Þ of H
ð2Þ
g;2gþ2 fits in the short exact sequence:

1 ! Pgð2gþ 2Þ ! Hg;2gþ2ð2Þ ! Hgð2Þ ! 1;

which is split by s� : Hgð2Þ ! Hg;2gþ2ð2Þ. Moreover, since the space Sgðnþ 1Þ
is fibered in n-punctured, genus g curves over SgðnÞ, for all nb 0, there is a

short exact sequence:

1 ! Pg;n ! Pgðnþ 1Þ ! PgðnÞ ! 1:

From Theorem 2.5 and a simple induction on n, it follows that the

profinite completion P̂PgðnÞ embeds in �GGg;n (this is essentially the same argument

of Asada in Theorem 1, [1], where this was first proved). Therefore, passing to

profinite completions, we get the short exact sequences:

1 ! P̂Pgð2gþ 2Þ ! ĤHg;2gþ2ð2Þ ! ĤHgð2Þ ! 1;

1 ! P̂Pg;n ! P̂Pgðnþ 1Þ ! P̂PgðnÞ ! 1:

The former is split by ŝs� : ĤHgð2Þ ! ĤHg;2gþ2ð2Þ. So there is an isomorphism:

ĤHg;2gþ2ð2ÞG P̂Pgð2gþ 2Þz ĤHgð2Þ:
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In order to prove that the algebraic monodromy representation r̂rg;2gþ2 is

faithful, it is enough to show that this holds for its restriction to ĤHg;2gþ2ð2Þ,
which we denote also by r̂rg;2gþ2. But we have already seen that r̂rg;2gþ2 � ŝs� ¼
r̂r0 : ĤHgð2Þ ! OutðP̂Pg;2gþ2Þ is faithful and, as remarked above, the restriction of

r̂rg;2gþ2 to the normal subgroup P̂Pgð2gþ 2Þ of ĤHg;2gþ2ð2Þ is faithful as well.

So, Lemma 3.7 follows, if we prove that:

r̂rg;2gþ2ðP̂Pgð2gþ 2ÞÞV r̂rg;2gþ2ðŝs�ðĤHgð2ÞÞÞ ¼ f1g ð*Þ:

The subgroup s�ðHgð2ÞÞ of Hg;2gþ2ð2Þ centralizes the hyperelliptic in-

volution s�ðiÞ A Hg;2gþ2ð2Þ. Passing to profinite completions, the subgroup

ŝs�ðĤHgð2ÞÞ of ĤHg;2gþ2ð2Þ then centralizes the hyperelliptic involution s�ðiÞ A
ĤHg;2gþ2ð2Þ. It is clear that r̂rg;2gþ2ðŝs�ðiÞÞ0 1. Hence, since P̂Pgð2gþ 2Þ is

torsion free:

r̂rg;2gþ2ðP̂Pgð2gþ 2Þ � s�ðiÞÞG P̂Pgð2gþ 2Þ � s�ðiÞG P̂Pgð2gþ 2ÞzZ=2:

All elements of r̂rg;2gþ2ðŝs�ðĤHgð2ÞÞÞ commute with r̂rg;2gþ2ðs�ðiÞÞ. So, in order

to prove the identity ð*Þ, it is enough to show that no element of

r̂rg;2gþ2ðP̂Pgð2gþ 2ÞÞ does.

From item (ii) of Lemma 2.1 in [6], it follows that a primitive finite

subgroup of the algebraic fundamental group of a hyperbolic orbi-curve is self-

normalizing.

For all 0a na 2gþ 2, a given hyperelliptic involution i 0 A Hg;nþ1 and P̂Pg;n

span inside of ĤHg;nþ1 a group isomorphic to the algebraic fundamental group of

an n-punctured, genus g hyperelliptic orbi-curve ½C=i 0�. In particular, by

Lemma 2.1 in [6], there is no element of P̂Pg;n with which i 0 commutes.

The short exact sequences 1 ! P̂Pg;n ! P̂Pgðnþ 1Þ ! P̂PgðnÞ ! 1 and a

simple induction on nb 0 then imply that s�ðiÞ does not commute with

any given element of P̂Pgð2gþ 2Þ, as claimed above. This completes the proof

of Lemma 3.7 and then that of Theorem 3.5.
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