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ABSTRACT. We prove Singer’s formulas and unstable acyclic relations for the mod 2
Steenrod algebra, which are important tools for the computations of products. These
are given by analogy of the corresponding dual results for the lambda algebra.

1. Introduction

Singer’s formulas [3] are important and basic for the lambda algebra
A. In fact, by using Singer’s formulas, Richter [2] reproved many fundamental
results and the author [1] proved some acyclic relations. We refer to [2] for
Singer’s formulas. On the other hand, the mod 2 Steenrod algebra A, which is
the algebra of the cohomology operations, is crucial for the algebrac top-
ology. In this paper, we shall prove Singer’s formulas and acyclic relations for
A, which are important tools for the computations of products in 4.

A monomial Sg%...Sq" 1is called admissible if a;;; > 2a;. Consider
the submodule A4*‘[n] = A (n>0) spanned by the admissible monomials
Sq...Sq" (=37 ,a) with a; >n, and let An] =), PD,., 4" n].
Our first Singer’s formula is the following.

THEOREM 1.
Aln+t—s|A%'[n] = A[n].

Examples

(1) We see Sq®e AV6[5] = 41:9[0], and so Sq®Sq® e A[5]4"6]0] = A[0].
In fact, S¢%Sq® = Sq''Sq"' + Sq¢'°Sq> + Sq°Sq?.

(2) We see Sq®e A[7], Sq®e AV°]2], and so Sq¢®Sq®e A[2]. In fact,
SqSSqG — Sq“Sq3 + SquSq4.

(3) We see Sq®Sq* € A[3], Sq*Sq' € A%3[0], and so Sq®Sq*Sq*Sq' € A[0].

(4) We see Sq'3Sq° + Sq'*Sq” € A[5], Sq°Sq' + Sq°Sq* € A>7[0], and so

(Sq"Sq® + Sq"Sq")(Sq°Sq" + Sq°Sq”) e A[0].
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Theorem 1 induces a unstable composition product « — f§ = aff € A[n] for
aeAdAn+t—s], peA>nl.
Now we define a map (Hopf invariant)

H:A%n—1]— 4520 - 1]

by H(Sq'Sq") = Sq', H(Sq'Sq') = 0 for admissible sequences (1,n), (I,i) with
i > n, where Sq’ = Sq’'...Sq" for I = (iy_y,...,i1), and a map (suspension)

E:A%'[n] — A%'n—1]

which is a natural inclusion. We notice that HE = 0. Moreover there is a
map
0: A% n — A‘Y‘Z”S[Zn]

defined by 0(Sq’) = 0(Sq"* ...Sq") = S¢*>~1 ... S¢*~! for admissible sequences
I. By using these maps, we have the second Singer’s formula for the Hopf
invariant.

THEOREM 2. For o€ Ajn+t—s], f e A%'[n]
EH(x— ) = o — EH(B) + EH(%) — 0(p).
We notice that
H(oo— f) e A[2n+ 1], o— EH(p), EH(x) — 0(p) € A[2n].
Hence an implication of Theorem 2 is
o— EH(f) + EH (o) — 0(f) € A[2n + 1].

COROLLARY 1. Let o€ Alm], f e A%'[n].
) If m>n+t—s, then

aedAn+1t—s], H(o) =0, EH(o — ff) =0 — EH(p).
i) If t—s<m<n+t—s, then
pe A m—t+s, H(p) =0, EH(x— ff) = EH(a) — 0(p).

Examples
(1) Let = Sq%e A[5], B = Sq® e A°[0]. Then af € A[0], H(B) =0 and
H(op) = H(x)0(B) = Sq''. This implies «f = Sq''Sq' +y for some y e A[l].
In fact
Sq%Sq® = Sq"' Sq" + Sq'°Sq> + S¢°Sq’.

(2) We see o = Sq® e A[7), p=Sq° € A1®2]. Then af € A[2], H(f) =0
and H(of) = H(2)0(B) = Sg''. This implies off = Sq''Sq>+y for some
ye A[3]. In fact, S¢®Sq® = Sq''Sq* + Sq'°Sq*.
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(3) Let a=S¢*Sq*eA[3], p=S¢*Sq' € A>3[0]. Then afe A0].
Moreover

H (o) = aH(f) + H(2)0() = Sq°Sq*Sq* + Sq°Sq"Sq" = Sq"°S¢*Sq’.
Hence off = Sq'°Sq*Sq*>Sq' + 7y for some ye A[l1]. In fact S¢®Sq*Sq*Sq' =
Sq1°Sq*Sq2Sq".

4) Let o=Sq"Sq®+ Sq'*Sq” € A[5], B = Sq°Sq' + Sq°Sq* € A>7|0).
Then off € A[0]. Moreover

H(op) = aH(p) + H(2)0(B)
= (S¢"°Sq° + S¢'Sq")Sq° + S¢"*(Sq"' Sq" + Sq’Sq*)
— 54155419542 + Sq"Sq" Sg
= Sq"Sq°Sq” + Sq*' Sq*Sq” + Sq7°Sq’Sq” + Sq'°Sq" Sq”.
Hence
of = (Sq°Sq'°Sq* + Sq'*Sq"' S¢*)Sq" +y
— (S4"°S45 + Sq2' Sq* + Sq2Sq° + Sq'85q7)S42Sq" + 7
for some y € A[1]. In fact
(S¢"°Sq° + Sq'*Sq")(Sq"Sq" + S¢°Sq?)
— 5415841°S542Sq" + Sq' 54" Sq2 84"
— (S4"°Sq + Sq?'Sq* + g Sq° + Sq'85q7)S4>Sq".

The proof of these theorems is given by analogy to that of Singer’s
formulas for the lambda algebra. The same approach gives us some acyclic
relations.

THEOREM 3. For 2a—1>n>=a > 1, the following is exact:
— §2a-1 —Sqa
Aln+2a—3] 2220 Al — 11— An—d].
Examples
(1) For o= Sq°Sq*Sq*> € A[1], we see aSq> =0, and so o= fBSq> for
some B e A[3]. In fact, for f = S¢®Sq*, we have

BSq® = Sq3Sq*Sq® = S¢°Sq*Sq* = a.

(2) For o= Sq*35¢"°Sq%Sq> + Sq*Sq'*Sq’Sq> + Sq**Sq'3Sq’Sq* € A[2],
we see aSq® =0, and so «=pfSq> for some Be A[6]. In fact, for f=
Sq*'Sq'Sq” + Sq3°Sq'3Sq7, we have
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ﬂSqS — (Sq31Sq14Sq7 + Sq30Sq15Sq7)Sq5
— Sq33SqISSq6Sq3 + Sq33Sql4Sq7Sq3 + Sq3ZSq15Sq7Sq3
= .

Theorem 3 is a special case of the unstable version of the following
conjecture: Consider the 2-adic expasion of an integer a = S~ 2% for £ <

Hh<---<t. We write a/) =Y/ 2% and in particular a®) = a.

ConecTURE. The following sequence is exact.

@ a1 4

where f(ay,...,0) = Z};l 2S¢ ~1 and (-Sq“)(x) = «Sq*.
In case a =2/, this reduces to a conjecture stated in [1]: The following
sequence is exact.

2[+17]

-Sq -Sq?'

A A A.

This paper gives a part of unstable acyclic relations for the Steenrod
algebra suggested by W. Richter. I would like to thank him for his invaluable
comments about the Steenrod and lambda algebras.

2. Singer’s formulas

We refer to [4] for the Steenrod algebra 4. The mod 2 Steenrod algebra
is generated by Sg“ with Adem relations

2] .

sgsq’ =3 (7T syetisy 2 1

q°Sq" = |, )sa ¢’ a<2b (1)
=0 /

If p—1<a<?2b, then b—1—-j<a—-2j for j<a—b+1. Hence, for
a=2b—-1, S¢q°Sq® =0. For b—1<a<2b—1,

Sanqb _ Squ—lsqa—b-H +R, (2)
la/2] b—1-— ] ) )
R= Z < . )Sq“*b«’Sq-/ € A>“la—b+1].
- a—2j
Jj=a—b+2
Especially, Sq®~'Sq? = S¢?>~' + R. Thus we have
SqSq® € A***la—b]  for 1<b<a<2b-1. (3)
By [4, Lemma 26|, if a=> a2", b=> 52" (0<a;b; <2), then
") =T11 <b{) (mod 2). By this formula,

di
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()= Conit) = (" )= n) (o) =0 @

If a<2b—1, we see by the Adem relations that

0(Sq“)0(Sq") = Sq** ' Sg*~!

a—1
2b—2 — o
( ] )Sq2a+2b2]qu

= 2a —1-2j

/2 —1- ] i i
— Z( ) q 2(a+b—j )7lsq2j 71, (5)

j
since
2b-2—-jY\ _ oy _(b—=1-] A
(2a—1—2j>_0 for j =25, _( » for j=2j"—1

by (4). We notice that 6 is defined primarily only on admissible elements. By
the Adem relations and (5), for a < 2b,

b—1 la/2] e
Q(Sanqb)=< , )0 a+b +Z< a_2j > (Sqa+h _/Sq./)

b1 @2y o
— S, 2(a+b)—1 S, 2(a+b—j)—1 S 2j—1
< . )q +> o o )5 q

=1
_ b—1 2(a+b)— a b
= Sq '+ 0(S¢")0(Sq").

Hence

a

0(Sq")0(Sq") = 6(Sq“Sq") if(b_1>50 (6)

for a<2b. If b<a<2b—1, then (bgl) =0 in the Adem relations, and so
this equation (6) holds for b <a < 2b—1.

Now we prove Theorems 1 and 2 by analogy dual to [2]. The following is
a condition for Sg’ = Sq% ...Sq" € A*[n], where A*[n] is a submodule spanned
by the admissible monomials S¢% ...S¢* with a; > n.

DEerFINITION 1. A monomial Sg%...Sq¢“ is called n-pseudo-admissible if
ap>n—i+ 143 a foral 1 <i<s.

LemMA 1. If Sq' is admissible and ay > n, then it is n-pseudo-admissible.
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ProoF. We show by induction on i that @; >n—i+1+3,_; ;. This
equality obviously holds for i = 1. Assuming it is true for i, we have

ai 1 =2a;,>n—i+1+ Z aj+a; >n—i+ Z a;.

1<j<i 1<j<i+1
Hence Sq’ is n-pseudo-admissible.

LemMmA 2. If Sq' is n-pseudo-admissible for n>0 and a; >0, then
Sq! € A*[n).

ProorF. We shall show that Adem relations preserve n-pseudo-
admissibility. For this purpose, we verify inductively ¢; > 1 and a;1 > a; — 1.
In fact,

aj g >n—i+ Z azn—i+(i—1)+a,2a;,—1=0.
1<j<i+1

Suppose for some i that Sg%+Sg“% is inadmissible. By using the Adem
relations (2) we write Sg“'Sg% as a sum of admissibles Sq?Sq”, where
each b>a;;; —a;+1. We shall show that all these monomials are n-
pseudo-admissible:

Sq’ = Sq% ...Sq“Sq*Sq"Sq¥1 ... Sq". (7)

Since Sq' is n-pseudo-admissible,

b>aiy—ai+1>n—i+ Z a_,-—a,-+1:n—i+l+ Z aj.

1<j<i+1 1<j<i
Now Sg¢“Sq® is admissible, and so

a=2=b+b>n—i+ Y a+b.

1<j<i

Since a+ b = a; + a;.1, we see that Sg’ is n-pseudo-admissible.

So Adem relations preserve n-pseudo-admissibility. Eventually we shall
reach admissible form of which all terms are both admissible and n-pseudo-
admissible. Hence all terms belong to A4°[n].

Let 0(I) = (2i;—1,...,2i; — 1) for any sequence I = (i,...,i1). Then
0: A%'[n] — A%*5[2n] is defined by taking 0(Sq’) = Sq) for any admissible
sequence /. The equation (6) implies 0(Sq“Sq”) = Sq%“? for b <a. In the
proof above, Sq/ =>"S¢’ =--- =3 SqX, where each K is admissible. By
definition, 0(SgX) = S¢?X). By induction, we assume 0(Sq”’) = Sq?”). Since
Sqlasia) = 3 §glab) - §gllaa) — S §40@b) by the equation (5) and a; <
air1 < 2a; — 1. Hence
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0(Sq") =Y _0(Sq”") = S¢"") = 5¢"D.
This implies the folowing:
Lemma 3. If Sq' is n-pseudo-admissible, then 0(Sq') = Sq?".
Now we are in a position to prove Theorem 1.
ProOF OF THEOREM 1. Take admissible monomials
Sq’ = Sq" ...Sq" € Ajn+ 1t — 5], Sq!' = Sq% ... Sq" € A>[n].

By Lemma 1, S¢’ and Sq’ are (n+t—s)- and n-pseudo-admissible, respec-
tively. Then

bi>ntt—s—i+t1+ > b

1<j<i
=n—(s+i)+1+ > g+ Y b
1<j<s 1<j<i
since 7 =7 @;. Hence Sq’Sq’ is n-pseudo-admissible, and so Sq’Sq’ € A[n]
by Lemma 2.

By this proof, Sq¢’Sq’ is n-pseudo-admissible if Sg’ and Sq’ are
(n+1t—s)- and n-pseudo-admissible, respectively. By Lemma 3,

0(Sq’ Sq") = Sq"" Sq"" = 0(Sq”)0(Sq"). (8)

For o € A[n], we sometimes will desuspend o without mentioning it to give
a smaller n. For instance, in Lemma 4 below, S¢'e A"/[n] and S¢*'e
AV 12 1) for n<t— 1.

We shall prove Theorem 2 after investigating the special case s =1 in
Lemma 4.

Lemma 4. For ae Ajn+t—1],
EH (¢ — Sq') = o — EH(Sq") + EH(2) — 0(Sq")
B {oz—l—EH(oc) — S¢* ' forn=t—1>0
- | EH(a) — Sg*! Jor 0<n<t—1.

Proor. Let o=xS¢""'+y, xeA2n+2t—1], yeAn+1i. Then
H(x)=x. For n=1t—1, aSq'= ySq' is admissible and H(aSq')=y=
o+ H(2)Sg*~'. For 0 <n<t—1, by the equation (2),

OCSqt — xSqn+tSqt+ ySql — xqutflSql’H*l +XR+ y‘gq[7

where Re A*?*"[n+1]. Now xSq¢* 'ed2n+1], xReAn+1], ySq¢'e
A[n+1], and so H(aSq") = xSq*>! = H(a)Sq* .
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If o and f € A" are (n+ ¢ — 5)- and n-pseudo-admissible, respectively, then
o — f is n-pseudo-admissible, and so

0o — ) = 0(2) — 0(P)
by the equation (8). Next we can check easily that
o (B—7)=(x—p)— 7
Now we prove Theorem 2.

ProOF OF THEOREM 2. We shall prove by induction on s. The s =1 case
is Lemma 4.

Let p=p'Sq" for b>n and admissible g e A~ 2b—1]c
A% n 4+ b —1]. Then o — B’ € A[n+b —1]. By induction and Lemma 4,

EH(x— f) = EH(x — (f' — Sq"))
= EH((2 — ') — Sq"
= (2 — ') — EH(Sq") + EH (2 — ') — 0(Sq")
=a— (f' — EH(Sq"))
+{o— EH(') + EH(x) — 0(5')} — 0(Sq")
=a— {f' — EH(Sq") + EH(f") — 0(Sq")}
+ EH(x) — (0(B') — 0(Sq"))
=a— EH(f)+ EH(x) — 6(f).

3. Acyclic relations

For the lambda algebra A, the acyclic relations are equivalent to the
exactness of the following sequence for p > 2n+ I:

2n+1—

Alp+2n+3) 205 A(p+ 1) 22 A(p —n).

Singer’s formulas are crucial to the proof. Now we have Singer’s formulas
(Theorems 1 and 2) and can prove the acyclic relations for the Steenrod algebra
A.

ProorF oF THEOREM 3. By the Adem relation,
(—Sq“) o (—Sg*~") = 0.

Consider an element o € A*[n — 1] with o — S¢? =0. For n > 2a, aSq°
is admissible, and so « = 0.
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For n=2a—1, o =xSq* '+ y € A[2a — 2], where x = H(x) € A[4a — 3]
and ye A[2a—1]. So o— S¢? = ySq?, and so y =0 by the case n>2a
above. Thus o= H(a) — Sg*!.

For n <2a—1, we have the following commutative diagram by Cor-
ollary 1:

2a—1

\/Sq quu

A+ 2a — 3] As[n—1] A n — q]

L | I

0 — Sgta? o —Sq2! ‘

A 2n+4a—-5 —— A" 2n—1 —— A[2n—2a+ 1]
Then 0 = H(x — Sq“) = H(a) — Sqg**~'. For s=1 we see o =1 — Sg> ! if
o« is non-trivial. When s =2, we may assume that H(x) =y — Sq*3 for
some ye A[2n+4a—5]. Since H is surjective, we have an element f e
An+2a—3] with H(f)=y. Then H(f — S¢* )= H(f) - Sq¢*3 =
7 — S¢* 3 =H(x). Hence o =a+f — Sq* 'edn—-1] has H(«')=0,
and so o' €A[n] and o — S¢¢ =0. By reverse-directed induction on n,
o' =B — Sg*! for some B’ € A[n+2a—2]. Thus o =p — Sg** ! for f=
f+p edn+2a-3.

Here, to prove the exactness of the upper sequence by the exactness of
the lower sequence we use the fact that 2n — 1 > n — 1 which comes from the
condition n>a > 1. We proceed by induction on s and we complete the
proof of Theorem 3.
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