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Abstract. We show that given a positive and finite Radon measure m, there is a Apð�Þ-

superharmonic function u which satisfies

�div Aðx;DuÞ ¼ m

in the sense of distributions. Here A is an elliptic operator with pðxÞ-type nonstandard

growth.

1. Introduction

We study the existence of solutions of

�div Aðx;DuÞ ¼ m; ð1:1Þ

where A is an operator with pðxÞ-type nonstandard structural conditions. Our

main result is that for positive, finite Radon measures m, there exists an Apð�Þ-

superharmonic function u which satisfies (1.1) in the sense of distributions. See

section 2 for the exact definition of this class of functions. Examples of the

operators A considered here arise from variational integrals like

ð
j‘ujpðxÞdx; ð1:2Þ

the Euler-Lagrange equation of (1.2) is the pðxÞ-Laplacian equation

divðpðxÞj‘ujpðxÞ�2‘uÞ ¼ 0; ð1:3Þ

where

Aðx; xÞ ¼ pðxÞjxjpðxÞ�2x:

There is an extensive literature on partial di¤erential equations and the calcu-

lus of variations with various nonstandard growth conditions, see for example

[30, 31, 24, 2, 1, 4] and the references in the survey [26].
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We study this problem for two reasons. First, some properties of Apð�Þ-

superharmonic functions require an additional integrability assumption; see for

example [14, Theorem 4.5]. We would like to show the existence of Apð�Þ-

superharmonic functions for which the integrability assumption can be ver-

ified. The need for an extra assumption is due to the fact that Harnack

estimates for equations with pðxÞ-growth are intrinsic in the sense that they

depend on the solution itself, see [2, 3, 14].

Second, we would like to show the existence of solutions with non-

removable isolated singularities. There is a method due to Serrin [29] to

construct such solutions. Again because of the intrinsic nature of the Harnack

estimates, this method fails. Hence the second purpose of this work is to find

an alternative to Serrin’s method. This turns out to be quite simple, just

choosing the Dirac measure as m in (1.1) su‰ces.

Our approach is an adaptation of that of Kilpeläinen and Malý [17].

First, we obtain approximative solutions ui by approximating m with more

regular measures. Then we prove uniform estimates for ui and use them to

find a limit u and to prove the fact that the left-hand side of (1.1) makes sense

as a distribution. Finally we show that this u is indeed a solution of (1.1).

This approach is related to the works of Boccardo and Gallouët [5, 6]; see also

[7, 22, 28].

The results we use as tools here do not hold without additional assump-

tions on the function pð�Þ. Even the variable exponent Lebesgue and Sobolev

spaces have very few properties for general, for instance just measurable,

exponents. There is a frequently used assumption, called logarithmic Hölder

continuity, that seems to be the right one for our purposes. See below for

more details.

2. Preliminaries

A measurable function p : Rn ! ð1;yÞ, nb 2, is called a variable expo-

nent. We denote

pþA ¼ sup
x AA

pðxÞ; p�A ¼ inf
x AA

pðxÞ; pþ ¼ sup
x ARn

pðxÞ; p� ¼ inf
x AR n

pðxÞ:

We assume, unless otherwise specified, that the exponent pð�Þ is logarithmically

Hölder continuous, i.e. satisfies (2.1) below and that 1 < p� a pþ < y.

Let WHRn be an open bounded set. The variable exponent Lebesgue

space Lpð�ÞðWÞ consists of all measurable functions u defined on W for which the

pð�Þ-modular

%pð�ÞðuÞ ¼
ð
W

juðxÞjpðxÞdx
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is finite. The Luxemburg norm on this space is defined as

kukpð�Þ ¼ inf l > 0 :

ð
W

uðxÞ
l

����
����
pðxÞ

dxa 1

( )
:

Equipped with this norm Lpð�ÞðWÞ is a Banach space. For basic results on

variable exponent spaces we refer to [19]. In particular, the dual of Lpð�ÞðWÞ
is the space Lp 0ð�ÞðWÞ obtained by conjugating the exponent pointwise, [19,

Theorem 2.6]. It follows that Lpð�ÞðWÞ is reflexive. Furthermore, a version of

Hölder’s inequality, ð
W

fg dxaCk f kpð�Þkgkp 0ð�Þ;

holds for functions f A Lpð�ÞðWÞ and g A Lp 0ð�ÞðWÞ.
The variable exponent Sobolev space W 1;pð�ÞðWÞ consists of functions

u A Lpð�ÞðWÞ whose distributional gradient ‘u exists and belongs to Lpð�ÞðWÞ.
The variable exponent Sobolev space W 1;pð�ÞðWÞ is a Banach space with the

norm

kuk1;pð�Þ ¼ kukpð�Þ þ k‘ukpð�Þ:

Smooth functions are not dense in W 1;pð�ÞðWÞ without additional assumptions

on the exponent pð�Þ. This was observed by Zhikov [30, 31] in the context of

the Lavrentiev phenomenon. Zhikov introduced the logarithmic Hölder con-

tinuity condition,

jpðxÞ � pðyÞja C

�logðjx� yjÞ ð2:1Þ

for all x; y A W such that jx� yja 1=2, as a criterion for the absence of the

Lavrentiev phenomenon. If the exponent satisfies (2.1), smooth functions are

dense in variable exponent Sobolev spaces and we can define the Sobolev space

with zero boundary values, denoted by W
1;pð�Þ
0 ðWÞ, as the completion of Cy

0 ðWÞ
with respect to the norm k � k1;pð�Þ. We refer to [10] and [16] for the details of

this definition.

Since we assume the exponent pð�Þ to be continuous, the pð�Þ-Poincaré
inequality

kukpð�Þ aCk‘ukpð�Þ
holds for every u A W

1;pð�Þ
0 ðWÞ, see [13, Theorem 4.1]. In particular, the pð�Þ-

Poincaré inequality implies that the norms kuk1;pð�Þ and k‘ukpð�Þ are equivalent

on W
1;pð�Þ
0 ðWÞ.

We use the following compactness properties of W
1;pð�Þ
0 ðWÞ in our existence

proof. The limit function v belongs to W
1;pð�Þ
0 ðWÞ by Mazur’s lemma, the first
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property follows from the reflexivity of Lpð�ÞðWÞ and the second from the fact

that W
1;pð�Þ
0 ðWÞ embeds compactly into Lpð�ÞðWÞ, see [19, Theorem 3.10].

Theorem 2.2. Assume that the sequence ðujÞ is bounded in W
1;pð�Þ
0 ðWÞ.

Then there is a function v A W
1;pð�Þ
0 ðWÞ and a subsequence ðujk Þ with the following

properties.

(1) ‘ujk ! ‘v weakly in Lpð�ÞðWÞ.
(2) ujk ! v pointwise almost everywhere and in Lpð�ÞðWÞ.

We need the following assumptions to hold for the operator

A : W� Rn ! Rn.

(1) x 7! Aðx; xÞ is measurable for all x A Rn,

(2) x 7! Aðx; xÞ is continuous for all x A W and Aðx;�xÞ ¼ �Aðx; xÞ for
all x A Rn,

(3) Aðx; xÞ � xb ajxjpðxÞ, where a > 0 is a constant, for all x A W and

x A Rn,

(4) jAðx; xÞja bjxjpðxÞ�1, where bb a > 0 is a constant, for all x A W and

x A Rn,

(5) ðAðx; hÞ �Aðx; xÞÞ � ðh� xÞ > 0 for all x A W and h0 x A Rn.

These are called the structure conditions of A.

We say that a function u A W
1;pð�Þ
loc ðWÞ is a subsolution of the equation

�div Aðx;‘uÞ ¼ 0 ð2:3Þ

if ð
W

Aðx;‘uÞ � ‘j dxa 0

for all nonnegative test functions j A Cy
0 ðWÞ. We use the assumption

Aðx;�xÞ ¼ �Aðx; xÞ and say that u is a supersolution if �u is a subsolu-

tion. Further, u is a solution if it is both a super- and a subsolution. Since

smooth functions are dense in W 1;pð�ÞðWÞ, we are allowed to employ test

functions j A W
1;pð�Þ
0 ðWÞ with compact support in W by the usual approximation

argument.

Logarithmic Hölder continuity plays an important role in the calculus

of variations and theory of partial di¤erential equations with pð�Þ-growth.
Indeed, higher integrability [31], Hölder regularity results [1, 8], and Harnack

estimates [2, 12, 14] use condition (2.1). Harnack estimates and boundary

regularity theory from [3] are used to prove the properties of supersolutions and

Apð�Þ-superharmonic functions we employ here, i.e. Theorems 2.5 and 2.7

below. Hence the log-Hölder assumption is crucial to us.

The results in [2, 3, 12, 14] are given for Aðx; xÞ ¼ pðxÞjxjpðxÞ�2x or

Aðx; xÞ ¼ jxjpðxÞ�2x. However, they hold also for the general operators A
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considered here. This is due to the fact that the same Caccioppoli type

estimates, the comparison principle and convergence results are available.

Indeed, using the ellipticity condition (3) and the growth condition (4) the

proofs of the Caccioppoli estimates given for operators A with constant growth

exponents given, for example, in [23, Chapter 2] can be adapted to the case

we consider here; see Lemma 3.1 below for a simple example of such an

adaptation. Further, comparison and convergence results are a consequence of

the monotonicity assumption (5) and the continuity assumption (2), replacing

the constant exponent Hölder’s inequality by a pointwise application of Young’s

inequality where necessary; see, e.g., the arguments given in [15, Chapter 3].

Definition 2.4. We say that a function u : W ! ð�y;y� is Apð�Þ-

superharmonic in W, denoted u A SðWÞ, if

(1) u is lower semicontinuous,

(2) u is finite almost everywhere and

(3) The comparison principle holds: Let DTW be an open set. If h is

a solution in D, continuous in D and ub h on qD, then ub h in D.

Further, we say that u is Apð�Þ-hyperharmonic if u has the properties (1)

and (3) of Definition 2.4.

The properties of supersolutions and Apð�Þ-superharmonic functions we

need below are collected in the next theorem. For the first property, see [12,

Theorem 6.1] and [14, Theorem 4.1]. The second property is an easy con-

sequence of the definition, as is the fact that truncations of Apð�Þ-superharmonic

functions are Apð�Þ-superharmonic. Bounded Apð�Þ-superharmonic functions are

supersolutions by [12, Corollary 6.6], and hence the functions minðu; lÞ are also

supersolutions. The last two properties follow in the same way as in the

constant exponent case, see [15, Corollary 7.23 and Theorem 7.27].

Theorem 2.5. (1) If u is a supersolution, then the lower semicontinuous

regularization of u, defined as

~uuðxÞ ¼ ess lim inf
y!x

uðyÞ;

is an Apð�Þ-superharmonic function and equals uðxÞ a.e.

(2) If ðukÞ is an increasing sequence of Apð�Þ-superharmonic functions, then

the limit function is Apð�Þ-hyperharmonic.

(3) If u is Apð�Þ-superharmonic, so is the function minðu; lÞ for all l A R.

The truncations minðu; lÞ are also supersolutions.

(4) If u and v are Apð�Þ-superharmonic and u ¼ v almost everywhere, then

u ¼ v everywhere.

(5) Being Apð�Þ-superharmonic is a local property.
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For an Apð�Þ-superharmonic function u we define a derivative Du pointwise

as

Du ¼ lim
k!y

‘ minðu; kÞ:

Note that Du is not necessarily the gradient of u in any sense.

We recall the following integrability lemma. See [17, Lemma 1.11], or

[15, Lemma 7.43], for the proof, and [15, Section 1.6, p. 6] for the choice of k.

Lemma 2.6. Let W be bounded, 1 < p < y and let u be a nonnegative

function which is finite almost everywhere. Set

k ¼
n

n�p
; if p < n; and

2; if pb n:

�

Suppose that for all k A N

minðu; kÞ A W
1;p
0 ðWÞ

and ð
W

j‘ minðu; kÞjpdxaMk

for a constant M independent of k. If 1a q < kp=ðkðp� 1Þ þ 1Þ, thenð
W

j‘ minðu; kÞjqðp�1ÞdxaC;

where C ¼ Cðn; p; q;M; diam WÞ, and if 0 < s < kðp� 1Þ, thenð
W

us dxaC;

where C ¼ Cðn; p; s;M; diam WÞ.

The previous lemma is used to prove the following result; see [12, Theorem

7.5] and [21, Theorem 4.6]. The extra assumption mentioned in the intro-

duction is the requirement that u A Lt
locðWÞ.

Theorem 2.7. Assume that u is Apð�Þ-superharmonic in W. If u A Lt
locðWÞ

for some t > 0, there is a number q > 1 such that jujqðpðxÞ�1Þ
and jDujqð pðxÞ�1Þ

are

locally integrable.

Theorem 2.7 seems insu‰cient to bound the gradients of approximate

solutions in the proof of our main theorem. We fix this by using the following

lemma. In the lemma, we need the sharp form of the weak Harnack

inequality [14, Theorem 3.7]ð
B2R

ug dx

� �1=g

aC inf
x ABR

uðxÞ þ R

� �
: ð2:8Þ
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More precisely, we need an exponent g > p�B2R
� 1 on the left-hand side of

(2.8). We can establish this by modifying the iteration argument of [3, Lemma

6.3] to use [14, Lemma 3.4] in a fashion similar to [14, Lemma 3.5]. This

way, we see that the weak Harnack inequality (2.8) holds for any exponent

0 < g < kðp�B2R
� 1Þ, where k is the Sobolev inequality parameter corresponding

to p�B2R
, as given in Lemma 2.6.

Lemma 2.9. Let u be a nonnegative Apð�Þ-superharmonic function such that

u A Lt
locðWÞ for some t > 0. Then there exist numbers q > 1 and e > 0, such thatð

BR

jDujqðpðxÞ�1ÞdxaCR
n�p�

B2R inf
x ABR

uðxÞ þ R

� �p�
B2R

�1�e

þ CRn inf
x ABR

uðxÞ þ R

� �ð1þeÞ=ððpþ
B2R

Þ 0=q�1Þ
þ CRn

for all su‰ciently small balls BR ¼ Bðx0;RÞ. The constant depends on pð�Þ,
n, q, e, the structural constants b and a, and the Lq 0sðB6RÞ-norm of u for

s > pþB6R
� p�B6R

, where q 0 is the Hölder conjugate to q.

Proof. Let us first pick a number l > 1 such that the exponent

lðp�B2R
� 1Þ is admissible in the weak Harnack inequality; for instance, the

choice

l ¼ min
n

n� 1
;
3

2

� �

will do. Further, we let q > 1 be a number such that

q < minfðpþÞ0; lg
and set

e ¼ min
1

2
ðp� � 1Þ; l

1þ 2d
� 1

� �
;

where d ¼ ðl� 1Þ=4.
Assume first that u is a supersolution, and pick a cuto¤ function h

compactly supported in B2R such that 0a ha 1, h ¼ 1 on BR and

j‘hjaC=R. We use Young’s inequality and the Caccioppoli estimate for

supersolutions [14, Lemma 4.3], and get thatð
BR

j‘ujqðpðxÞ�1Þdx ¼
ð
BR

j‘ujqðpðxÞ�1Þ
u�qð1þeÞðpðxÞ�1Þ=pðxÞuqð1þeÞðpðxÞ�1Þ=pðxÞ dx

aC

ð
B2R

j‘ujpðxÞu�1�eh
pþ
B2R dxþ C

ð
B2R

uð1þeÞ=ðp 0ðxÞ=q�1Þ dx

aC

ð
B2R

upðxÞ�1�ej‘hjpðxÞdxþ C

ð
B2R

uð1þeÞ=ðp 0ðxÞ=q�1Þ dx:

161PDE’s with pðxÞ-growth and measures



We estimate the first integral by log-Hölder continuity (see [14, Lemma

3.3]), Hölder’s inequality, the weak Harnack inequality and Lemma 3.4 of [14],

and obtainð
B2R

upðxÞ�1�ej‘hjpðxÞdx

aCR
n�p�

B2R

ð
B2R

u
q 0ðpðxÞ�p�

B2R
Þ
dx

� �1=q 0 ð
B2R

u
qðp�

B2R
�1�eÞ

dx

� �1=q

aCR
n�p�

B2R

ð
B2R

1þ u
q 0ðpþ

B2R
�p�

B2R
Þ
dx

� �1=q 0

inf
x ABR

uðxÞ þ R

� �p�
B2R

�1�e

aCR
n�p�

B2R ð1þ kuk
ðpþ

B2R
�p�

B2R
Þ

Lq 0sðB6RÞ
Þ inf

x ABR

uðxÞ þ R

� �p�
B2R

�1�e

:

For the second term, we first estimateð
B2R

uð1þeÞ=ð p 0ðxÞ=q�1Þ dxaCRn þ CRn

ð
B2R

u
ð1þeÞ=ððpþ

B2R
Þ 0=q�1Þ

dx: ð2:10Þ

Next we claim that we can choose q > 1 such that the exponent on the right-

hand side of (2.10) is admissible in the weak Harnack inequality. A su‰cient

condition for admissibility is

qðpþB2R
� 1Þð1þ eÞ

pþB2R
� qðpþB2R

� 1Þ < lðp�B2R
� 1Þ: ð2:11Þ

By the continuity of pð�Þ, we can assume that

pþB2R
� 1

p�B2R
� 1

a 1þ d

by considering small enough balls B2R. Whenever B2R is such a ball, (2.11) is

satisfied if

qð1þ eÞ
pþ � qðpþ � 1Þ <

l

1þ d
: ð2:12Þ

Here we used the fact that the function t 7! t� qðt� 1Þ is decreasing and

positive on the interval ½0; pþ�, since 1 < q < ðpþÞ0. The left-hand side of

(2.12) tends to 1þ e as q tends to one. Since 1þ ea l=ð1þ 2dÞ < l=ð1þ dÞ, it
is possible to choose a number q > 1 such that (2.12) holds. Now we can

estimate the integral average on the right-hand side of (2.10) by the weak

Harnack inequality. This proves the claim in the case of supersolutions.

For a general Apð�Þ-superharmonic function u, we apply the estimate for

supersolutions to uk ¼ minðu; kÞ and note that we can estimate the norms of uk
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appearing in the constants by the norms of u. Letting k ! y completes the

proof. r

We use the next estimate in proving that the Apð�Þ-superharmonic solutions

of (1.1) we find below are solutions outside the support of the measure m. A

simplified version of the arguments leading to Lemma 3.7 in [21], with the

appropriate modifications to take care of the presence of A, establishes the case

q0 > p� � 1. The case q0 > 0 then follows by a standard iteration argument,

see for example [15, Lemma 3.38].

Lemma 2.13. Let ub 0 be a solution of (2.3) in B6R. Then

ess sup
x ABR

uðxÞaC

ð
B2R

uq0 dx

� �1=q0

þ R

" #
;

where q0 > 0. The constant depends on n, q0, pð�Þ and the Lq 0rðB6RÞ-norm of u,

where 1 < q < n=ðn� 1Þ, q 0 is the Hölder conjugate to q and r > pþB6R
� p�B6R

.

3. Compactness of Apð�Þ-superharmonic functions

In this section we prove a weak compactness property of Apð�Þ-

superharmonic functions, Theorem 3.4. It is our main tool for the next

section.

Lemma 3.1. Assume that u is a nonnegative subsolution and h A Cy
0 ðWÞ is

such that 0a ha 1. Thenð
W

j‘ujpðxÞhpþ dxaC

ð
W

upðxÞj‘hjpðxÞdx:

Proof. We use uhpþ as a test function and obtain

0b

ð
W

Aðx;‘uÞ � ‘uhpþ dxþ
ð
W

Aðx;‘uÞ � ‘hpþhpþ�1u dx:

From this we obtain thatð
W

Aðx;‘uÞ � ‘uhpþ dxa pþ
ð
W

jAðx;‘uÞj j‘hjhpþ�1u dx: ð3:2Þ

Next we use structure, (3.2) and Young’s inequality and conclude thatð
W

hpþ j‘ujpðxÞdxaC

ð
W

Aðx;‘uÞ � ‘uhpþ dx

aC

ð
W

jAðx;‘uÞj j‘hjhpþ�1u dx
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aC

ð
W

j‘ujpðxÞ�1j‘hjhpþ�1u dx

a
1

2

ð
W

j‘ujpðxÞhðpþ=p 0ðxÞÞp 0ðxÞ dx

þ C

ð
W

upðxÞj‘hjpðxÞhð pþ�1�pþ=p 0ðxÞÞpðxÞ dx;

from which the claim follows. r

It follows from the inequalities between the Luxemburg norm and the

modular [9, Theorem 1.3] that

k jujpð�Þ�1kp 0ð�Þ amaxfkukpþ�1
pð�Þ ; kukp��1

pð�Þ g: ð3:3Þ

When using inequality (3.3) in the sequel, we preserve the letter s for the

exponent at which the maximum on the right-hand side is attained.

Theorem 3.4. Let ðujÞ be a sequence of positive Apð�Þ-superharmonic

functions. Then there exist a subsequence ðujk Þ and an Apð�Þ-hyperharmonic

function u such that ujk ! u almost everywhere in W and Dujk ! Du almost

everywhere in the set fu < yg.

Proof. Assume first that uj aM < y, where Mb 1. Then the func-

tions uj are supersolutions, [12, Corollary 6.6]. Let U TU 0 TW 0
TW be open

sets and choose cuto¤ functions h A Cy
0 ðU 0Þ and j A Cy

0 ðW 0Þ such that

0a j; ha 1, h ¼ 1 in U and j ¼ 1 in U 0. We want to show that the

sequence ðhujÞ is bounded in W
1;pð�Þ
0 ðU 0Þ. To this end, we estimateð

U 0
j‘ðhujÞjpðxÞdxaC

ð
U 0

u
pðxÞ
j j‘hjpðxÞdxþ

ð
U 0

j‘ujjpðxÞhpðxÞ dx

� �

aCMpþ
ð
U 0

j‘hjpðxÞdxþ C

ð
U 0

j‘ujjpðxÞhpðxÞ dx:

Since M � uj is a nonnegative subsolution, we obtain for the second term by

the Caccioppoli estimate (Lemma 3.1) thatð
U 0

j‘ujjpðxÞhpðxÞ dxa

ð
U 0

j‘uj jpðxÞdx

a

ð
W 0

j‘ðM � ujÞjpðxÞjpþ dx

aC

ð
W 0

juj �MjpðxÞj‘jjpðxÞdx

aCMpþ
ð
W 0

j‘jjpðxÞdx:
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The pð�Þ-Poincaré inequality now implies that the sequence ðhujÞ is bounded in

W
1;pð�Þ
0 ðU 0Þ. Thus by Theorem 2.2 there is a function u A W

1;pð�Þ
0 ðU 0Þ and a

subsequence, still denoted by ðhujÞ, such that huj ! u in Lpð�ÞðU 0Þ and

pointwise almost everywhere in U 0, and finally ‘ðhujÞ ! ‘u weakly in

Lpð�ÞðU 0Þ. Since h ¼ 1 in U , it follows that uj ! u in Lpð�ÞðUÞ and pointwise

almost everywhere in U , and ‘uj ! ‘u weakly in Lpð�ÞðUÞ.
Next we claim that u has a representative which is Apð�Þ-superharmonic in

U . To prove this, set vi ¼ inf iaj uj and for a fixed i, wk ¼ min iajak uj. Then

wk is a supersolution by [12, Theorem 3.3] and the sequence ðwkÞ is decreasing

and bounded below. By [12, Theorem 5.2] this implies that vi ¼ limk!y wk

is a supersolution. Thus the function ~vviðxÞ ¼ ess lim infy!x viðyÞ is Apð�Þ-

superharmonic in U . Let ~vv ¼ limi!y ~vvi. Now ~vv is the desired representative

since it is Apð�Þ-superharmonic as an increasing limit of Apð�Þ-superharmonic

functions and

uðxÞ ¼ lim
j!y

ujðxÞ ¼ lim
i!y

viðxÞ ¼ ~vvðxÞ

for almost every x A U .

We have proved that if the sequence ðujÞ is bounded and U TW, we can

find a subsequence that converges pointwise a.e. in U to a function u which is

Apð�Þ-superharmonic in U . To find a limit which is Apð�Þ-superharmonic in W,

choose open sets Uk, k ¼ 1; 2; . . . , such that Uk TUkþ1 and W ¼ 6
k
Uk. Then

we can pick a subsequence ðu1j Þ and a limit function u1 which is Apð�Þ-

superharmonic in U1. We proceed inductively and pick a subsequence ðukþ1
j Þ

of ðuk
j Þ that converges to a function ukþ1 A SðUkþ1Þ. Then uk ¼ ukþ1 almost

everywhere in Uk, and by Apð�Þ-superharmonicity this holds everywhere. Thus

we can define the desired limit function as u ¼ uk in Uk. This function u is

Apð�Þ-superharmonic in W since being Apð�Þ-superharmonic is a local property.

Further, uaM by the boundedness of the original sequence, and in particular

u is a supersolution in W.

The next step is to prove that we can assume ‘uj ! ‘u almost everywhere

in Uk for any k ¼ 1; 2; . . . by passing to a further subsequence. To this end,

fix a number e > 0 and let

Ej ¼ fx A Uk : ðAðx;‘uÞ �Aðx;‘ujÞÞ � ð‘u� ‘ujÞb eg;

E1
j ¼ fx A Ej : ju� ujjb e2g

and E2
j ¼ EjnE1

j . jE1
j j ! 0 as j ! y since uj ! u in Lpð�ÞðUkÞ. To estimate

jE2
j j, we note that

jE2
j ja

1

e

ð
E 2
j

ðAðx;‘uÞ �Aðx;‘ujÞÞ � ð‘u� ‘ujÞdx;
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pick a cuto¤ function h A Cy
0 ðUkþ1Þ such that 0a ha 1, h ¼ 1 in Uk and set

vj ¼ minððuj � uþ e2Þþ; 2e2Þ:

We use hvj as a test function and obtain

0a

ð
Ukþ1

Aðx;‘uÞ � vj‘h dxþ
ð
Ukþ1Vfju�uj j<e2g

Aðx;‘uÞ � hð‘uj � ‘uÞdx: ð3:5Þ

We pick another cuto¤ function j A Cy
0 ðUkþ2Þ such that 0a ja 1, j ¼ 1 in

Ukþ1. Using the Caccioppoli estimate (Lemma 3.1) as in the beginning of the

proof, we obtainð
Ukþ1

j‘ujjpðxÞdxa
ð
Ukþ2

j‘ðM � ujÞjpðxÞjpþ dx

aC

ð
Ukþ2

jM � ujjpðxÞj‘jjpðxÞdx

aCMpþ
ð
Ukþ2

j‘jjpðxÞdx:

The same computation can be carried out for u, since we know that u is a

supersolution in W. Thus we can find a constant C such that

k‘ukpð�Þ;Ukþ1
aC and k‘ujkpð�Þ;Ukþ1

aC: ð3:6Þ

We use (3.5), structure of A, the Hölder inequality, (3.3) and (3.6) and get thatð
Ukþ1Vfju�uj j<e2g

Aðx;‘uÞ � hð‘u� ‘ujÞdxa
ð
Ukþ1

Aðx;‘uÞ � vj‘h dx

aCe2
ð
Ukþ1

j‘ujpðxÞ�1j‘hjdx

aCe2k‘uks
pð�Þ;Ukþ1

k‘hkpð�Þ;Ukþ1

aCe2:

Replacing vj with ~vvj ¼ minððu� uj þ e2Þþ; 2e2Þ allows us to reverse the roles of

uj and u in the above computation. Thus we conclude that

jE2
j ja

1

e

ð
E 2
j

ðAðx;‘uÞ �Aðx;‘ujÞÞ � ð‘u� ‘ujÞdxaCe:

It follows that

jEjj ¼ jE1
j j þ jE2

j ja ðC þ 1Þe ð3:7Þ

for jb je.
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Estimate (3.7) implies that ‘uj ! ‘u in measure in Uk; this allows us to

pick the desired pointwise almost everywhere convergent subsequence. To

prove the convergence in measure, we assume the opposite and find positive

numbers d and a such that

jfx A Uk : j‘uj � ‘ujb dgjb a > 0:

Pick any sequence ðeiÞ such that ei ! 0 as i ! y. We note that

jfx A Uk : ðAðx;‘uÞ �Aðx;‘ujÞÞ � ð‘u� ‘ujÞb eigj

b jfx A Uk : ðAðx;‘uÞ �Aðx;‘ujÞÞ � ð‘u� ‘ujÞb ei; j‘uj � ‘ujb dgj:

By measure theory, the structure of A and the counterassumption, the right-

hand side tends to a limit Lb a as i ! y. Thus there is a number e0 > 0

such that

jfx A Uk : ðAðx;‘uÞ �Aðx;‘ujÞÞ � ð‘u� ‘ujÞb egjb a=2 > 0

whenever ea e0, and this contradicts (3.7).

We can now assume that ‘uj ! ‘u pointwise almost everywhere in W.

This follows from the pointwise almost everywhere convergence in Uk proved

above by an inductive process similar to the one by which we found the

superharmonic limit u in W.

As the final step we remove the boundedness assumption by another

diagonalization argument. By the first part of the theorem, we can find a

subsequence ðu1j Þ and an Apð�Þ-superharmonic function u1 such that

minðu1j ; 1Þ ! u1 and ‘ minðu1j ; 1Þ ! ‘u1

almost everywhere in W. We proceed inductively and pick a subsequence ðuk
j Þ

of ðuk�1
j Þ such that

minðuk
j ; kÞ ! uk and ‘ minðuk

j ; kÞ ! ‘uk

almost everywhere in W. We observe that if lb k and ukðxÞ < k, we have

ulðxÞ ¼ ukðxÞ. Thus the sequence ðukÞ is increasing, and we conclude that the

limit u ¼ limk!y uk exists and defines the desired Apð�Þ-hyperharmonic function

in W. We note that by construction minðu; kÞ ¼ uk, so that for the diagonal

sequence ðuk
k Þ it holds that ‘uk

k ! Du almost everywhere in the set fu < yg.
r

4. Existence of Apð�Þ-superharmonic solutions

In this section we prove our main existence result, Theorem 4.7.

Throughout, we use T to denote the map defined by
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ðTu; jÞ ¼
ð
W

Aðx;DuÞ � ‘j dx; ð4:1Þ

where j A Cy
0 ðWÞ. By Theorem 2.7 and the structure of A, Tu defines a

distribution for Apð�Þ-superharmonic functions u that belong to Lt
locðWÞ for some

t > 0, and Tu A ðW 1;pð�ÞðWÞÞ� if u A W 1;pð�ÞðWÞ.

Theorem 4.2. Let u be an Apð�Þ-superharmonic function such that

u A Lt
locðWÞ for some t > 0. Then there is a positive Radon measure m such that

�div Aðx;DuÞ ¼ m

in the sense of distributions.

Proof. Since u A Lt
locðWÞ for some t > 0, jDujpðxÞ�1 A L1

locðWÞ by Theorem

2.7. Pick any j A Cy
0 ðWÞ such that jb 0 and denote uk ¼ minðu; kÞ. Then

Aðx;‘ukÞ � ‘j ! Aðx;DuÞ � ‘j

pointwise almost everywhere by the continuity of x 7! Aðx; xÞ.
Using the structure of A, we have

jAðx;‘ukÞ � ‘jjaCj‘ukjpðxÞ�1j‘jjaCjDujpðxÞ�1j‘jj:

Using the dominated convergence theorem and the fact that the functions uk
are supersolutions, we conclude that

ðTu; jÞ ¼
ð
W

Aðx;DuÞ � ‘j dx ¼ lim
k!y

ð
W

Aðx;‘ukÞ � ‘j dxb 0:

The claim now follows from the Riesz representation theorem, see for example

[27, Theorem 2.14]. r

Lemma 4.2. Let u; v A W
1;pð�Þ
0 ðWÞ be supersolutions such that

Tu ¼ ma n ¼ Tv:

Then ua v almost everywhere in W.

Proof. Let h ¼ minðv� u; 0Þ. Since ma n, we obtain that

0b

ð
W

h dn�
ð
W

h dm

¼
ð
W

Aðx;‘vÞ � ‘h dx�
ð
W

Aðx;‘uÞ � ‘h dx

¼
ð
fu>vg

ðAðx;‘vÞ �Aðx;‘uÞÞ � ð‘v� ‘uÞdx:
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By the monotonicity of A, it follows that ‘v ¼ ‘u almost everywhere in

fu > vg. Hence ‘h ¼ 0 and it follows that h ¼ 0 almost everywhere, which

means that vb u almost everywhere. r

To show the existence of solutions in the case m A ðW 1;pð�Þ
0 ðWÞÞ�, we use the

following theorem. See [20, Théorème 2.1, p. 171] for the proof.

Theorem 4.4. Let X be a reflexive, separable Banach space, and assume

that T : X ! X � is

(1) monotone, i.e. ðTu� Tv; u� vÞb 0 for all u; v A X,

(2) bounded, i.e. if EHX is bounded, so is TðEÞ;
(3) demicountinuous, i.e. xj ! x implies ðTxj; yÞ ! ðTx; yÞ for all y A X

and

(4) coercive, i.e. for a sequence ðxjÞHX such that kxjkX ! y it holds

that

ðTxj; xjÞ
kxjkX

! y as j ! y:

Then T is surjective, i.e. the equation Tx ¼ f has a solution x A X for each

f A X �.

Theorem 4.5. Let W be a bounded domain and m A ðW 1;pð�Þ
0 ðWÞÞ� be

a positive Radon measure. Then there is a unique nonnegative supersolution

u A W
1;pð�Þ
0 ðWÞ such that

�div Aðx;‘uÞ ¼ m

in the sense of distributions.

Proof. We prove the existence part by verifying the assumptions of

Theorem 4.4 for the map T : W
1;pð�Þ
0 ðWÞ ! ðW 1;pð�Þ

0 ðWÞÞ� given by (4.1). First,

the monotonicity of T is an immediate consequence of the monotonicity

assumption on A.

Using the structure of A, the Hölder inequality and (3.3), we infer that

jðTu; vÞjaC

ð
W

j‘ujpðxÞ�1j‘vjdx

aCk j‘ujpðxÞ�1kp 0ð�Þk‘vkpð�Þ

aCkuk s
1;pð�Þkvk1;pð�Þ:

This implies that kTukðW 1; pð�Þ
0

ðWÞÞ� aCkuks
1;pð�Þ, so that T is bounded.

Let ðujÞHW
1;pð�Þ
0 ðWÞ be such that uj ! u in W

1;pð�Þ
0 ðWÞ. We pass to a

subsequence and assume that uj ! u and ‘uj ! ‘u pointwise almost every-
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where. By continuity of the map x 7! Aðx; xÞ, it follows that Aðx;‘ujÞ !
Aðx;‘uÞ almost everywhere. Sinceð

W

jAðx;‘ujÞjpðxÞ=ðpðxÞ�1ÞdxaC

ð
W

j‘ujjpðxÞdxaM < y

by the convergence of the sequence ðujÞ, ðAðx;‘ujÞÞ is bounded in Lp 0ð�ÞðWÞ.
Thus we may pass to a further subsequence and assume that Aðx;‘ujÞ !
Aðx;‘uÞ weakly in Lp 0ð�ÞðWÞ.

This implies that the whole sequence converges weakly; indeed, assuming

the opposite, we find a weak neighbourhood U of Aðx;‘uÞ and a subsequence

such that ðAðx;‘ujk ÞÞHLp 0ð�ÞðWÞnU . We may assume pointwise convergence

by passing to a further subsequence, and this sub-subsequence converges weakly

in Lp 0ð�ÞðWÞ to Aðx;‘uÞ by the earlier argument, which is a contradiction. It

follows that

ðTuj; vÞ ¼
ð
W

Aðx;‘ujÞ � ‘v dx !
ð
W

Aðx;‘uÞ � ‘v dx ¼ ðTu; vÞ:

Let ðujÞ be a sequence such that kujk1;pð�Þ ! y. Since the norms kuk1;pð�Þ
and k‘ukpð�Þ are equivalent on W

1;pð�Þ
0 ðWÞ, we may assume that k‘ujkpð�Þ b 1.

By [9, Theorem 1.3], this implies that %pð�Þð‘ujÞb k‘ujkp�

pð�Þ. We use the

structure of A, and the pð�Þ-Poincaré inequality and obtain that

ðTuj; ujÞ
kujk1;pð�Þ

bC

Ð
W
j‘ujjpðxÞdx
kujk1;pð�Þ

bC
k‘ujkp�

pð�Þ
kujk1;pð�Þ

bCkujkp��1
1;pð�Þ ! y

as j ! y.

Finally, we note that the uniqueness and positivity claims follow from

Lemma 4.3. r

We say that a sequence of measures ðmjÞ converges weakly to a measure m

if

lim
j!y

ð
W

j dmj ¼
ð
W

j dm

for all j A Cy
0 ðWÞ. We use the following elementary technique from Mikko-

nen’s thesis [25] to approximate a general, finite positive Radon measure m by

measures mj A ðW 1;pð�Þ
0 ðWÞÞ�.

Lemma 4.6. Let W be a bounded open set and assume that m is a finite

positive Radon measure on W. Then there is a sequence ðmjÞ of finite positive

Radon measures such that mj A ðW 1;pð�Þ
0 ðWÞÞ�, mj ! m weakly and mjðWÞa mðWÞ.

Proof. Let Qi; j, i ¼ 1; . . . ;Nj, be the dyadic cubes with side length 2�j

contained in W. For any measurable set EHW we define
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mjðEÞ ¼
XNj

i¼1

mðQi; jÞ
jQi; j j

jE VQi; jj;

and the proof will be completed by showing that the sequence ðmjÞ has the

desired properties. First we observe that

mjðWÞ ¼
XNj

i¼1

mðQi; jÞa mðWÞ;

since the cubes Qi; j do not completely cover the set W. Given a function

j A Cy
0 ðWÞ we obtain

ð
W

j dmj

����
���� ¼ XNj

i¼1

mðQi; jÞ
jQi; jj

ð
Qi; j

j dx

�����
�����

a 2njmðWÞ
ð
W

jjjdxaCkjkpð�Þ aCkjk1;pð�Þ;

so that mj A ðW 1;pð�Þ
0 ðWÞÞ�. The weak convergence follows in the same way as

in [25, Lemma 2.12], and we omit the details. r

Theorem 4.7. Let W be bounded and m a finite positive Radon

measure. Then there is an Apð�Þ-superharmonic function u such that

minðu; kÞ A W
1;pð�Þ
0 ðWÞ for all k > 0 and

�div Aðx;DuÞ ¼ m

in the sense of distributions.

Proof. Let ðmjÞ be the sequence of measures belonging to ðW 1;pð�Þ
0 ðWÞÞ�

obtained from Lemma 4.6 and denote by ðujÞ the sequence of supersolutions

satisfying

�div Aðx;‘ujÞ ¼ mj ð4:8Þ

in the sense of distributions; such functions uj exist by Theorem 4.5.

By Theorem 3.4, there is an Apð�Þ-hyperharmonic function u such that

we can assume uj ! u and ‘ minðuj; kÞ ! ‘ minðu; kÞ almost everywhere by

passing to a subsequence. As the first step, we prove that u A Lt
locðWÞ for some

t > 0. To this end, we use structure of A and (4.8) and infer thatð
W

j‘ minðuj; kÞjpðxÞdxaC

ð
W

Aðx;‘ujÞ � ‘ minðuj; kÞdx

¼ C

ð
W

minðuj; kÞdmj

aCmjðWÞkaCmðWÞk: ð4:9Þ
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From (4.9) and the p�-Poincaré inequality, we obtain thatð
W

jminðuj ; kÞjp
�
dxaC

ð
W

j‘ minðuj; kÞjp
�
dx

a

ð
W

ð1þ j‘minðuj; kÞjÞpðxÞdx

aCjWj þ CmðWÞkaCðjWj þ mðWÞÞk: ð4:10Þ

Since uj ! u almost everywhere, it follows from Fatou’s lemma and (4.10)

that ð
W

jminðu; kÞjp
�
dxaMk;

with the constant M ¼ CðjWj þ mðWÞÞ independent of k. This estimate implies

that u is finite almost everywhere. Indeed, denoting E ¼ fx A W : uðxÞ ¼ yg,
we get

jEj ¼ 1

kp�

ð
E

kp� dxa
1

kp�

ð
W

jminðu; kÞjp
�
dxaMk1�p� ! 0

as k ! y. Estimate (4.9) and the pð�Þ-Poincaré inequality imply that

ðminðuj ; kÞÞ is bounded in W
1;pð�Þ
0 ðWÞ. It follows that minðu; kÞ A W

1;pð�Þ
0 ðWÞ

since weak limits must coincide with pointwise limits. Next, we use pointwise

a.e. convergence of the gradients and Fatou’s lemma and argue as in (4.10).

This leads to the estimateð
W

j‘ minðu; kÞjp
�
dxaCðjWj þ mðWÞÞk:

This inequality allows us to use Lemma 2.6 to conclude that u A Lt
locðWÞ for

some t > 0, and then we use Theorem 2.7 to conclude that u, Du A L
qðpðxÞ�1Þ
loc ðWÞ

for some q > 1.

By Theorem 4.2, there is a measure n such that

�div Aðx;DuÞ ¼ n ð4:11Þ

in the sense of distributions. We will complete the proof by showing that

m ¼ n in the sense of distributions. We know that u A Lt
locðWÞ for some

t > 0. We consider an arbitrary ball B ¼ Bðx0; 2RÞ, chosen su‰ciently small,

so that the exponent t is admissible in Lemma 2.9. By the usual partition of

unity argument, it su‰ces to show thatð
B

j dm ¼
ð
B

j dn

for all j A Cy
0 ðBÞ.
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The constants on the right-hand sides of (4.9) and (4.10) are independent

of j. Hence the sequence ðkujkLtðBÞÞ is bounded for some t > 0, by Lemma

2.6. The pointwise convergence of ðujÞ implies that ðinfBR
ujÞ is bounded.

Thus the sequence ðj‘ujjpðxÞ�1Þ is bounded in LqðBÞ for some q > 1 by Lemma

2.9. Next we use the structure of A, and get thatð
B

jAðx;‘ujÞjqdxaC

ð
B

j‘ujjqðpðxÞ�1ÞdxaC:

Thus the sequence ðAðx;‘ujÞÞ is also bounded in LqðBÞ, and it follows from

the continuity of x 7! Aðx; xÞ that Aðx;‘ujÞ ! Aðx;DuÞ weakly in LqðBÞ.
We use the weak convergence in Lq and (4.11) to conclude that

lim
j!y

ð
B

j dmj ¼ lim
j!y

ð
B

Aðx;‘ujÞ � ‘j dx ¼
ð
B

Aðx;DuÞ � ‘j dx ¼
ð
B

j dn;

which completes the proof. r

5. Solutions with isolated singularities

In this section we show the existence of solutions with nonremovable

isolated singularities. We assume that the origin belongs to W, 1 < p� a

pþ < n and use d to denote the unit mass at the origin.

Theorem 5.1. If u is a solution of

�div Aðx;DuÞ ¼ d ð5:2Þ

obtained from Theorem 4.7, then u is a solution of

�div Aðx;‘uÞ ¼ 0 ð5:3Þ
in Wnf0g.

Proof. Let ðmjÞ be the sequence approximating d we obtain from Lemma

4.6. From the proof of the lemma we see that the support of mj is contained

in a ball Bj ¼ Bð0; c2�jÞ, where the constant c is independent of j. Thus the

corresponding supersolution uj is a nonnegative solution of (5.3) in WnBj.

Next we pass to the subsequence provided by Theorem 3.4, still denoted

by ðujÞ. Fix a ball B ¼ Bðx0;RÞ with x0 A W, x0 0 0 and R such that

6BTWnf0g. Then for su‰ciently large j it holds that 6BTWnBj. We

discard the values of j that are not su‰ciently large and still denote the

subsequence we obtain by ðujÞ.
Since the right-hand side of (4.9) is independent of j, Lemma 2.6 implies

that the sequence ðujÞ is bounded in LtðWÞ for some t > 0. We can use

Lemma 2.13 and the bound in LtðWÞ to conclude that the sequence ðujÞ is
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uniformly bounded in B. Indeed, we can pick r > 0 such that t ¼ q 0r and then

assure that r is admissible in Lemma 2.13 by passing to a smaller ball if

necessary, since pð�Þ is continuous. Further, the sequence is also equicontin-

uous in B, since the bound in LtðWÞ also allows us to take a constant

independent of j in Harnack’s inequality, [14, Theorem 3.9]. The reason for

this is the fact that the dependence of the constant of Harnack’s inequality on

u is the same as in Lemma 2.13. Now by using the Arzela–Ascoli theorem

we can assume that ðujÞ converges uniformly in B by passing to a further

subsequence. This uniform limit must be u by the pointwise convergence, and

thus u is a solution in B by [12, Corollary 5.3]. Since this argument can be

repeated for any point x0 A Wnf0g, it follows that u is a solution in Wnf0g.
r

The above proof can be easily modified to show that a solution of

�div Aðx;DuÞ ¼ m

constructed by the present method is a solution of (5.3) in WnsptðmÞ.
However, solutions of equations involving measures are not necessarily unique

without some additional assumptions, even when the exponent is constant; see

[18] for an example. Hence our present tools are insu‰cient to obtain the

conclusion of Theorem 5.1 for an arbitrary solution of (5.2).

A solution of (5.2) cannot be a supersolution of (5.3). To see this, note

that if the measure m is such that m A ðW 1;pð�Þ
0 ðWÞÞ�, then mðEÞ ¼ 0 for all

EHW such that cappð�ÞðE;WÞ ¼ 0, where cappð�Þ is the variational pðxÞ-
capacity, as defined in [11]. This can be proven in the same way as in

the constant exponent case, see [25, Lemma 2.4]. Further, recall that the

operator T defined by (4.1) maps W
1;pð�Þ
0 ðWÞ to ðW 1;pð�Þ

0 ðWÞÞ�. This implies

that the measure m associated to a supersolution u A W
1;pð�Þ
0 ðWÞ by Theorem 4.2

must belong to ðW 1;pð�Þ
0 ðWÞÞ�. Clearly cappð�Þðf0g;WÞ ¼ 0 if pþ < n, so that

d B ðW 1;pð�Þ
0 ðWÞÞ�; hence a solution of (5.2) cannot be a supersolution.
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[11] P. Harjulehto, P. Hästö, and M. Koskenoja, Properties of capacities in variable exponent

Sobolev spaces, J. Anal. Appl., 5 (2007), 71–92.
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