Oscillatory criteria for differential equations with deviating argument

Dedicated to Professor O. Boruvka on the occasion of his 90th birthday
Marko Švec
(Received January 20, 1989)

The aim of this paper is to give a new approach for considering the question concerning the oscillatory criteria for differential equations with deviating argument.

We will deal with the differential equation

$$
\begin{equation*}
L_{n} y(t)+h\left(t, y(\varphi(t)), y^{\prime}(\varphi(t)), \ldots, y^{(n-1)}(\varphi(t))\right)=0, \quad n>1 \tag{E}
\end{equation*}
$$

where $h: J \times R^{n} \rightarrow R, \varphi: J \rightarrow R, a_{i}: J \rightarrow(0, \infty), i=0,1, \ldots, n$, are continuous functions, $J=\left[t_{0}, \infty\right)$, and

$$
L_{0} y(t)=a_{0}(t) y(t), \quad L_{i} y(t)=a_{i}(t)\left(L_{i-1} y(t)\right)^{\prime}, \quad i=1,2, \ldots, n .
$$

Under a solution $y(t)$ of (E) we will understand a solution existing on some ray $\left[T_{y}, \infty\right)$ and such that

$$
\sup \left\{|y(t)|: t_{1} \leqq t<\infty\right\}>0 \quad \text { for any } \quad t_{1} \geqq T_{y}
$$

The following basic assumptions will be used:

1. $\int^{\infty} a_{i}^{-1}(t) d t=\infty, i=1,2, \ldots, n-1$;
2. $y_{0} h\left(t, y_{0}, y_{1}, \ldots, y_{n-1}\right)>0$ for all $t \in J$ and any $y_{i} \in R, i=0,1, \ldots$, $n-1, y_{0} \neq 0$;
3. $y_{0} h\left(t, y_{0}, y_{1}, \ldots, y_{n-1}\right)<0$ for all $t \in J$ and any $y_{i} \in R, i=0,1, \ldots$, $n-1, y_{0} \neq 0$;
4. $\lim \varphi(t)=\infty$ as $t \rightarrow \infty$.

Definition 1. A solution $y(t)$ of (E) will be called oscillatory if there exists an increasing sequence $\left\{t_{i}\right\}_{i=1}^{\infty}$ such that $\lim _{i \rightarrow \infty} t_{i}=\infty$ and $y\left(t_{i}\right)=0, i=1$, $2, \ldots$. A solution $y(t)$ of (E) will be called nonoscillatory if it is not oscillatory, i.e. there exists $T_{y}^{\prime} \geqq T_{y}$ such that $y(t)>0$ or $y(t)<0$ on the interval $\left[T_{y}^{\prime}, \infty\right)$.

It follows from the assumptions $1 .-4$. and from the equation (E) that to
each nonoscillatory solution $y(t)$ of (E) there exists such a number $T_{y}^{\prime \prime} \geqq T_{y}$ that on the interval $\left[T_{y}^{\prime \prime}, \infty\right)$ each quasiderivative $L_{i} y(t), i=0,1, \ldots, n$ has a constant sign and therefore, $L_{i} y(t), i=0,1, \ldots, n-1$ are monotone functions on $\left[T_{y}^{\prime \prime}, \infty\right)$, so that $\lim _{t \rightarrow \infty} L_{i} y(t), i=0,1, \ldots, n-1$ exist in the extended sense, i.e. $\lim _{t \rightarrow \infty}\left|L_{i} y(t)\right|$ is finite or $\infty, i=0,1, \ldots, n-1$. Then for the nonoscillatory solutions the following two cases are possible:
a) $\lim _{t \rightarrow \infty}\left|L_{i} y(t)\right|=\infty \quad$ for all $i=0,1, \ldots, n-1$.

We note that in this case, if $\lim _{t \rightarrow \infty}\left|L_{n-1} y(t)\right|=\infty$, then $\lim _{t \rightarrow \infty}\left|L_{i} y(t)\right|=\infty$ for $i=0,1, \ldots, n-2$ and $\operatorname{sgn} L_{n-1} y(t)=\operatorname{sgn} L_{i} y(t), i=0,1, \ldots, n-2$.
b) There exists $k \in\{0,1, \ldots, n-1\}$ such that $\lim _{t \rightarrow \infty} L_{k} y(t)$ is finite, $\lim _{t \rightarrow \infty} L_{i} y(t)=\infty \cdot \operatorname{sgn} y(t), i=0,1, \ldots, k-1$, and $\lim _{t \rightarrow \infty} L_{i} y(t)=0, i=k+1$, $\ldots, n-1$.

Remark 1. The case a) cannot occur if the assumptions 1., 2., 4., are satisfied. Indeed, in such a case for a nonoscillatory solution $y(t), y(t) \neq 0$ on $\left[T_{y}, \infty\right)$, we have $y(t) L_{n} y(t)<0$ which implies that $\left|L_{n-1} y(t)\right|$ is nonincreasing and therefore $\lim _{t \rightarrow \infty} L_{n-1} y(t)$ is finite. Thus, $k \leqq n-1$.

Remark 2. The number k in the case b) is uniquely determined and is such that (see [1, Lemma 2 and Lemma 5])
i) if the assumption 2 . holds true, then
$(-1)^{i+1} y(t) L_{i} y(t)>0, i=k+1, \ldots, n-1$, for $t>T_{y}$ and n even, $(-1)^{i} y(t) L_{i} y(t)>0, i=k+1, \ldots, n-1$, for $t>T_{y}$ and n odd;
ii) if the assumption 3 . holds true, then
$(-1)^{i} y(t) L_{i} y(t)>0, i=k+1, \ldots, n-1$, for $t>T_{y}$ and n even, $(-1)^{i+1} y(t) L_{i} y(t)>0, i=k+1, \ldots, n-1$, for $t>T_{y}$ and n odd.

Definition 2. We will say that a nonoscillatory solution $y(t)$ of (E) belongs to the class V_{n} if the case a) occurs, i.e. $\lim _{t \rightarrow \infty} L_{i} y(t)=\infty \cdot \operatorname{sgn} y(t), i=0,1$, $\ldots, n-1$. We will say that a nonoscillatory solution $y(t)$ of (E) belongs to the class $V_{k}, k \in\{0,1, \ldots, n-1\}$, if the case b$)$ occurs.

Evidently the classes $V_{k}, k=0,1, \ldots, n$, are disjoint and each nonoscillatory solution of (E) belongs to one and only one class V_{k}.

Our aims are to state the conditions which guarantee that $\lim _{t \rightarrow \infty} L_{k} y(t)=0$ for each solution $y(t) \in V_{k}, k \in\{0,1, \ldots, n-1\}$ and to state the conditions which guarantee that the class $V_{k}, k \in\{0,1, \ldots, n-1\}$, is empty. For the case $\varphi(t)=t$ these problems were discussed in [1] and for the case $\varphi(t) \neq t$ in [2], [3], [4] and others.

Let $t_{0} \leqq c<t<\infty$. Denote
(1)

$$
\begin{gathered}
P_{0}(t, c)=1, \quad P_{i}(t, c)=\int_{c}^{t} a_{1}^{-1}\left(s_{1}\right) d s_{1} \int_{c}^{s_{1}} a_{2}^{-1}\left(s_{2}\right) d s_{2} \cdots \int_{c}^{s_{i-1}} a_{i}^{-1}\left(s_{i}\right) d s_{i} \\
i=1,2, \ldots, n-1, \\
Q_{n}(t, c)=1, \quad Q_{j}(t, c)=\int_{c}^{t} a_{n-1}^{-1}\left(s_{n-1}\right) d s_{n-1} \int_{c}^{s_{n-1}} a_{n-2}^{-1}\left(s_{n-2}\right) d s_{n-2}
\end{gathered}
$$

(2)

$$
\ldots \int_{c}^{s_{j+1}} a_{j}^{-1}\left(s_{j}\right) d s_{j}, \quad j=1,2, \ldots, n-1
$$

It is easy to see ([1, Lemma 3]) that

$$
\lim _{t \rightarrow \infty} P_{i}(t, c)=\infty, \quad \lim _{t \rightarrow \infty} Q_{i}(t, c)=\infty, \quad i=1,2, \ldots, n-1
$$

and

$$
\begin{array}{ll}
\lim _{t \rightarrow \infty} \frac{Q_{j}(t, c)}{Q_{i}(t, c)}=0, & 0<i<j \leqq n, \\
\lim _{t \rightarrow \infty} \frac{P_{i}(t, c)}{P_{j}(t, c)}=0, & 0 \leqq i<j \leqq n-1 .
\end{array}
$$

Lemma 1 ([1, Lemma 4]). Let $z(t)$ be such that $z(t) \neq 0$ on $\left[t_{1}, \infty\right)$ and $L_{n} z(t)$ exists on $\left[t_{1}, \infty\right)$ and suppose that $z(t) L_{n} z(t) \leqq 0$ on $\left[t_{1}, \infty\right)$, where the equality may hold at isolated points eventually. Let the assumption 1. be valid. Let $k \in\{0,1, \ldots, n-1\}$ from b$)$. Then there exists $a T_{1} \geqq t_{1}$ such that

$$
\operatorname{sgn} z(t)=\operatorname{sgn} L_{k} z(t) \quad \text { for } \quad t \geqq T_{1} .
$$

If $n+k$ is even, then $\left|L_{k} z(t)\right|$ increases on $\left[T_{1}, \infty\right)$ and there exist two constants $0<c_{1}<c_{2}$ such that for $t>T_{1}$

$$
0<c_{1}<\left|L_{k} z(t)\right|<c_{2}
$$

and

$$
0<c_{1}<\left|\lim _{t \rightarrow \infty} \frac{L_{0} z(t)}{P_{k}(t, c)}\right|<c_{2}, \quad \lim _{t \rightarrow \infty} \frac{L_{0} z(t)}{P_{k+1}(t, c)}=0
$$

If $n+k$ is odd, then $\left|L_{k} z(t)\right|$ decreases on $\left[T_{1}, \infty\right)$ and there exists a constant $c>0$ such that, for $t>T_{1}, 0<\left|L_{k} z(t)\right|<c$ and

$$
0 \leqq\left|\lim _{t \rightarrow \infty} \frac{L_{0} z(t)}{P_{k}(t, c)}\right|<c, \quad \lim _{t \rightarrow \infty} \frac{L_{0} z(t)}{P_{k+1}(t, c)}=0 .
$$

Lemma 2 ([1, Lemma 6]). Let $z(t)$ be such that $z(t) \neq 0$ on $\left[t_{1}, \infty\right)$ and $L_{n} z(t)$ exists on $\left[t_{1}, \infty\right)$ and suppose that $z(t) L_{n} z(t) \geqq 0$ for $t \geqq t_{1}$ where the equality may hold at isolated points eventually. Let 1. be valid. Then there exists $T_{1} \geqq t_{1}$ such that the following is true:

If $k \in\{0,1, \ldots, n-1\}$ is the number from $b)$, then $\operatorname{sgn} z(t)=\operatorname{sgn} L_{k} z(t)$ for $t>T_{1}$. If $n+k$ is odd, then $\left|L_{k} z(t)\right|$ increases and there exist two positive constants c_{1}, c_{2} such that

$$
0<c_{1}<\left|L_{k} z(t)\right|<c_{2} \quad \text { for } \quad t>T_{1}
$$

and

$$
0<c_{1}<\left|\lim _{t \rightarrow \infty} \frac{a_{0}(t) z(t)}{P_{k}(t, c)}\right|<c_{2}, \quad \lim _{t \rightarrow \infty} \frac{a_{0}(t) z(t)}{P_{k+1}(t, c)}=0
$$

If $n+k$ is even, then $\left|L_{k} z(t)\right|$ decreases and there exists a positive constant c_{3} such that

$$
\begin{gathered}
0<\left|L_{k} z(t)\right|<c_{3} \quad \text { for } t>T_{1}, \\
0 \leqq\left|\lim _{t \rightarrow \infty} \frac{a_{0}(t) z(t)}{P_{k}(t, c)}\right|<c_{3}, \quad \lim _{t \rightarrow \infty} \frac{a_{0}(t) z(t)}{P_{k+1}(t, c)}=0 .
\end{gathered}
$$

Lemma 3. Let $y(t) \in V_{k}, k \in\{0,1, \ldots, n-1\}$. Then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{a_{0}(t) y(t)}{P_{k}(t, c)}=\lim _{t \rightarrow \infty} L_{k} y(t)=c_{k} \tag{3}
\end{equation*}
$$

If $c_{k} \neq 0$, then there exist constants $\alpha_{k}>0, \beta_{k}>0$ and $T_{k}>t_{0}$ such that

$$
\begin{equation*}
\frac{\alpha_{k} P_{k}(t, c)}{a_{0}(t)} \leqq|y(t)| \leqq \frac{\beta_{k} P_{k}(t, c)}{a_{0}(t)}, \quad t>T_{k} \tag{4}
\end{equation*}
$$

Proof. This follows from l'Hospital's rule, Lemma 1 and Lemma 2.
Theorem 1. Let the conditions 1.-4. be satisfied. Let $G(t, u):\left[t_{0}, \infty\right) \times$ $[0, \infty) \rightarrow R_{+}$be continuous and nondecreasing in u for each fixed t and such that

$$
\begin{equation*}
\left|h\left(t, y_{0}, y_{1}, \ldots, y_{n-1}\right)\right| \geqq G\left(t,\left|y_{0}\right|\right) \tag{5}
\end{equation*}
$$

for all $\left(y_{0}, y_{1}, \ldots, y_{n-1}\right) \in R^{n}$. Moreover, let $k \in\{0,1, \ldots, n-1\}$ and suppose that

$$
\begin{equation*}
\int_{t}^{\infty} \frac{1}{a_{n}(s)} Q_{k+1}(s, t) G\left(s, \frac{\alpha}{a_{0}(\varphi(s))} p_{k}(\varphi(s), c)\right) d s=\infty \tag{6}
\end{equation*}
$$

for all $t \geqq T_{k}$ such that $\varphi(s)>c$ for $s>T_{k}, c \geqq t_{0}$ and for each $\alpha>0$, or

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t}^{\infty} \frac{1}{a_{n}(s)} Q_{k+1}(s, t) G\left(\frac{\alpha}{a_{0}(\varphi(s))} p_{k}(\varphi(s), c)\right) d s>0 \tag{7}
\end{equation*}
$$

for each $\alpha>0$. Then for each $y(t) \in V_{k}$ we have $\lim _{t \rightarrow \infty} L_{k} y(t)=0$.

Proof. Let $y(t) \in V_{k}, k \in\{0,1, \ldots, n-1\}$ and let $\lim _{t \rightarrow \infty} L_{k} y(t)=c_{k} \neq 0$. Then, respecting the fact that $\lim _{t \rightarrow \infty} L_{i} y(t)=0, i=k+1, \ldots, n-1$, integration of the equation (E) gives

$$
\begin{equation*}
L_{k} y(t)=c_{k}+(-1)^{n-k+1} \int_{t}^{\infty} \frac{h(s, \tilde{y}(\varphi(s))}{a_{n}(s)} Q_{k+1}(s, t) d s, \quad t \geqq T_{y}, \tag{8}
\end{equation*}
$$

where $\tilde{y}(t)=\left(y(t), y^{\prime}(t), \ldots, y^{(n-1)}(t)\right)$. Let $T_{y}>t_{0}$ be such that $y(t)$ has a constant sign for $t \geqq T_{y}$ and such that $\operatorname{sgn} y(t)=\operatorname{sgn} L_{k} y(t)$ for $t \geqq T_{y}$. Let $u \geqq T_{y}$ be such that $\varphi(t) \geqq T_{y}$ for $t \geqq u$. Then for $s \geqq t \geqq u \geqq T_{y}$ we have sgn $y(\varphi(s))=$ $\operatorname{sgn} y\left(T_{y}\right)=\operatorname{sgn} L_{k} y(t)$. Multiplying the preceding equality by $\operatorname{sgn} y\left(T_{y}\right)$ we get

$$
\operatorname{sgn} y\left(T_{y}\right)\left(L_{k} y(t)-c_{k}\right)=(-1)^{n-k+1} \int_{t}^{\infty} \frac{\mid h(s, \tilde{y}(\varphi(s)) \mid}{a_{n}(s)} Q_{k+1}(s, t) d s
$$

for $t \geqq u$ or

$$
\left|L_{k} y(t)-c_{k}\right|=\int_{t}^{\infty} \frac{\mid h(s, \tilde{y}(\varphi(s)) \mid}{a_{n}(s)} Q_{k+1}(s, t) d s .
$$

Using (5) and (4) and the monotonicity of G we have

$$
\begin{equation*}
\left|L_{k} y(t)-c_{k}\right| \geqq \int_{t}^{\infty} \frac{1}{a_{n}(s)} Q_{k+1}(s, t) G\left(s, \frac{\alpha_{k}}{a_{0}(\varphi(s))} P_{k}(\varphi(s), c)\right) d s \tag{9}
\end{equation*}
$$

for $t \geqq u$. The expression on the left hand side is bounded, but this contradicts the assumption (6). If the assumption (7) is satisfied, then we get once more a contradiction because $\lim _{t \rightarrow \infty}\left|L_{k} y(t)-c_{k}\right|=0$.

Theorem 2. Let all assumptions of Theorem 1 be satisfied. Then in the case that the condition 2 . holds true the sets V_{k} are empty for $n+k$ even. In the case that the assumption 3. holds true the sets V_{k} are empty for $n+k$ odd.

Proof. From Theorem 1 we see that for $y(t) \in V_{k}, k \in\{0,1, \ldots, n-1\}$, $\lim _{t \rightarrow \infty}\left|L_{k} y(t)\right|=0$. But from Lemma 1 it follows that $\left|L_{k} y(t)\right|$ increases if $n+k$ is even and from Lemma 2 it follows that $\left|L_{k} y(t)\right|$ increases if $n+k$ is odd. This leads to a contradiction.

Let us denote

$$
\gamma(t)=\sup \left\{s \geqq t_{0}: \varphi(s) \leqq t\right\} \quad \text { for all } t \geqq t_{0}
$$

and

$$
m(t)=\max \{\gamma(t), t\}, \quad t \geqq t_{0} .
$$

Thus $m(t) \geqq t$. From the continuity of $\varphi(t)$ we have $\varphi(s)>t$ for $s>\gamma(t)$, and $\varphi(s) \geqq t$ for $s \geqq m(t), t \geqq t_{0}$. Evidently $\lim _{t \rightarrow \infty} m(t)=\infty$.

Remark 3. It follows from the definition of the classes $V_{k}, k \in\{0,1, \ldots$, $n-1\}$, that for any $y(t) \in V_{k}, \lim _{t \rightarrow \infty} L_{n-1} y(t)$ is finite. Thus

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{t}^{\infty} a_{n}^{-1}(s)|h(s, \tilde{y}(\varphi(s)))| d s=0 . \tag{10}
\end{equation*}
$$

Taking the assumption (5) into the consideration we have

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{t}^{\infty} a_{n}^{-1}(s) G(s,|y(\varphi(s))|) d s=0 \tag{11}
\end{equation*}
$$

Our following considerations are now based on this fact.
Let the assumptions of Theorem 1 be satisfied. Then $\lim _{t \rightarrow \infty} L_{k} y(t)=0$ for $y(t) \in V_{k}, k \in\{0,1, \ldots, n-1\}$, and therefore from (8) we have

$$
\begin{equation*}
L_{k} y(t)=(-1)^{n-k+1} \int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}(s, t) h(s, \tilde{y}(\varphi(s))) d s, \quad t \geqq T_{y} \tag{12}
\end{equation*}
$$

where T_{y} is such that

$$
\begin{equation*}
\operatorname{sgn} L_{k} y(t)=\operatorname{sgn} y(t)=\operatorname{sgn} y(\varphi(s)), \quad s \geqq t \geqq T_{y} . \tag{13}
\end{equation*}
$$

If the condition 2. is satisfied, then

$$
\operatorname{sgn} y(t)=\operatorname{sgn} L_{k} y(t)=\operatorname{sgn} h(s, \tilde{y}(\varphi(s))), \quad s \geqq t \geqq T_{y} .
$$

Therefore in this case $(-1)^{n-k+1}=+1$.
If the condition 3. is satisfied, then

$$
\operatorname{sgn} y(t)=\operatorname{sgn} L_{k} y(t)=-\operatorname{sgn} h(s, \tilde{y}(\varphi(s))), \quad s \geqq t \geqq T_{y} .
$$

In this case $(-1)^{n-k+1}=-1$.
a) Consider the case that $y(t)>0$ for $t \geqq T_{y}$ and let $k>0$. Then from (12) we get

$$
\begin{equation*}
L_{k} y(t)=\int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}(s, t)|h(s, y(\varphi(s)))| d s, \quad t \geqq T_{y} \tag{14}
\end{equation*}
$$

in both cases 2. and 3. An integration of (14) between u and $v, T_{y} \leqq u \leqq v$ and the application of Fubini's theorem give

$$
\begin{align*}
L_{k-1} y(v)-L_{k-1} y(u)= & \int_{u}^{v} a_{n}^{-1}(s)|h(s, \tilde{y}(\varphi(s)))| \int_{u}^{s} a_{k}^{-1}(t) Q_{k+1}(s, t) d t d s \tag{15}\\
& +\int_{v}^{\infty} a_{n}^{-1}(s)|h(s, \tilde{y}(\varphi(s)))| \int_{u}^{v} a_{k}^{-1}(t) Q_{k+1}(s, t) d t d s
\end{align*}
$$

Taking into consideration that $L_{k-1} y(t)>0$ and that both terms on the right
hand side are nonnegative, we get

$$
\begin{equation*}
L_{k-1} y(v) \geqq \int_{v}^{\infty} a_{n}^{-1}(s)|h(s, \tilde{y}(\varphi(s)))| \int_{u}^{v} a_{k}^{-1}(t) Q_{k+1}(s, t) d t d s \tag{16}
\end{equation*}
$$

for $v>u \geqq T_{y}$. From the definition of $Q_{k+1}(s, t)$ it follows that for $t \leqq v \leqq s$

$$
\begin{equation*}
Q_{k+1}(s, t) \geqq Q_{k+1}(v, t) \tag{17}
\end{equation*}
$$

Using this fact we see from (16) that

$$
\begin{equation*}
L_{k-1} y(v) \geqq \int_{u}^{v} a_{k}^{-1}(t) Q_{k+1}(v, t) d t \int_{v}^{\infty} a_{n}^{-1}(s)|h(s, \tilde{y}(\varphi(s)))| d s \tag{18}
\end{equation*}
$$

Repeating this procedure ($k-1$)-times, we get

$$
\begin{align*}
L_{0} y(v) \geqq & \int_{u}^{v} a_{1}^{-1}\left(t_{1}\right) \int_{u}^{t_{1}} a_{2}^{-1}\left(t_{2}\right) \cdots \int_{u}^{t_{k-1}} a_{k}^{-1}(t) Q_{k+1}\left(t_{k-1}, t\right) d t d t_{k-1} \cdots d t_{1} \tag{19}\\
& \cdot \int_{v}^{\infty} a_{n}^{-1}(s)|h(s, \tilde{y}(\varphi(s)))| d s, \quad T_{y} \leqq u<v .
\end{align*}
$$

Denote

$$
\begin{equation*}
R_{k}(v, u)=\int_{u}^{v} a_{1}^{-1}\left(t_{1}\right) \int_{u}^{t_{1}} a_{2}^{-1}\left(t_{2}\right) \cdots \int_{u}^{t_{k-1}} a_{k}^{-1}(t) Q_{k+1}\left(t_{k-1}, t\right) d w_{k} \tag{20}
\end{equation*}
$$

where $d w_{k}=d t d t_{k-1} \cdots d t_{1}$. Then we have

$$
\begin{equation*}
L_{0} y(v) \geqq R_{k}(v, u) \int_{v}^{\infty} a_{n}^{-1}(s)|h(s, \tilde{y}(\varphi(s)))| d s, \quad T_{y} \leqq u<v \tag{21}
\end{equation*}
$$

Taking into consideration (5), monotonicity of G and the properties of $m(t)$, we have

$$
\begin{align*}
L_{0} y(v) & \geqq R_{k}(v, u) \int_{v}^{\infty} a_{n}^{-1}(s) G(s,|y(\varphi(s))|) d s \tag{22}\\
& \geqq R_{k}(v, u) \int_{m(v)}^{\infty} a_{n}^{-1}(s) G(s,|y(\varphi(s))|) d s \\
& =R_{k}(v, u) \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} y(\varphi(s))\right|\right) d s
\end{align*}
$$

Note that $\varphi(s) \geqq v$ for $s \geqq m(v)$ so that $\left|L_{0} y(\varphi(s))\right| \geqq\left|L_{0} y(v)\right|$ because $\left|L_{0} y(t)\right|$ is nondecreasing. Then since $G(t, z)$ is nondecreasing in z,

$$
\begin{equation*}
G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} y(\varphi(s))\right|\right) \geqq G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} y(v)\right|\right), \tag{23}
\end{equation*}
$$

and (22) implies that
(24) $\quad L_{0} y(v) \geqq R_{k}(v, u) \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} y(v)\right|\right) d s, \quad T_{y} \leqq u<v$.

Respecting once more the monotonicity of $G(t, z)$ in z, we have

$$
\begin{aligned}
a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} y(v)\right|\right) \geqq & a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s)) R_{k}(v, u)\right. \\
& \left.\times \int_{m(v)}^{\infty} a_{n}^{-1}(\tau) G\left(\tau, a_{0}^{-1}(\varphi(\tau))\left|L_{0} y(v)\right|\right) d \tau\right)
\end{aligned}
$$

or

$$
\begin{aligned}
\int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a^{-1}(\varphi(s))\left|L_{0} y(v)\right|\right) d s \geqq & \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s)) R_{k}(v, u)\right. \\
& \left.\times \int_{m(v)}^{\infty} a_{n}^{-1}(\tau) G\left(\tau, a_{0}^{-1}(\varphi(\tau))\left|L_{0} y(v)\right|\right) d \tau\right) d s
\end{aligned}
$$

Let us denote

$$
\begin{equation*}
p(v)=\int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} y(v)\right|\right) d s \tag{25}
\end{equation*}
$$

Then we get

$$
\begin{equation*}
p(v) \geqq \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s)) R_{k}(v, u) p(v)\right) d s, \quad T_{y} \leqq u<v \tag{26}
\end{equation*}
$$

Taking (5), (23) and (26) into consideration, we obtain

$$
\begin{aligned}
L_{n-1} y(m(v)) & =\int_{m(v)}^{\infty} a_{n}^{-1}(s)|h(s, \tilde{y}(\varphi(s)))| d s \geqq \int_{m(v)}^{\infty} a_{n}^{-1}(s) G(s,|y(\varphi(s))|) d s \\
& \geqq \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} y(v)\right|\right) d s=p(v)
\end{aligned}
$$

and $0=\lim _{v \rightarrow \infty} L_{n-1} y(m(v)) \geqq \lim _{v \rightarrow \infty} p(v) \geqq 0$. Thus

$$
\begin{equation*}
\lim _{v \rightarrow \infty} p(v)=0 \tag{27}
\end{equation*}
$$

b) Consider the case that $y(t)<0$ for $t>T_{y}$ and $k>0$. Then from (12) we get

$$
\begin{equation*}
-L_{k} y(t)=\int_{t}^{\infty} a_{n}^{-1}(s) Q_{k+1}(s, t) \mid h\left(s, \tilde{y}(\varphi(s)) \mid d s, \quad t \geqq T_{y}\right. \tag{28}
\end{equation*}
$$

in both cases 2. and 3. An integration between u and $v, T_{y} \leqq u<v$, and the application of Fubini's theorem give

$$
\begin{aligned}
-L_{k-1} y(v)+L_{k-1} y(u)= & \int_{u}^{v} a_{n}^{-1}(s)|h(s, \tilde{y}(\varphi(s)))| \int_{u}^{s} a_{k}^{-1}(t) Q_{k+1}(s, t) d t d s \\
& +\int_{v}^{\infty} a_{n}^{-1}(s)|h(s, \tilde{y}(\varphi(s)))| \int_{u}^{v} a_{k}^{-1}(t) Q_{k+1}(s, t) d t d s
\end{aligned}
$$

Because $L_{k-1} y(u)<0$ and both terms on the right hand side are nonnegative, we have

$$
-L_{k-1} y(v) \geqq \int_{v}^{\infty} a_{n}^{-1}(s)|h(s, \tilde{y}(\varphi(s)))| \int_{u}^{v} a_{k}^{-1}(t) Q_{k+1}(s, t) d t d s
$$

Repeating the similar consideration as was done in the case $y(t)>0$, we get

$$
-L_{0} y(v) \geqq R_{k}(v, u) \int_{v}^{\infty} a_{n}^{-1}(s)|h(s, \tilde{y}(\varphi(s)))| d s, \quad T_{y} \leqq u<v,
$$

and

$$
-L_{0} y(v) \geqq R_{k}(v, u) \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} y(\varphi(s))\right|\right) d s
$$

and finally

$$
\begin{equation*}
\left|L_{0} y(v)\right| \geqq R_{k}(v, u) \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} y(v)\right|\right) d s, \quad T_{y} \leqq u<v \tag{29}
\end{equation*}
$$

and

$$
\begin{aligned}
\int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} y(v)\right|\right) d s \geqq & \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s)) R_{k}(v, u)\right. \\
& \left.\times \int_{m(v)}^{\infty} a_{n}^{-1}(\tau) G\left(\tau, a_{0}^{-1}(\varphi(\tau))\left|L_{0} y(v)\right|\right) d \tau\right) d s
\end{aligned}
$$

Denoting

$$
\begin{equation*}
q(v)=\int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s))\left|L_{0} y(v)\right|\right) d s \tag{30}
\end{equation*}
$$

we get

$$
\begin{equation*}
q(v) \geqq \int_{m(v)}^{\infty} a_{n}^{-1}(s) G\left(s, a_{0}^{-1}(\varphi(s)) R_{k}(v, u) q(v)\right) d s, \quad T_{y} \leqq u<v \tag{31}
\end{equation*}
$$

Similar considerations as in the case $p(v)$ give us that

$$
\begin{equation*}
\lim _{v \rightarrow \infty} q(v)=0 . \tag{32}
\end{equation*}
$$

Thus for $-L_{0} y(v)=\left|L_{0} y(v)\right|$ and $q(v)$ in the case that $y(t)<0$ for $t \geqq T_{y}$ we
have the same inequalities as for $\left|L_{0} y(v)\right|$ and $p(v)$ in the case that $y(t)>0$ for $t \geqq T_{y}$.

Theorem 3. Let all assumptions of Theorem 1 be satisfied. Moreover, suppose that for all fixed $t \geqq t_{0}$

$$
\begin{equation*}
y^{-1} G(t, y) \quad \text { nondecreasing for } \quad y>0 \tag{33}
\end{equation*}
$$

and that for $k \in\{1,2, \ldots, n-1\}$

$$
\begin{equation*}
\limsup _{v \rightarrow \infty} R_{k}(v, u) \int_{m(v)}^{\infty} a_{n}^{-1}(s) c^{-1} G\left(s, a_{0}^{-1}(\varphi(s)) c\right) d s>1 \tag{34}
\end{equation*}
$$

for some $c>0$. Then the set V_{k} is empty.
Proof. Let $y(t) \in V_{k}, k \in\{1,2, \ldots, n-1\}$. Taking the fact that $\lim _{v \rightarrow \infty}$ $\left|L_{0} y(v)\right|=\infty$ into consideration, we see that for $c>0$ there exists $v_{1}>u \geqq T_{y}$ such that $\left|L_{0} y(v)\right|>c$ for all $v>v_{1}$. Then from (24) (or (29)) and (33) we get

$$
1 \geqq R_{k}(u, v) \int_{m(v)}^{\infty} a_{n}^{-1}(s) a_{0}^{-1}(\varphi(s)) \frac{G\left(s, a_{0}^{-1}(\varphi(s)) c\right)}{a_{0}^{-1}(\varphi(s)) c} d s
$$

for all $v>v_{1}$. But this leads to a contradiction with (34).
Theorem 4. Let all assumptions of Theorem 1 be satisfied. Moreover, suppose that for all fixed $t \geqq t_{0}$

$$
\begin{equation*}
y^{-1} G(t, y) \quad \text { nonincreasing for } y>0 \tag{35}
\end{equation*}
$$

and that for $k \in\{1,2, \ldots, n-1\}$

$$
\begin{equation*}
\limsup _{v \rightarrow \infty} \int_{m(v)}^{\infty} a_{n}^{-1}(s) c^{-1} G\left(s, R_{k}(v, u) a_{0}^{-1}(\varphi(s)) c\right) d s>1 \tag{36}
\end{equation*}
$$

for some $c>0$. Then the set V_{k} is empty.
Proof. Let $y(t) \in V_{k}, k \in\{1,2, \ldots, n-1\}$. Taking into consideration that $\lim _{v \rightarrow \infty} p(v)=0\left(\lim _{v \rightarrow \infty} q(v)=0\right)$ and $p(v)>0(q(v)>0)$ for all $v>u$, we see that to $c>0$ there exists $v_{2}>u \geqq T_{y}$ such that $c>p(v)(c>q(v))$ for all $v>v_{2}$. Then from (26) ((31)) we get

$$
\begin{aligned}
1 & \geqq \int_{m(v)}^{\infty} a_{n}^{-1}(s) a_{0}^{-1}(\varphi(s)) R_{k}(v, u) \frac{G\left(s, a_{0}^{-1}(\varphi(s)) R_{k}(v, u) p(v)\right)}{a_{0}^{-1}(\varphi(s)) R_{k}(v, u) p(v)} d s \\
& \geqq \int_{m(v)}^{\infty} a_{n}^{-1}(s) a_{0}^{-1}(\varphi(s)) R_{k}(v, u) \frac{G\left(s, a_{0}^{-1}(\varphi(s)) R_{k}(v, u) c\right)}{a_{0}^{-1}(\varphi(s)) R_{k}(v, u) c}
\end{aligned}
$$

for all $v>v_{2}$. But this leads to a contradiction with (36).

Definition 3. We will say that the equation (E) has property A if in the case that n is even all solutions of (E) are oscillatory and in the case that n is odd each solution $y(t)$ of (E) is either oscillatory or $\lim _{t \rightarrow \infty} L_{i} y(t)=0$, $i=0,1, \ldots, n-1$.

Definition 4. We will say that the equation (E) has property B if for n even each solution $y(t)$ of (E) is either oscillatory or $\lim _{t \rightarrow \infty} L_{i} y(t)=0, i=0,1$, $\ldots, n-1$ or belongs to the class V_{n}, i.e. $\lim _{t \rightarrow \infty}\left|L_{i} y(t)\right|=\infty, i=0,1, \ldots$, $n-1$, and if for n odd each solution $y(t)$ of (E) is oscillatory or belongs to the class V_{n}

Now we can state the summary result.
Theorem 5. Let all assumptions of Theorem 1 be satisfied. a) If 2 . holds true and if (33) and (34) (or (35) and (36)) hold for $k=1,2, \ldots, n-1$, then the equation (E) has property A .
b) If 3. holds true and if (33) and (36) (or (35) and (36)) hold for $k=1,2$, $\ldots, n-1$, then the equation (E) has property \mathbf{B}.

References

[1] M. Švec, Behavior of nonoscillatory solutions of some nonlinear differential equations, Acta Mathematica U.C. XXXIX-1980, 115-130.
[2] V. Šeda, Nonoscillatory solutions of differential equations with deviating argument, Czech. Math. J., 36 (111) (1986), 93-107.
[3] J. Ohriska, Sufficient conditions for the oscillation of n-th order nonlinear delay differential equations, Czech. Math. J., 30 (105) (1980), 490-497.
[4] Y. Kitamura, Oscillation of functional differential equations with general deviating arguments, Hiroshima Math. J., 15 (1985), 445-491.

> Department of Mathematical Analysis, Faculty of Mathematics and Physics, Komensky University (Bratislava, Czechoslovakia)

