The law of small numbers and the limit theorem for symmetric statistics with mixing conditions

MUSTAFID

(Received May 16, 1989)

§1. Introduction

There has been considerable and theoretical interest in how well the Poisson distribution approximates the distribution of the sums of arbitrary indicator (zero-one) variables. Results of this type, either limit theorems or quantitative estimates of the distance to a Poisson distribution, have been shown under various conditions by many authors. Janson [14] gave a sufficient condition (not of mixing type) for convergence to Poisson distribution of a sequence of sums of dependent indicator (zero-one) random variables. Chen [5] gave a general method of obtaining and bounding the error in approximating the distribution of the sums of dependent Bernoulli random variables by the Poisson distribution. Dobrushin and Sukhov [9], gave necessary and sufficient conditions for convergence to a Poisson process of infinite particle systems under the action of free dynamic (see also Willms [22] and Zessin [23]). The other investigations in this direction were conducted within the rapidly developing field of symmetric statistics. Silverman and Brown [20] have obtained Poisson limit theorems for certain sequences of symmetric statistics

(1.1)
$$\sum h_k(X_{i_1}, \ldots, X_{i_k}),$$

based on a sample of identically distributed independent random variables X_1, \ldots, X_n , where h_k is a symmetric zero-one function and the summation is extended over all sets $\{i_1, \ldots, i_k\}$ of distinct integers drawn from $\{1, \ldots, n\}$. Barbour and Eagleson [2], [3] gave a general Poisson approximation theorem for symmetric statistics (1.1) from a sample of independent but not necessarily identically distributed random variables and with a symmetric zero-one function of k variables.

The Poisson limit theorems in the more general setting of symmetric statistics have been obtained by Mustafid and Kubo [18]. They have obtained the asymptotic distribution of the sums of symmetric statistics

(1.2)
$$\sum_{1 \leq s_1 < \cdots < s_k \leq n} h_k(X_{n,s_1}, \ldots, X_{n,s_k}),$$

in terms of multiple Poisson-Wiener-Ito integrals, where the symmetric statistics (1.2) is based on samples of identically distributed independent random elements $X_{n,1}, \ldots, X_{n,n}$, and h_k is a symmetric function. The results also still hold, even if random elements are not identically distributed, provided that random elements are infinitesimal (see Mustafid [17]). An alternative approach to limiting distribution due to Avram and Taqqu [1] in a simple case when the symmetric statistics (1.2) is symmetric polynomials. They have expressed the asymptotic distribution of symmetric polynomials in terms of a multiple integral with respect to a Lévy process. In the case of central limit theorems, the limiting distributions of symmetric statistics (1.2) have been obtained by several authors. See Dynkin and Mandelbaum [10], Mandelbaum and Taqqu [16], Dehling [6], Dehling, Denker and Philipp [7], Denker and Keller [8] and Teicher [21].

The aim of this paper is the following. First we establish a method of the Poisson approximation for sequences of dependent p-dimensional Bernoulli arrays, while secondly we extend the Poisson limit theorems in [17] to dependent random elements case. In Section 2, we will discuss convergence of Radon measures and a mixing condition of sequences of random elements. The results are stated in Sections 3 and 4.

§2. Dependent random elements

Let \mathfrak{X} be a locally compact second countable Hausdorff space. Let \mathscr{A} denote the topological Borel field in \mathfrak{X} and \mathscr{B} the ring of all bounded (i.e. relatively compact) sets in \mathscr{A} . Let $\mathscr{M}(\mathfrak{X})$ be the family of all Radon measures on $(\mathfrak{X}, \mathscr{A})$ with vague topology. For a given $\lambda \in \mathscr{M}(\mathfrak{X})$, a random measure $\{P_{\lambda}(B) = P_{\lambda}(\omega, B), B \in \mathscr{B}\}$ is called a *Poisson random measure with intensity* λ if for any natural number p, any disjoint sets $B_1, \ldots, B_p \in \mathscr{B}$ and any nonnegative integers q_1, \ldots, q_p ,

$$\Pr(P_{\lambda}(B_1) = q_1, \dots, P_{\lambda}(B_p) = q_p)$$

= $\frac{1}{q_1! \cdots q_p!} \lambda(B_1)^{q_1} \cdots \lambda(B_p)^{q_p} \exp\left[-\lambda(B_1) - \cdots - \lambda(B_p)\right].$

We define a class of bounded sets \mathscr{B}_{λ} by

$$\mathscr{B}_{\lambda} \equiv \{B \in \mathscr{B} ; \lambda(\partial B) = 0\},\$$

where ∂B denotes the boundary of B.

By a random element X in the space \mathfrak{X} we mean a measurable mapping from some fixed probability space $(\Omega, \mathscr{F}, Pr)$ into $(\mathfrak{X}, \mathscr{A})$. A sequence of random elements X_n converges to X in distribution sense and is denoted as $X_n \xrightarrow{d} X$, if the distribution v_n of X_n converges weakly to the distribution v of X as $n \to \infty$.

Let $X_{n,1}, \ldots, X_{n,k_n}$ $(1 \le k_n \le \infty)$, $n = 1, 2, \ldots$, be sequences of dependent random elements on \mathfrak{X} with marginal distributions $v_{n,1}, \ldots, v_{n,k_n} \in \mathcal{M}(\mathfrak{X})$, respectively. Denote by $\mathscr{B}_{ab}^{(n)}$ the σ -algebra of events generated by $\{X_{n,j}; a \leq x\}$ $j \le b$, $1 \le a \le b \le k_n$. We assume the following:

- (A.1) $\lambda_n \equiv \sum_{i=1}^{k_n} v_{n,i}$ converges vaguely to a $\lambda \in \mathcal{M}(\mathfrak{X})$ without atoms as $n \to \infty$, (A.2) $\lim_{n \to \infty} \max_{i=1}^{k_n} v_{n,i}(K) = 0$ for any compact set K,
- (A.3) for any events $A \in \mathscr{B}_{1r}^{(n)}$ and $B \in \mathscr{B}_{r+m.k_{n}}^{(n)}$, $n \ge 1$,

 $|\Pr(AB) - \Pr(A)\Pr(B)| \le \varphi(m)\Pr(A)\Pr(B),$

with $\varphi(m) \downarrow 0$ and $\varphi(1) < \infty$.

We denote $\alpha = \varphi(1) + 1$. We refer to Philipp [19] for a detailed treatment of such mixing condition (A.3).

LEMMA 2.1 ([19]). If the condition (A.3) is satisfied, and if X and Y are bounded measurable over $\mathscr{B}_{1r}^{(n)}$ and $\mathscr{B}_{r+m,k_n}^{(n)}$ respectively. Then

$$|E(XY) - E(X)E(Y)| \le \varphi(m)E|X|E|Y|.$$

LEMMA 2.2. Suppose that the family of σ -fields $\{\mathscr{B}_{ii}^{(n)}, 1 \leq i < j \leq k_n\}$ satisfies the mixing condition (A.3). Let M_0 be a natural number such that $\varphi(M_0) < 1$. Then there exists a constant ρ such that for any $m > M_0$ and any bounded random variables X, Y, Z measurable over $\mathscr{B}_{ab}^{(n)}, \mathscr{B}_{cd}^{(n)}, \mathscr{B}_{ef}^{(n)}$ respectively, with $c - b \geq c$ $m, e - d \ge m$ and c < d,

$$|E(XZY) - E(XZ)E(Y)| \le \rho\varphi(m)E|XZ|E|Y|.$$

PROOF. Let $A \in \mathscr{B}_{ab}^{(n)}$, $B \in \mathscr{B}_{cd}^{(n)}$ and $C \in \mathscr{B}_{ef}^{(n)}$. By (A.3), we have inequalities $\Pr(ABC) \le \{1 + \varphi(m)\}\Pr(A)\Pr(BC) \le \{1 + \varphi(m)\}^2\Pr(A)\Pr(B)\Pr(C),\$ $\{1 - \varphi(m)\} \Pr(A) \Pr(C) \leq \Pr(AC)$.

Therefore, we see

$$\Pr(ABC) - \Pr(B)\Pr(AC) \le \left\{3 + \frac{4\varphi(m)}{1 - \varphi(m)}\right\}\varphi(m)\Pr(B)\Pr(AC) .$$

Similarly, we see

$$\Pr(ABC) - \Pr(B)\Pr(AC) \ge -\left\{3 + \frac{4\varphi(m)}{1 - \varphi(m)}\right\}\varphi(m)\Pr(B)\Pr(AC).$$

Take $\rho = 3 + \frac{4\varphi(M_0)}{1 - \varphi(M_0)}$. Then

$$|\Pr(ABC) - \Pr(B)\Pr(AC)| \le \rho \varphi(m)\Pr(B)\Pr(AC)$$
, for any $m > M_0$.

MUSTAFID

Therefore, for any $D \in \mathscr{B}_{ab}^{(n)} \vee \mathscr{B}_{ef}^{(n)}$ and $B \in \mathscr{B}_{cd}^{(n)}$, we have

$$|\Pr(BD) - \Pr(B)\Pr(D)| \le \rho\varphi(m)\Pr(B)\Pr(D)$$
, for any $m > M_0$.

The assertion of the lemma follows from Lemma 2.1.

§3. Poisson approximation for dependent Bernoulli arrays

In this section, we discuss the case when $\{X_{n,i}\}_{i=1}^{k}$ is a sequence of dependent *p*-dimensional Bernoulli arrays, i.e. for each *n* and *i*, $X_{n,i}$ is a random *p*-vector of the form $X_{n,i} = (X_{n,i}^{(1)}, \ldots, X_{n,i}^{(p)})$, where $X_{n,i}^{(j)} = 0$ or 1 and such that $X_{n,i}^{(j)} = 0$ except for at most one, $1 \le j \le p$. In other words,

$$\Pr(X_{n,i}^{(1)} = 0, \dots, X_{n,i}^{(j-1)} = 0, X_{n,i}^{(j)} = 1, X_{n,i}^{(j+1)} = 0, \dots, X_{n,i}^{(p)} = 0)$$
$$= \Pr(X_{n,i}^{(j)} = 1) = p_{n,i}^{(j)},$$

where $\sum_{j=1}^{p} p_{n,i}^{(j)} + \Pr(X_{n,i}^{(1)} = 0, \dots, X_{n,i}^{(p)} = 0) = 1.$

We will prove the convergence of the distribution of $\sum_i X_{n,i}$ to a *p*-dimensional Poisson distribution under the assumptions:

- (A.1)' $\lim_{n \to \infty} \sum_{i=1}^{k_n} p_{n,i}^{(j)} = \lambda_j, \ j = 1, 2, \dots, p,$
- (A.2)' $\lim_{n \to \infty} \max_{j,i} p_{n,i}^{(j)} = 0$

and the mixing condition (A.3).

We denote
$$W_n^{(j)} \equiv \sum_{i=1}^{k_n} X_{n,i}^{(j)}, \ \lambda_{n,j} \equiv \sum_{i=1}^{k_n} p_{n,i}^{(j)}, \ 1 \le j \le p$$
 and
$$A \equiv \sup_{j,n} \sum_{i=1}^{k_n} p_{n,i}^{(j)}.$$

We extend Chen's method (cf. [5]) to prove the following lemma.

LEMMA 3.1. Under the mixing condition (A.3), let M_0 and ρ be as in Lemma 2.2. Then for any $q \leq p$ and $m > M_0$, there exist constants $C_1(m, p, q)$ and $C_2(q)$ such that

(3.1)
$$|E\{(W_n^{(1)} \dots W_n^{(q)} - e^{it_1} \lambda_{n,1} W_n^{(2)} \dots W_n^{(q)}) \exp\left[i \sum_{j=1}^p t_j W_n^{(j)}\right]\}|$$

$$\leq C_1(m, p, q) \sup_{j,i} p_{n,i}^{(j)} + C_2(q) \varphi(m+1).$$

PROOF. We have

$$(3.2) \quad E\{(W_n^{(1)}W_n^{(2)}\dots W_n^{(q)} - e^{it_1}\lambda_{n,1}W_n^{(2)}W_n^{(3)}\dots W_n^{(q)})\exp\left[i\sum_{j=1}^p t_jW_n^{(j)}\right]\}$$
$$= \left(\sum_{i_1,\dots,i_q}^{*} + \sum_{i_1,\dots,i_q}^{**}\right)$$
$$\times (E\{(X_{n,i_1}^{(1)}\dots X_{n,i_q}^{(q)} - p_{n,i_1}^{(1)}e^{it_1}X_{n,i_2}^{(2)}\dots X_{n,i_q}^{(q)})\exp\left[i\sum_{j=1}^p t_jW_n^{(j)}\right]\}),$$

where the sum \sum^* is extended over i_1, \ldots, i_q with $|i_k - i_l| > 2m$, for any k and l, $1 \le k$, $l \le q$, $k \ne l$, and the sum \sum^{**} is extended over i_1, \ldots, i_q with $|i_k - i_l| \le 2m$, for some k, l, $1 \le k$, $l \le q$, $k \ne l$.

Let $V_{n,j}^{(i_1,\ldots,i_q)} \equiv \sum' X_{n,k}^{(j)}$, where the sum \sum' is extended over all k with $|k - i_z| > m, z = 1, \ldots, q$. Let

$$H(i_1,\ldots,i_q) \equiv \exp\left[i\sum_{j=1}^q t_j\right] \exp\left[i\sum_{j=1}^p t_j V_{n,j}^{(i_1,\ldots,i_q)}\right].$$

The first sum on the right-hand side of (3.2) can be rewritten as

$$(3.3) \sum_{i_{1},...,i_{q}}^{*} E\{(X_{n,i_{1}}^{(1)}...X_{n,i_{q}}^{(q)} - p_{n,i_{1}}^{(1)}e^{it_{1}}X_{n,i_{2}}^{(2)}...X_{n,i_{q}}^{(q)}) \exp\left[i\sum_{j=1}^{p}t_{j}W_{n}^{(j)}\right]\}$$

$$= \sum_{i_{1},...,i_{q}}^{*} E(X_{n,i_{1}}^{(1)}...X_{n,i_{q}}^{(q)}$$

$$\times \{\exp\left[i\sum_{j=1}^{q}t_{j}(\sum_{k\neq i_{j}}X_{n,k}^{(j)} + 1) + i\sum_{j=q+1}^{p}t_{j}W_{n}^{(j)}\right] - H(i_{1},...,i_{q})\}\})$$

$$- \sum_{i_{1},...,i_{q}}^{*} p_{n,i_{1}}^{(1)}E(X_{n,i_{2}}^{(2)}...X_{n,i_{q}}^{(q)}$$

$$\times \{\exp\left[it_{1}(W_{n}^{(1)} + 1) + i\sum_{j=2}^{q}t_{j}(\sum_{k\neq i_{j}}X_{n,k}^{(j)} + 1) + i\sum_{j=q+1}^{p}t_{j}W_{n}^{(j)}\right]$$

$$- H(i_{1},...,i_{q})\})$$

$$+ \sum_{i_{1},...,i_{q}}^{*} E\{(X_{n,i_{1}}^{(1)} - p_{n,i_{1}}^{(1)})X_{n,i_{2}}^{(2)}...X_{n,i_{q}}^{(q)}H(i_{1},...,i_{q})\}.$$

We know that $|H(i_1, ..., i_q)| \le 1$. By Lemma 2.1 and Lemma 2.2, the third sum on the right-hand side of (3.3) can be estimated as

$$\begin{split} &\sum_{i_1,\ldots,i_q}^{*} |E\{(X_{n,i_1}^{(1)} - p_{n,i_1}^{(1)})X_{n,i_2}^{(2)} \ldots X_{n,i_q}^{(q)}H(i_1,\ldots,i_q)\}| \\ &\leq \rho \sum_{i_1,\ldots,i_q}^{*} E|(X_{n,i_1}^{(1)} - p_{n,i_1}^{(1)})|E|X_{n,i_2}^{(2)} \ldots X_{n,i_q}^{(q)}|\varphi(m+1)| \\ &\leq 2\rho \sum_{i_1,\ldots,i_q}^{*} p_{n,i_1}^{(1)} \ldots p_{n,i_q}^{(q)} \alpha^{q-2} \varphi(m+1)| \\ &\leq 2\rho \alpha^{q-2} \Lambda^q \varphi(m+1) \,, \end{split}$$

for any $m > M_0$.

Take $X_{n,i}^{(j)}$ to be identically zero when $i \le 0$ or $i > k_n$. For a = 1, ..., q, s = 1, ..., p, we define

$$\begin{split} Y(a, s, l) &\equiv Y(i_1, \dots, i_q, a; s, l) \\ &\equiv \exp \left[i \sum_{j=1}^{s-1} t_j (V_{n,j}^{(i_1, \dots, i_q)} + \sum_{\substack{z=1 \\ z=1}}^{a} \sum_{\substack{k=i_z - m \\ k \neq i_z}}^{i_z + m} X_{n,k}^{(j)} \right) \\ &+ i t_s (V_{n,s}^{(i_1, \dots, i_q)} + \sum_{\substack{z=1 \\ k \neq i_z}}^{a-1} \sum_{\substack{k=i_z - m \\ k \neq i_z}}^{i_z + m} X_{n,k}^{(s)} + \sum_{\substack{k=i_a - m \\ k \neq i_a}}^{l} X_{n,k}^{(s)} \right) \\ &+ i \sum_{j=s+1}^{p} t_j (V_{n,j}^{(i_1, \dots, i_q)} + \sum_{\substack{z=1 \\ z=1}}^{a-1} \sum_{\substack{k=i_z - m \\ k \neq i_z}}^{i_z + m} X_{n,k}^{(j)}) \right], \end{split}$$

for $i_a - m \le l \le i_a + m$ and

$$Y(a, s, i_a - m - 1) \equiv \exp\left[i\sum_{j=1}^{s-1} t_j (V_{n,j}^{(i_1, \dots, i_q)} + \sum_{z=1}^{a} \sum_{\substack{k=i_z - m \\ k \neq i_z}}^{i_z + m} X_{n,k}^{(j)} \right]$$

+ $i\sum_{j=s}^{p} t_j (V_{n,j}^{(i_1, \dots, i_q)} + \sum_{z=1}^{a-1} \sum_{\substack{k=i_z - m \\ k \neq i_z}}^{i_z + m} X_{n,k}^{(j)})$,

for $l = i_a - m - 1$. We write Y'(a, s, l) and $Y'(a, s, i_a - m - 1)$ for the sums of $X_{n,k}^{(j)}$ over $k \neq i_a$, a = 2, ..., q, in the above definition. Furthermore, we define

$$\Delta Y(a, s, l) \equiv \exp[i \sum_{j=1}^{q} t_j] \{ Y(a, s, l) - Y(a, s, l-1) \},$$

$$\Delta Y'(a, s, l) \equiv \exp[i \sum_{j=1}^{q} t_j] \{ Y'(a, s, l) - Y'(a, s, l-1) \}.$$

Since each $X_{n,i}^{(j)}$, $1 \le j \le p$, $1 \le i \le k_n$, is 0 or 1, and $|\Delta Y(a, s, l)|$ and $|\Delta Y'(a, s, l)| \le 2$, (3.3) can be estimated as

.

$$(3.4) \left| \sum_{i_{1},\dots,i_{q}}^{\infty} E(\{X_{n,i_{1}}^{(1)}\dots X_{n,i_{q}}^{(q)} - p_{n,i_{1}}^{(1)}e^{it_{1}}X_{n,i_{2}}^{(2)}\dots X_{n,i_{q}}^{(q)}\} \exp\left[i\sum_{j=1}^{p}t_{j}W_{n}^{(j)}\right]\right) \right|$$

$$= \left| \sum_{i_{1},\dots,i_{q}}^{\infty} \sum_{z=1}^{p} \sum_{a=1}^{q} \sum_{\substack{l=i_{a}-m \\ l\neq i_{a}}}^{i_{a}+m} E\{X_{n,i_{1}}^{(1)}\dots X_{n,i_{q}}^{(q)}X_{n,l}^{(z)}\Delta Y(a, z, l)\} \right|$$

$$- \sum_{i_{1},\dots,i_{q}}^{\infty} \sum_{z=1}^{p} \sum_{a=2}^{q} \sum_{\substack{l=i_{a}-m \\ l\neq i_{a}}}^{i_{a}+m} p_{n,i_{1}}^{(1)}E\{X_{n,i_{2}}^{(2)}\dots X_{n,i_{q}}^{(q)}X_{n,l}^{(z)}\Delta Y'(a, z, l)\}$$

$$+ \sum_{i_{1},\dots,i_{q}}^{\infty} E\{(X_{n,i_{1}}^{(1)} - p_{n,i_{1}}^{(1)})X_{n,i_{2}}^{(2)}\dots X_{n,i_{q}}^{(q)}H(i_{1},\dots,i_{q})\} \right|$$

$$\leq 2 \sum_{i_{1},\dots,i_{q}}^{\ast} \sum_{z=1}^{p} \sum_{a=1}^{q} \sum_{\substack{l=i_{a}-m \\ l\neq i_{a}}}^{i_{a}+m} E(X_{n,i_{1}}^{(1)}\dots X_{n,i_{q}}^{(q)}X_{n,i}^{(z)})$$

$$+ 2 \sum_{i_{1},\dots,i_{q}}^{\ast} \sum_{z=1}^{p} \sum_{a=2}^{q} \sum_{\substack{l=i_{a}-m \\ l\neq i_{a}}}^{i_{a}+m} p_{n,i_{1}}^{(1)}E(X_{n,i_{2}}^{(2)}\dots X_{n,i_{q}}^{(q)}X_{n,i}^{(z)})$$

$$+ \sum_{i_{1},\dots,i_{q}}^{\ast} |E\{(X_{n,i_{1}}^{(1)} - p_{n,i_{1}}^{(1)})X_{n,i_{2}}^{(2)}\dots X_{n,i_{q}}^{(q)}H(i_{1},\dots,i_{q})\}|$$

$$\leq 2q\alpha^{q-1}(1+\alpha)(2m+1) \sum_{i_{1},\dots,i_{q}}^{\ast} p_{n,i_{1}}^{(1)}\dots p_{n,i_{q}}^{(q)} \left\{\sum_{j=1}^{p} \sup_{j,i} p_{n,i_{j}}^{(j)}\right\}$$

$$+ 2\rho\alpha^{q-2}A^{q}\varphi(m+1)$$

by using Lemma 2.1. Furthermore, since for $r \neq s$, $1 \leq r$, $s \leq p$, $EX_{n,i}^{(r)}X_{n,i}^{(s)} = Pr(X_{n,i}^{(r)} = 1, X_{n,i}^{(s)} = 1) = 0$,

the second sum on the right-hand side of (3.2) can be estimated as

176

Limit theorem with mixing conditions

$$(3.5) \quad \left| \sum_{i_{1},\dots,i_{q}}^{**} E\left(\left\{ X_{n,i_{1}}^{(1)}\dots X_{n,i_{q}}^{(q)} - p_{n,i_{1}}^{(1)}e^{it_{1}}X_{n,i_{2}}^{(2)}\dots X_{n,i_{q}}^{(q)} \right\} \exp\left[i \sum_{j=1}^{p} t_{j}W_{n}^{(j)} \right] \right) \\ \leq \left| \sum_{i_{1},\dots,i_{q}}^{**} E\left\{ X_{n,i_{1}}^{(1)}\dots X_{n,i_{q}}^{(q)} - p_{n,i_{1}}^{(1)}e^{it_{1}}X_{n,i_{2}}^{(2)}\dots X_{n,i_{q}}^{(q)} \right\} \right| \\ \leq \alpha^{q-2}(1+\alpha) \sum_{i_{1},\dots,i_{q}}^{**} p_{n,i_{1}}^{(1)}\dots p_{n,i_{q}}^{(q)} \\ \leq \alpha^{q-2}(1+\alpha)(2m+1) \left\{ \lambda_{n,2}\lambda_{n,3}\dots\lambda_{n,q} \sup_{i} p_{n,i}^{(1)} + \cdots \right. \\ \left. + \lambda_{n,1}\lambda_{n,2}\dots\lambda_{n,q-1} \sup_{i} p_{n,i}^{(q)} \right\} \\ \leq \alpha^{q-2}(1+\alpha) \frac{q(q-1)}{2}(2m+1)\Lambda^{q-1} \sup_{j,i} p_{n,i}^{(j)} ,$$

again by Lemma 2.1. Summarizing (3.4) and (3.5) in $\sup_{j,i} p_{n,i}^{(j)}$ and $\varphi(m+1)$, we have (3.1), and the proof of lemma is completed.

THEOREM 3.2. Under the assumptions (A.1)', (A.2)' and (A.3),

(3.6)
$$(\sum_{i=1}^{k_n} X_{n,i}^{(1)}, \dots, \sum_{i=1}^{k_n} X_{n,i}^{(p)}) \xrightarrow{d} (P_{\lambda_1}, \dots, P_{\lambda_p})$$

as $n \to \infty$, where P_{λ_j} are independent Poisson distributed random variables with means λ_j , j = 1, ..., p, respectively.

PROOF. The proof of the theorem bases on Lemma 3.1. To prove (3.6), we shall show the convergence of the characteristic functions of $\{W_n^{(j)}\}$;

$$(3.7) \qquad E \exp\left[i \sum_{j=1}^{p} t_j W_n^{(j)}\right] \to \exp\left[\sum_{j=1}^{p} \lambda_j (e^{it_j} - 1)\right] \qquad \text{as } n \to \infty ,$$

by induction. From the assumptions (A.2)' and (A.3), for any $\varepsilon > 0$, there exists an $m_0 > M_0$ such that

$$C_2(q)\varphi(m_0+1) < \varepsilon/2$$
, for any $1 \le q \le p$,

and for the fixed m_0 , we can choose N_{ε} such that

 $C_1(m_0, r, q) \max_{j,i} p_{n,i}^{(j)} < \varepsilon/2$, for any $n \ge N_{\varepsilon}$ and any $r, q, 1 \le q \le r \le p$.

Then we have

(3.8)
$$C_1(m_0, r, q) \max_{j,i} p_{n,i}^{(j)} + C_2(q)\varphi(m_0 + 1) < \varepsilon$$

for any $n \ge N_{\varepsilon}$ and any $r, q, 1 \le q \le r \le p$.

Mustafid

First, we shall prove for p = 1, i.e.,

(3.9)
$$E \exp[itW_n^{(1)}] \to \exp[\lambda_1(e^{it}-1)]$$

as $n \to \infty$. By Lemma 3.1 for p = q = 1 and (3.8), we have

$$\left| \frac{d}{dt} E\{ \exp\left[itW_n^{(1)}\right] \} \exp\left[\lambda_{n,1}(1-e^{it})\right] \right|$$

= $|E\{(W_n^{(1)} - \lambda_{n,1}e^{it}) \exp\left[itW_n^{(1)}\right] \} i \exp\left[\lambda_{n,1}(1-e^{it})\right] |$
 $\leq C_1(m, 1, 1) \max_i p_{n,i}^{(1)} + C_2(1)\varphi(m+1) < \varepsilon.$

Whence by integration

(3.10)
$$\lim_{n \to \infty} E\{\exp\left[it W_n^{(1)}\right]\} \exp\left[\lambda_{n,1}(1-e^{it})\right] - 1 = 0.$$

Consequently, by (A.1)', we have (3.9).

Furthermore, we assume that (3.7) is valid for p - 1. Then

(3.11)
$$E\{\exp\left[i\sum_{j=1}^{p-1} st_j W_n^{(j)}\right]\} \exp\left[\sum_{j=1}^{p-1} \lambda_j (1-e^{ist_j})\right] \to 1$$

as $n \to \infty$, for any s and t_j , j = 1, ..., p - 1. Let

$$\varphi_n(t, s) \equiv E\left\{\exp\left[itW_n^{(p)} + is\sum_{j=1}^{p-1} t_jW_n^{(j)}\right]\right\}$$

Note that we can apply Lemma 3.1 for

$$E\{(W_n^{(p)}W_n^{(r)} - e^{it_p}\lambda_{n,p}W_n^{(r)})\exp\left[i\sum_{j=1}^p t_jW_n^{(j)}\right]\},\$$

$$E\{(W_n^{(p)} - e^{it_p}\lambda_{n,p})\exp\left[i\sum_{j=1}^p t_jW_n^{(j)}\right]\}.$$

Then by Lemma 3.1 and (3.8),

$$(3.12) \quad \left| \frac{\partial^2}{\partial t \,\partial s} \varphi_n(t,s) \exp\left[\lambda_{n,p}(1-e^{it}) + \sum_{j=1}^{p-1} \lambda_j(1-e^{ist_j})\right] \right| \\ = \left| \left(\sum_{j=1}^{p-1} t_j E\left\{ (W_n^{(p)} W_n^{(j)} - \lambda_{n,p} e^{it_p} W_n^{(j)}) \exp\left[it W_n^{(p)} + is \sum_{j=1}^{p-1} t_j W_n^{(j)}\right] \right\} \right. \\ \left. - \sum_{j=1}^{p-1} t_j \lambda_j e^{ist_j} E\left\{ (W_n^{(p)} - \lambda_{n,p} e^{it_p}) \exp\left[it W_n^{(p)} + is \sum_{j=1}^{p-1} t_j W_n^{(j)}\right] \right\} \right) \\ \times i^2 \exp\left[\lambda_{n,p}(1-e^{it}) + \sum_{j=1}^{p-1} \lambda_j(1-e^{ist_j})\right] \right| \\ \le \left\{ C_1(m,p,2) \max_{j,i} p_{n,i}^{(j)} + C_2(2)\varphi(m+1) \right\} \sum_{j=1}^{p-1} |t_j| \\ \left. + \left\{ C_1(m,p,1) \max_{j,i} p_{n,i}^{(j)} + C_2(1)\varphi(m+1) \right\} \sum_{j=1}^{p-1} |\lambda_j t_j| \\ \le \sum_{j=1}^{p-1} |t_j| (1+\lambda_j) . \right\} \right\}$$

Furthermore, by (3.10) and (3.11),

$$\begin{split} &\int_{0}^{t} \int_{0}^{s} \frac{\partial^{2}}{\partial t \, \partial s} \, \varphi_{n}(t, s) \exp \left[\lambda_{n, p}(1 - e^{it}) + \sum_{j=1}^{p-1} \, \lambda_{j}(1 - e^{ist_{j}}) \right] \, dt \, ds \\ &= \varphi_{n}(t, s) \exp \left[\lambda_{n, p}(1 - e^{it}) + \sum_{j=1}^{p-1} \, \lambda_{j}(1 - e^{ist_{j}}) \right] \\ &- E \{ \exp \left[it W_{n}^{(p)} \right] \} \exp \left[\lambda_{n, p}(1 - e^{it}) \right] \\ &- E \{ \exp \left[i \sum_{j=1}^{p-1} \, st_{j} W_{n}^{(j)} \right] \} \exp \left[\sum_{j=1}^{p-1} \, \lambda_{j}(1 - e^{ist_{j}}) \right] + 1 \\ &\rightarrow \lim_{n \to \infty} \varphi_{n}(t, s) \exp \left[\lambda_{n, p}(1 - e^{it}) + \sum_{j=1}^{p-1} \, \lambda_{j}(1 - e^{ist_{j}}) \right] - 1 \, . \end{split}$$

By (3.12), the left hand side of the above relation converges to 0 as $n \to \infty$. Hence, by (A.1)',

$$\lim_{n\to\infty}\varphi_n(t,s)\exp\left[\lambda_p(1-e^{it})+\sum_{j=1}^{p-1}\lambda_j(1-e^{ist_j})\right]-1=0$$

Replacing $t = t_p$ and s = 1, we have (3.7), and the proof of the theorem is completed.

§4. The asymptotic distribution of symmetric statistics

In this section, we extend the Poisson limit theorems in [17] to the case of dependent random elements. Let $X_{n,1}, \ldots, X_{n,k_n} (1 \le k_n \le \infty), n = 1, 2, \ldots$, be sequences of random elements on \mathfrak{X} as in Section 2 which satisfy the assumptions (A.1), (A.2) and (A.3). For a symmetric function $h_k(x_1, \ldots, x_k)$, we define symmetric statistics by

$$\sigma_k^n(h_k) \equiv \begin{cases} \sum_{1 \le s_1 < \dots < s_k \le k_n} h_k(X_{n,s_1}, \dots, X_{n,s_k}) & \text{for } k \le k_n \\ 0 & \text{for } k > k_n \end{cases}$$

Let $\overline{\mathscr{K}}(\mathfrak{X})$ be the family of sequences of continuous symmetric functions $\{h_k\}_{k\geq 0}$ defined by Notation 1 of [17] and let $\overline{\mathscr{E}}(\mathfrak{X})$ be the family of sequences of symmetric step functions of special form defined in §3 of [17]. We investigate the asymptotic distribution of the symmetric statistics

$$Y_n(h) \equiv \sum_{k=0}^{k_n} \sigma_k^n(h_k) ,$$

for $h = (h_0, h_1, \ldots) \in \mathcal{K}(\mathfrak{X})$. We show that the limiting distribution is expressed in terms of multiple Poisson-Wiener-Ito integrals with respect to a Poisson random measure P_{λ} with intensity λ ; MUSTAFID

$$W(h) = \sum_{k=0}^{\infty} \frac{1}{k!} \int \ldots \int h_k(x_1, \ldots, x_k) dP_{\lambda}(x_1) \ldots dP_{\lambda}(x_k) .$$

We denote

 $\mathbf{x}^k = (x_1, \ldots, x_k) \in \mathfrak{X}^k$ and $d\lambda_n^k(\mathbf{x}^k) = d\lambda_n(x_1) \ldots d\lambda_n(x_k)$.

By Lemma 2.1 and the same way as in [17] (cf. [18]), we have the following estimation of the covariance,

$$\begin{split} E|\sigma_{k}^{n}(h_{k})\sigma_{l}^{n}(g_{l})| \\ &= \sum_{1 \leq s_{1} < \cdots < s_{k} \leq k_{n}} \sum_{1 \leq r_{1} < \cdots < r_{l} \leq k_{n}} E|h_{k}(X_{n,s_{1}}, \dots, X_{n,s_{k}})g_{l}(X_{n,r_{1}}, \dots, X_{n,r_{l}})| \\ &= \sum_{j=0}^{k \wedge l} \sum^{\#} E|h_{k}(X_{n,s_{1}}, \dots, X_{n,s_{j}}, X_{n,s_{j+1}}, \dots, X_{n,s_{k}}) \\ &\times g_{l}(X_{n,s_{1}}, \dots, X_{n,s_{j}}, X_{n,s_{k+1}}, \dots, X_{n,s_{k+1-j}})| \\ &\leq \sum_{j=0}^{k \wedge l} \frac{1}{(k-j)!} \frac{1}{(l-j)!} \frac{1}{j!} \sum_{1 \leq s_{1}, \dots, s_{k+1-j} \leq k_{n}} \\ &\times E|h_{k}(X_{n,s_{1}}, \dots, X_{n,s_{j}}, X_{n,s_{j+1}}, \dots, X_{n,s_{k}}) \\ &\times g_{l}(X_{n,s_{1}}, \dots, X_{n,s_{j}}, X_{n,s_{k+1}}, \dots, X_{n,s_{k}})| \\ &\leq \sum_{j=1}^{k \wedge l} \frac{1}{(k-j)!} \frac{1}{(l-j)!} \frac{1}{j!} \alpha^{k+l-j-1} \\ &\times \int \dots \int |h_{k}(\mathbf{x}^{j}, \mathbf{y}^{k-j})g_{l}(\mathbf{x}^{j}, \mathbf{z}^{l-j})| \, d\lambda_{n}^{j}(\mathbf{x}^{j}) \, d\lambda_{n}^{k-j}(\mathbf{y}^{k-j}) \, d\lambda_{n}^{l-j}(\mathbf{z}^{l-j}) \, , \end{split}$$

for $k_n \ge k, k_n \ge l$ and

$$E|\sigma_k^n(h_k)\sigma_l^n(g_l)|=0,$$

for $k_n < k$ or $k_n < l$, where $k \wedge l$ is the minimum of k and l, the sum $\sum^{\#}$ is extended over all different s_i , $1 \le i \le k + l - j$ such that $1 \le s_1 < \cdots < s_j \le k_n$, $1 \le s_{j+1} < \cdots < s_k \le k_n$, $1 \le s_{k+1} < \cdots < s_{k+l-j} \le k_n$. Then we have

$$(4.1) \quad E|Y_n(h)|^2 \leq \sum_{k,l=0}^{k} \sum_{j=0}^{k \wedge l} \frac{1}{(k-j)!} \frac{1}{(l-j)!} \frac{1}{j!} \alpha^{k+l-j} \\ \times \int \dots \int |h_k(x^j, y^{k-j}) g_l(x^j, z^{l-j})| \, d\lambda_n^j(x^j) \, d\lambda_n^{k-j}(y^{k-j}) \, d\lambda_n^{l-j}(z^{l-j}) \, .$$

As in [17] (cf. [18]), for a given Radon measure v, we define a norm $||h||_{v}$ of a sequence of symmetric functions $h = \{h_k\}_{k=0}^{\infty}$ by

180

(4.2)
$$||h||_{\nu}^{2} \equiv \sum_{k,l=0}^{\infty} \sum_{j=0}^{k \wedge l} \frac{1}{(k-j)!} \frac{1}{(l-j)!} \frac{1}{j!} \times \int \dots \int |h_{k}(x^{j}, y^{k-j})h_{l}(x^{j}, z^{l-j})| dv^{j}(x^{j}) dv^{k-j}(y^{k-j}) dv^{l-j}(z^{l-j}).$$

By (4.2), we have

$$(4.3) E|Y_n(h)|^2 \le ||h||_{\alpha\lambda_n}^2$$

Furthermore, we define a norm $\|\cdot\|$ by

(4.4)
$$\|h\| \equiv \overline{\lim_{n \to \infty}} \|h\|_{\alpha \lambda_n} \left(\geq \underline{\lim_{n \to \infty}} \|h\|_{\alpha \lambda_n} \geq \|h\|_{\lambda} \right).$$

NOTATION 1. Denote by $\overline{\mathscr{H}}(\mathfrak{X})$ the set of all sequences $h = \{h_k\}_{k\geq 0}$ which can be approximated by elements of $\overline{\mathscr{E}}(\mathfrak{X})$ with respect to the norm $\|\cdot\|$, that is, for any $h \in \overline{\mathscr{H}}(\mathfrak{X})$ and any $\varepsilon > 0$, there exists an $h^{\varepsilon} \in \overline{\mathscr{E}}(\mathfrak{X})$ such that

$$\|h-h^{\varepsilon}\|<\varepsilon$$

LEMMA 4.1. For $h \in \overline{\mathscr{E}}(\mathfrak{X})$,

$$Y_n(h) \xrightarrow{d} W(h) = \sum_{k=1}^p \frac{1}{k!} \sum_{1 \le i_1, \dots, i_k \le p} h_{i_1, \dots, i_k} P_{\lambda}(B_{i_1}) \dots P_{\lambda}(B_{i_k})$$

as $n \to \infty$.

PROOF. By 15.7.2 in [15] (cf. Lemma 2.1 in [17]), we know that for each $n \ge 1$, $X_{n,i} = (\chi_{B_1}(X_{n,i}), \ldots, \chi_{B_p}(X_{n,i}))$, $1 \le i \le k_n$, is a dependent *p*-dimensional Bernoulli array which satisfies (A.1)' and (A.2)', i.e.

$$\lim_{n \to \infty} \sum_{i=1}^{k_n} \Pr(\chi_{B_j}(X_{n,i}) = 1) = \lim_{n \to \infty} \sum_{i=1}^{k_n} v_{n,i}(B_j) = \lambda(B_j), \qquad j = 1, \dots, p,$$
$$\lim_{n \to \infty} \max_{j,i} \Pr(\chi_{B_j}(X_{n,i}) = 1) = \lim_{n \to \infty} \max_{j,i} v_{n,i}(B_j) = 0.$$

Therefore, by Theorem 3.2,

$$\left(\sum_{i=1}^{k_n} \chi_{B_1}(X_{n,i}), \ldots, \sum_{i=1}^{k_n} \chi_{B_p}(X_{n,i})\right) \xrightarrow{d} (P_{\lambda}(B_1), \ldots, P_{\lambda}(B_p))$$

as $n \to \infty$, where $P_{\lambda}(B_j)$ are independent Poisson random variables with means $\lambda(B_j)$, j = 1, ..., p. Then by Corollary 5.1 of [4], we have the assertion of the lemma.

THEOREM 4.2. For $h \in \mathcal{H}(\mathfrak{X})$, $Y_n(h) \xrightarrow{d} W(h)$ as $n \to \infty$. Particularly, for $h \in \mathcal{H}(\mathfrak{X})$, $Y_n(h) \xrightarrow{d} W(h)$ as $n \to \infty$.

MUSTAFID

PROOF. By Lemma 4.1, (4.3) and (4.4), the following estimation

$$\begin{split} \overline{\lim_{n \to \infty}} & |E\{\exp[it Y_n(h)]\} - E\{\exp[it W(h)]\}| \\ \leq \overline{\lim_{n \to \infty}} & |E\{\exp[it Y_n(h)]\} - E\{\exp[it Y_n(h^{\varepsilon})]\}| \\ & + \overline{\lim_{n \to \infty}} & |E\{\exp[it Y_n(h^{\varepsilon})]\} - E\{\exp[it W(h^{\varepsilon})]\}| \\ & + |E\{\exp[it W(h^{\varepsilon})]\} - E\{\exp[it W(h)]\}| \\ \leq \overline{\lim_{n \to \infty}} & |t| ||h - h^{\varepsilon}||_{\alpha\lambda_n} + |t| ||h - h^{\varepsilon}||_{\lambda} \\ \leq 2|t| ||h - h^{\varepsilon}|| \leq 2|t|\varepsilon \end{split}$$

is shown, for $h^{\varepsilon} \in \overline{\mathscr{E}}(\mathfrak{X})$ with $||h - h^{\varepsilon}|| < \varepsilon$. Thus the first assertion is seen. To prove the second assertion, it is sufficient to show that $\overline{\mathscr{K}}(\mathfrak{X}) \subset \overline{\mathscr{K}}(\mathfrak{X})$. Define $h^{\varepsilon} \equiv \{h_k^{\varepsilon}\}_{k\geq 0}$ by (3.7) in §3 of [17]. Then we have

$$\begin{split} \|h - h^{\varepsilon}\|_{\alpha\lambda_{n}}^{2} &= \sum_{k,l=0}^{\infty} \sum_{j=0}^{k \wedge l} \frac{\alpha^{k+l-j}}{(k-j)! \ (l-j)! \ j!} \\ &\times \int \dots \int |(h_{k} - h_{k}^{\varepsilon})(x^{j}, y^{k-j})(h_{l} - h_{l}^{\varepsilon})(x^{j}, z^{l-j})| \ d\lambda_{n}^{j}(x^{j}) \ d\lambda_{n}^{k-j}(y^{k-j}) \ d\lambda_{n}^{l-j}(z^{l-j}) \\ &\leq \sum_{k,l=0}^{L} \sum_{j=0}^{k \wedge l} \frac{(\lambda(K) + 1)^{-2L} \alpha^{k+l-j}}{(k-j)! \ (l-j)! \ j!} (4\varepsilon^{2}\lambda_{n}(K)^{j} + \varepsilon H^{k+l-2L} \lambda_{n}(K)^{k+l-j-1}) \\ &+ 2 \sum_{k=L+1}^{\infty} \sum_{l=0}^{k \wedge l} \sum_{j=0}^{k \wedge l} \frac{1}{(k-j)! \ (l-j)! \ j!} H^{k+l+2} (\alpha\lambda_{n}(K))^{k+l-j} \\ &\leq (4\varepsilon^{2} + \varepsilon) e^{3\alpha} + 2\varepsilon \,. \end{split}$$

Therefore, any $h \in \overline{\mathscr{K}}(\mathfrak{X})$ can be approximated by elements of $\overline{\mathscr{E}}(\mathfrak{X})$ with respect to the norm $\|\cdot\|$ defined by (4.4). Hence, $\overline{\mathscr{K}}(\mathfrak{X}) \subset \overline{\mathscr{K}}(\mathfrak{X})$ is clear.

Acknowledgement

The author wishes to express his deep gratitude to Prof. I. Kubo for his kind and continuous guidance during the progress of this work.

References

- F. Avram and M. S. Taqqu, Symmetric Polynomials of random variables attracted to an infinitely divisible law, Prob. Th. Rel. Fields, 71 (1986), 491-500.
- [2] A. D. Barbour and G. K. Eagleson, Poisson convergence for dissociated statistics, J. R. Statist. Soc., B 46 (1985), 397-402.

182

- [3] A. D. Barbour and G. K. Eagleson, An improved Poisson limit theorem for sums of dissociated random variables, J. Appl. Prob., 24 (1987), 586-599.
- [4] P. Billingsley, Convergence of Probability Measure, Wiley, 1968.
- [5] K. H. Y. Chen, Poisson Approximation for dependent trials, Ann. Prob., 3 (1975), 534-545.
- [6] H. Dehling, Almost sure approximations for U-statistics, Progress in Probability and Statistics, 11 (1985), 119-135.
- [7] H. Dehling, M. Denker, and W. Philipp, Invariance principles for von Mises and U-statistics, Z. Wahrscheinlichkeitstheorie verw. Geb., 67 (1984), 139-167.
- [8] M. Denker and G. Keller, Rigorous statistical procedures for data from dynamical systems, J. Stat. Phys., 31 (1986), 67-93.
- [9] D. L. Dobrushin and Yu. M. Sukhov, Time asymptotics for some degenerate models of evolution of systems with an infinite number of particles, J. Sov. Math., 16 (1981), 1277-1340.
- [10] E. B. Dynkin and A. Mandelbaum, Symmetric statistics, Poisson point processes, and multiple Wiener integrals, Ann. Stat., 11 (1983), 739-745.
- [11] K. Ito, Multiple Wiener integral, J. Math. Soc. Japan, 3 (1951), 157–169.
- [12] Y. Ito, Generalized Poisson functionals, Prob. Th. Rel. Fields, 77 (1988), 1-28.
- [13] Y. Ito and I. Kubo, Calculus on Gaussian and Poisson white noises, Nagoya Math. J., 111 (1988), 41-84.
- S. Janson, Poisson convergence and Poisson processes with applications to random graphs, Stochastic Processes and their Applications, 26 (1987), 1-30.
- [15] O. Kallenberg, Random measures, Akademie-Verlag, Berlin, 1983.
- [16] A. Mandelbaum and M. S. Taqqu, Invariance principle for symmetric statistics, Ann. Statist., 12 (1984), 483-498.
- [17] Mustafid, A limit theorem of symmetric statistics for non-identically distributed independent random elements, Hiroshima Math. J., 20 (1990), 159-169.
- [18] Mustafid and I. Kubo, Law of small numbers and a limit theorem of symmetric statistics, preprint.
- [19] W. Philipp, The central limit problem for mixing sequences of random variables, Z. Wahrscheinlichkeitstheorie verw. Geb., 12 (1969), 155-171.
- [20] B. W. Silverman and T. C. Brown, Short distances, flat triangles and Poisson limits, J. Appl. Prob., 15 (1978), 815-825.
- [21] H. Teicher, Distribution and moment convergence of martingales, Prob. Th. Rel. Fields, 79 (1988), 303-316.
- [22] J. Willms, Convergence of infinite particle systems to the Poisson under the action of the free dynamic, In: S. Albeverio (ed.), Infinite dimensional analysis and stochastic processes, pp. 161-170, Boston London Melbourne, Pitman 1985.
- [23] H. Zessin, On the asymptotic behaviour of the free gas and its fluctuations in the hydrodynamical limit, Prob. Th. Rel. Fields, 77 (1988), 605-622.

Faculty of Integrated Arts and Sciences, Hiroshima University*)

^{*)} Permanent address : Department of Mathematics, Faculty of Sciences, Diponegoro University, Semarang, Indonesia.