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Introduction

In this paper we shall consider the problem of finding disjoint
non-equivalent incompressible spanning surfaces for a link. It is known that
there are many links in the 3-sphere which have plural non-equivalent
incompressible spanning surfaces ([1], [10], [3], [8] etc.). We shall associate
to each link L a certain simplicial complex IS(L) whose vertex set is the set
FF(L) of the equivalence classes of incompressible spanning surfaces for
L. We also introduce a ‘distance’ on #&(L). Using this distance, we prove
that the complex IS(L) is connected. As an application of this result, the
complexes IS(L) for composite knots are determined under some additional
conditions.

Let L be an oriented link in the 3-sphere S3, and let E(L) = S* — Int N (L)
be its exterior where N(L) is a fixed tubular neighborhood of L. We shall
use the term “spanning surface” for L to denote a surface S = Xn E(L) where
¥ is an oriented surface in S3 such that 6 = L, ¥ has no closed component
and is possibly disconnected and that nN(L) is a collar of 0% in . Two
spanning surfaces for L are said to be equivalent if they are ambient isotopic
in E(L) to each other. A spanning surface S is incompressible (resp. of minimal
genus) if each component of S is incompressible in E(L) (resp. the Euler number
x(S) is maximum among all spanning surfaces for L). Let (L) denote the
set of equivalence classes of spanning surfaces for L, and £ (L) and .#% (L)
the subsets of & (L) consisting of those classes of incompressible and of minimal
genus ones respectively.

Now we associate to each non-split oriented link L a simplicial complex
IS(L) as follows: The vertex set of IS(L) is #& (L), and vertices g, 04,...,0y
e F&(L) span a k-simplex if there are representatives S;ea;, 0 <i <k, so that
5;nS; =0 for all i <j. Replacing FF(L) with #F(L), we obtain another
simplicial complex MS(L), and MS(L) becomes a full subcomplex of IS(L). In
§1 we define a ‘distance’ on (L), and in §2 we prove the main theorem
(Theorem 2.1) which is formulated in terms of the distance. The main theorem
implies the following
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THEOREM A. Let L be a non-split oriented link. Then both IS(L) and
MS(L) are connected.

Scharlemann and Thompson [12, Prop.5] proved the connectedness of
MS(L) in the case when L is a knot. We have a feeling that Theorem A is
useful for the classification of the incompressible spanning surfaces for a given
link. For example, Eisner [3] proved that a composite knot of two non-fibred
knots has infinitely many non-equivalent minimal genus spanning surfaces. In
§3 we prove the following theorem by using Theorem A.

THEOREM B. Let K be a composite knot of two knots K, and
K,. Suppose that, for each i =1 and 2, K, is not fibred and the incompressible
spanning surfaces for K; are unique. Then IS(K)= MS(K) and this complex
is in the form of

Gi-1 Gi Gi+1
O ) O O O
A4 A J U A

In Theorem B the vertices o; (i€ Z) are represented by the surfaces
constructed by FEisner [3]: See §3.

Recently we have gotten the classification of the incompressible spanning
surfaces for each prime knot of < 10 crossings [9]; Theorem A is extensively
used in its proof.

1. Distance on ¥ (L)

Let L < S* be an oriented link, E = E(L) its exterior and % (L) the set
of equivalence classes of spanning surfaces for L. In this section, we will
define a distance on & (L).

Consider the infinite cyclic covering p: (E, ay) > (E, a) such that
p*nl(E, a,) is the augmentation subgroup of =z, (E, a) where acE is a base
point (cf. [2]), and let © denote a generator of the covering transformation
group. Let S < E be a spanning surface for L, and let E, denote the closure
of a lift of E— S to E (note that E — S is connected since S has no closed
component). Put E; = t/(E;) and S; = E;_nE; (jeZ). Then we see that

(1.1y E=y Ei,p ' (S)=US; and p|S;: S;— S is a homeomorphism.
jeZ JjeZ

Let S’ = E be another spanning surface for L. Then we have a similar
description of E:
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(1.2) E=\E, E,_nE,=S8;, p"'(8)= US; and Ej=t*(E}).
keZ keZ
We set
m =min (ke Z|E,NE; # @}, r = max {ke Z|E,nE; # @} and
as, S)y=r—m.
It is easy to see that
13) (a) d@s,8)=1,
(b) d(S,S’)=1 if and only if SNS' = O,
(c) E;nE;#@ if and only if m<k—j<r, and
d Ecc U E, S« U E.

m<k<r m+1<k<r

Now, for o, ¢'e #(L), we define d(g, 6')e Z, (the set of non-negative
integers) by

i(c, &) 0 if 6 =0,
0,0)=
{ min d(S, S') if ¢ #0'.
Seo,S’ea’

PrOPOSITION 1.4. The function d: (L) x (L) - Z, satisfies the axioms
of distance, i.e. for every o, d', "€ F(L),

(i) d(o,0)=0 if and only if 0 =7,
(ii) d(o, 0') = d(o', 0) and
(i) d(e, 0") < d(o, 0') + d(d’, 0").

Proor. (i) follows from (1, 3) (a).

(i) Suppose that ¢ # ¢’ and d(o, ') = d(S, S') for some Seo, S'ed’. By
(1.3) (c), EonE; #@ if and only if —r <j< —m. Hence d(¢', o) <d(S’, S)
<(—m)—(—r)=d(s, ¢'). Similarly we have d(¢’, 6) > d(o, ¢’), and hence
d(o, ') = d(d', o).

(i) It suffices to verify the inequality in the case that o # ¢ and
o' # ¢". Suppose that d(o, 6') =d (S, S') for Seo, and S’ed’. Then we can
take S”€¢” so that d(¢’, ¢”) = d(S’, S”), and E has the following description
associated with S”:

E=UE! E_nE/=58,p "(8")=US/ and E/=7\(Eg).
ieZ ieZ

Now suppose that E;nE; # @ if and only if m < k — j <r, and that E;nE; # @
if and only if m"<i—k<r. This implies that d(s,¢)=r—m and
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de’,6")=r —m'. If EonE! # @, by (1.3) (c) there is kyo(m < ko <r) so that
Ei,,NE/ #Q. Since m <i—ky<r, and m+m <i<r+7r. This implies
that d(c, 6') < d(S,S")<(r +7)—(m+ m) =d(s, ¢) + d(¢, ¢"). [

2. Main theorem

The following Theorem 2.1 is the main theorem in this paper, from which
Theorem A follows directlt. For a spanning surface S, its equivalence class
will be denoted by [S]e F(L).

THEOREM 2.1. Let L<S® be a non-split link and S,S < E(L) two
incompressible (resp. minimal genus) spanning surfaces for L. Suppose that
n=d([S], [S']) = 1. Then there is a sequence of incompressible (resp. minimal
genus) spanning surfaces S = F,, Fy,...,F, such that

1) [F1=L[51,
2) F,_ynF;=0@ for each 1 <i<n, and
(3) d([S],[F]) =i for each 0 <i<n.

Proor. We prove the theorem by induction on n = d([S], [S']). In the
case of n=1, §’ is equivalent to F with SnF=@ by (1.3) (b), and the
conclusion is clear. Thus we assume that the theorem holds for n <q —1
(9 =2) and then will prove it for n=g¢. Moving S’ by an ambient isotopy
of E = E(L), we may assume that

2.2) d(S, S')y=gq, 0SN0S’ = ¢ and S intersects S’ transversely.

Note that E is irreducible since L is non-splittable. From this together with
the incompressibility of S and S’ we can further assume that

(2.3) each circle of SNS’ is essential on S and S’

We will find an incompressible (resp. minimal genus) spanning surface
§” < E which satisfies the condition

(2.4) $"nS'=0 and 4([S],[S"])=q— 1.

We use the same notation E, (1.1), (1.2), etc. for E, S, S’ as in the beginning
of §1. Consider E; where r=max{keZ|E,nE;#@}. We note that
EonS;,y =9 and E,nS; =@ by (1.3). By (2.2) and (2.3), S; intersects S;
transversely and each circle of S;nS; is essential on S; and S;. Hence

(2.5) each component of S;NE, and S,nE; is incompressible in E;.

Let X be a regular neighborhood of S;U(E,NE,) in E; with XnE, = Q.
Let Y be the closure of the component of E; — X containing S,,,, and put
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R=XnY. Then R is a surface in E; which is disjoint from E,, E,, S, and
S;+1- R inherits the orientation from S, and S;, and p(R)  E is a spanning
surface for L with p(R)nS’ =@. Now we consider the two cases that both
S and S’ are of minimal genus and that both S and S’ are incompressible
separately.

Case 1: Both S and S’ are of minimal genus. We see that p(R) is also
of minimal genus as follows. Put Z=(EqUE/)Nn( U E;). Let V be a

k<r—1

regular neighborhood of (E;US;)NZ in Z, and W the closure of the component
of Z — V containing S, (note that S, = Z). Put Q = VnW. Then Q inherits
the orientation from S, and S,. p: Q—> E is an embedding since Q c E,
—(SoUS,), and hence p(Q) is a spanning surface for L. By the constructions
of Q and R together with (2.3), we see that x(Q) + x(R) > x(S,) + x(S)) = x(S)
+ x(S’) = 2x(S). This implies that x(Q) = x(R) = x(S) and p(R) is of minimal
genus since so is S. We put §” = p(R).

Case 2: Both S and S’ are incompressible. In this case R is not
necessarily incompressible in E;. We will modify R to be incompressible.

Put X' =CI(E, — Y). By applying a finite number of simple moves due
to McMillan [11] to X’ in E], we obtain a 3-submanifold X" so that each
component of C1(0X”nInt E)) is incompressible in E,. This means that there
is a finite sequence of 3-submanifolds of E;, X' = X,, X,,...,X; = X" such
that, for each 1 <i <k, one of the following conditions (i)—(iv) holds:

(i) X, is obtained from X,_, by adding a 2-handle whose core is a 2-disk
D <« Int E] such that DnX;_, = 0D < C1(0X;_,nInt E]) and D is essential in
Cl(0X;_ynInt E;).

(ii) There is a 3-ball C < Int E; such that X;=X;_,UC and X;_,nC
=0C < C1(0X;_,nInt E,).

(iii) X, is obtained from X,;_, by splitting at a 2-disk D < X;_, such
that 0D = DNnCl1(0X;_,nInt E]) and 0D is essential in Cl(0X;_,nInt E)).

(iv) There is a component C of X;_, such that C is a 3-ball and
X;=X;,,—-C.

CramM 2.6. We can take X” so that X"nE, =@ and E,nE/ c X".

Consider the above sequence X’ = X,, X4,...,X, = X". We will show that
each X; can be taken so that X;nE, =@ and E,nE, < X; by induction on
i. By the definition of X’, X, satisfies the condition. We suppose that X;_,
satisfies the desired condition, and consider X;. If X; is obtained by a simple
move of type (ii), the added 3-ball C is disjoint from E, since C < Int E; and
since there is no component of E,nNE, which is contained in Int E;. Hence
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X, satisfies the desired condition. Similarly, if X; is obtained by a simple
move of type (iv), then the removed 3-ball is disjoint from E,, and X; satisfies
the condition. In the case that X; is obtained by a simple move of type
(i), we can modify the 2-disk D, a core of the added’ 2-handle, so that
DNE,=@. In fact since each component of §,NE, is incompressible in E,
by (2.5), this modification can be done by using the standard cut and paste
argument. Hence we can take X; to be satisfy the desired condition.
Similarly, in the case that X, is obtained by a simple move of type (iii), we
can take the splitting 2-disk D to be disjoint from E, by (2.5). Hence we
can take X; to be satisfy the desired condition. Thus Claim 2.6 follows.

Let Z be the union of the components of X” containing some components
of §; and put F =Cl(0ZnInt E;). Clearly ZNE, =@ by Claim 2.6. Claim
2.6 further implies that E,nE; = Z since there is no component of EqNE;
which is disjoint from S;. Moreover F is incompressible in E; and p(F)
becomes an incompressible spanning surface for L which is disjoint from S’. In
this case we put S” = p(F).

Now we consider the two cases together, and show the following assertion

@7 a8, [5D=q—-1

We have d([S'],[S"]) <1 by §'nS”" =0. From this and by the assumption
that d([S], [S']) = q together with Proposition 1.4 (iii), we have d([S], [S"])
>d([S],[S]) —d([S],[S"]) >q—1. On the other hand, we consider the
description of E associated with S” as (1.1) in §1:

E=UE/, EnE{=S/ and p~'(s")=US/.
ieZ ieZ
By the construction of S”, we may assume that S, = F in Case 2 (resp. S, = R
in Case1). Then we see that E,c U E!. Hence d([S],[S"])

r—g<i<sr-1
<d(S,S8")<q—1, and (2, 7) follows. Thus S” = E is an incompressible (resp.
minimal genus) spanning surface for L satisfying the condition (2.4).

Now we will define the desired sequence of incompressible (resp. minimal
genus) spanning surfaces S = F,, F,,...,F,. Since S” satisfies (2.4), by the
inductive assumption, there is a sequence of incompressible (resp. minimal
genus) spanning surfaces S = Fy, Fy,...,F,_; such that

(1) [F,-=1[8"],
2) F,_ynF;,=@ for each 1 <i<q—1, and
(3) d([S],[F])=iforeach 0<i<gq-—1.

Let {h} be an isotopy of E such that h,=id and h,(S")=F,_,. Put
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F,=hy(§"). Then [F]=I[S8], F,.nF,=0 since $"nS’' =@, and d([S],
[F,1) = d([S], [S']) = q by the assumption. Thus the theorem holds for n = q.
The proof of Theorem 2.1 is now completed. []

3. Simplicial complexes IS(L) and MS(L)

In this section we first note some properties of the complexes IS(L) and
MS(L), and then prove Theorem B. Let L be a non-split oriented link. Then
the dimension of IS(L) is finite by Haken’s finiteness theorem [5, p. 48].
However the example described in [8] shows that IS(L) is not necessarily
locally finite in general. By Theorem A we can define £,(o, ¢’) (resp. £ (o, 0"))
for o,0'e FF(L) (resp. A& (L)) by the minimum length of edge paths in
FF (L) (resp. MS(L)) connecting ¢ to ¢’. Then we have

ProrosiTioN 3.1. (1) ¢,(o, ') =d (0, 0’) for 6,0 € FF(L).
(2) ¢y(0, 0') = d(o, 0') for 0,0 € MF(L).

Proor. We give the proof of (1) only because the proof of (2) is
similar. First note that /,(s,0’)=1 is equivalent to d(s, ¢')=1. Also
Theorem 2.1 shows that ¢,(o, ') < d (g, ¢'). Conversely, if Z,(s, 6') = n, then
by the definition there is a finite sequence ¢ = g, 04,...,0, =0 in FF(L)
so that £ (0;,_,,0;)=1 for all 1 <i<n. Hence

¢,(0, 0') = £1(00, 01) + -+ £1(0,-1, G,)
=d(0¢, 01) + -+ d(0,_1, 0,)
> d(o,, 0,) = d(o, o).
Thus we get £,(0, ¢') =d(o, 0’). [

Now let K be a composite knot of two non-fibred knots K, and K,. We
will determine the simplicial complexes IS(K) and MS(K) under the assumption
that the incompressible spanning surfaces for K; are unique for i=1 and
2. We note that there are many non-fibred 2-bridge knots whose incompressi-
ble spanning surfaces are unique (cf. [6]). Also there are many non-fibred
and non-2-bridge prime knots of < 10 crossings whose incompressible spanning
surfaces are unique ([9]).

In [3] and [4] Eisner constructed infinitely many non-equivalent minimal
genus spanning surfaces for K. We review the construction. We may assume
that E (K) = E(K,)UE(K,) and the intersection 4 = E(K,)nE(K,) = 0E(K,)
NOE(K,) is an annulus. Let S = E(K) be a minimal genus spanning surface
for K such that so is R; = SNnE(K,) for K; (i=1,2). Note that S=R;UR,
and the intersection I = R;NR, =SNA is an arc. We fix an identification
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A={(e*"*s0<0<1,0<s<1}

so that I={(1,5)|0<s<1} and the loop m: [0, 1] E(K), 6+ (e***, 1)
represents a meridian element uen,(E(K), a) where a = (1, 1)edl < E(K). Let
A x [0,1] < E(K,) be an embedding such that 4 = A x {1} and (4 x [0, 1])
NOE(K) = 04 x [0, 1]. We define a homeomorphism f: E(K)— E(K) by

(32) fIE(K,) =id, f|(E(K,) — (4 x [0, 1])) =id and
f(e?™, s, t) = (e2™C*Y 5 1) on A x [0, 1].

Now we put S™ = f*(S) for each neZ. Then we see that each S® is a
minimal genus spanning surface for K which satisfies the following properties:

3.3) (a) S"nAa=1
(b) S™NE(K,)=R,.
(c) S™nE(K,) is a minimal genus spanning surface for K, and
equivalent to R;.
(d) S® = f*"S™) for each ke Z.

ProposiTION 3.4 ([3], [4]). S® is not equivalent to S™ for all k # n.

Moreover we show the following proposition; Theorem B in the
introduction follows from this together with Proposition 3.1.

PROPOSITION 3.5. Let K be a composite knot of two non-fibred knots K,
and K,, and let {S™},., be the spanning surfaces for K constructed
above. Suppose in addition that, for i= 1,2, the incompressible spanning
surfaces for K; are unique. Then

(1) any incompressible spanning surface for K is equivalent to some S™, and
(i) d([S™], [SW])=n —k for all n> k.

ProoF. By the construction of {S®}, we can move S**V by a tiny
isotopy of E(K) so that S**1 is disjoint from S®. Hence d([S®], [S**V])
= 1. It follows from this together with Proposition 3.4 that IS(K) contains
the following complex as a subcomplex:

[Stk - 1)] [s(k)] [Stk+ 1))

0O ) 0O) 0O O
J A A4 J J

If there is an incompressible spanning surface for K which is not equivalent
to any S®, then by Theorem A, there is an incompressible spanning surface
which is not equivalent to any S® and disjoint from some S®. Thus we
prove (i) by showing the following assertion for each neZ.

(3.6) Let F be an incompressible spanning surface for K which is disjoint from
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S™. Then F is equivalent to S®~V, §™ or S"+V,

Moreover it suffices to show (3.6) for n =0 by (3.3).

Let F be an incompressible spanning surface for K which is disjoint from
S©. We can move F by an isotopy of E(K) so that F intersects A
transeversely in an arc J since F is incompressible. Note that J is properly
embedded in A and parallel to I in 4. Hence F; = FNnE(K,) becomes an
incompressible spanning surface for K; (i=1,2). We may assume that
J={(—1,50<s<1} (c A). By the uniqueness of the incompressible
spanning surfaces for K;, F; is parallel to R; in E(K,) (i=1,2). Let
e?: F, x [0,1] > E(K;) be an embedding such that e?|F; x {0} =id and
eD|F; x {1} is a homeomorphism F; > R; (i=1,2). We can take ¢? so that
eD(Jx[0,1]))=Ane?(F;x [0, 1]) (i=1, 2) in addition. Hence e®(J x [0, 1])
=A, or =A_ where A, ={(e*",5)|0<60<1/2,0<s<1} and A_={(e?™*, 5)|
1/2<6<1,0<s<1}. Thus there are four cases (1)—(4):

1) eVJ x[0,1])=e?J x[0,1])=A,. In this case F=F,UF, is
parallel to S = R, UR,.

@ eM(J x[0,1])=e?(J 'x [0,1]) = A_. In this case F is also parallel
to S.

3) eV(J x[0,1])=A, and eP(J x [0,1]) = A_. In this case we see
that F is equivalent to S = f(S).

4 eV x[0,1])=A4_ and e?(J x[0,1]) = A,. In this case F is
equivalent to ST = f71(S).

Thus (3.6) and hence (i) are proved.

Next we prove (ii). It follows from (i) that if d([S®], [S™]) <n — k for
some k < n, then d([S?], [S¥])=1 for some i,j with j —i>2. Thus, to
prove (ii) it suffices to show the following assertion

(3.7) d([S®], [S™])>2  for all k, n with n —k > 2.

Moreover it suffices to show (3.7) for k =0 by (3.3).

We now assume that, for some n > 2, there is an isotopy h: E(K) x [0, 1]
— E(K) so that hy=1id and h,;(S™)nS =@, and then we will show that this
implies a contradiction. Let p: (E, ap) > (E(K), @) be the infinite cyclic
covering. Putting E(K;)) = p '(E(K,), we see that the restriction p: E(K,-)
~E(K) is the infinite cyclic covering for K;, E = E(K,)UE(K,) and
A = E(K,)nE(K,) = p~!(A) is homeomorphic to I x (— o0, 0). Also E has
the following description (see §1):
(3.8) E= U Ey, Ex_1NE, =S, p~'(8) = U S

keZ keZ

aoeSO and (Ek, Sk’ ak) = Tk(EO’ SO’ aO)
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where 7 is the covering transformation corresponding to the meridian element
pen,(E(K), a). Putting (E); = E,nE(K) and (S,); = S,nE(K,), we have a
description of E(K;) (i =1, 2):

(39 E(Ki) = U (B> (Ex—in(EQi = (S); and p~'(R) = U (Si)i-
keZ keZ
Now consider the lift (S, ao) of (S™, a). We can identify S’ with the
surface obtained as follows: Set H=( (J (EJ),)NndE(K,) and R=H

O0<k<n—-1
U(S,);- Wepush Rinto |J (E), by a tiny isotopy keeping dR = 4(S,),
O0<k<n—1

fixed so that the resulting surface R’ satisfies the condition R'nJE(K,) = 6R’
= 0(So);- Then by the definition of S’ we can identify S with R'U(S,),
(see Figure 1).

R S x {0
N g( X {oh) S
i { /I Y
s s Su-1 Ek,)
L’ " %
B [ B2

ay a v \’/i a,

E(x,)
0 k n-1
Figure 1

We next consider the lift g:(S™ x [0, 1], ao x {0}) - (E, a,) of the
restriction h: (S™ x [0, 1], ao x {0}) —» (E(K), a;). Note that g(S® x {0})
=S and that g(S™ x {1}) is contained in E, for some keZ since
h(S™)nS =@. We move g if necessary so that g is transverse relative to
A. Thus A’ =g '(A) is a properly embedded surface in S™ x [0, 1] which
satisfies the following
(3.10) There is a unique pair of component Ay of A" and component C of
04y so that A'n(S™ x {0}) = A,n(S™ x {0})=I<C and 04'—CcS™
x {1} (cf. (3.3)).

Since E(K,) (i = 1, 2) are aspherical and since S® x [0, 1] is irreducible,
by the standard technique (cf. [7, Lemma 6.5]), we can modify g into a
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homotopy g¢': S™ x [0, 1] E such that ¢'|S™ x {0} = g|S® x {0}, ¢'(S™
x {1}) < E,, and that (3, 10) remains valid for A'=g'~!(4) and each
component of A’ is incompressible in S™ x [0, 1] in addition. Hence, by
Haken [5, Lemma in §8], 4, must be a disk, A’ has no closed component
and each component of A’ — A; is parallel to a surface in S™ x {1}. It
follows from this that we can further eliminate all components of A’ — A
from g'~!(4) by moving g'. Thus the resulting ¢’ satisfies the condition that
g~ Y(A) is a disk which is isotopic to I x [0, 1] in S™ x [0, 1]. Now we
have two cases. Note that either n — k> 2 or k> 1 since n > 2.

CASE 1: n—k > 2. In this case we will show that ((E,_,);, (S,— 1)1, (Sp)1)
is homeomorphic to (S,); x ([0, 1], 0, 1): This contradicts the assumption
that K; is not fibred. Firstly, using the above homotopy g, we get a
homotopy §: R’ x [0, 1] » E(K,) such that

(3.11) §|R’ x {0} = id, §(@R’ x [0, 1]) < GE(K,), T = G(R' x {1}) is a properly
embedded surface in E(K,) and T < (E); — ((S);U(Sk+1),) (see Figure 2).

We also note that

(3.12) the surface R" =R'n(E,-,); is parallel to Cl(0(E,_;); — (S,-1);) in
(E,—1):, and in particular dR” is parallel to d(S,_); in (S,—{);-

(So)s (CN (Sn-1)1 (S

/
S ™ )

R [ E(K)

|

|
T

Figure 2

(En- 1)

We now move § to be transverse relative to (S,_,);- Then X =
G 1((S,-,);) is a surface in R’ x [0, 1], and there is only one component X,
of X so that Xnd(R x [0,1]) = X,nd(R' x [0, 1]) = R" x {0}. Moreover
XoNo(R x [0, 1]) is the circle dR” x {0}. We can further modify § so that
each component of X =g '((S,_,);) is incompressible in R’ x [0, 1] by
[7, Lemma 6.5]. Hence, by Haken [5, Lemma in §8], X = X, and X, is
parallel to R” x {0} in R x[0,1]. Thus the region Z bounded by
(R" x {0})U X, is homeomorphic to R” x [0, 1]. By using the restriction §|Z,
we get a homotopy a: R” x [0,1]—> (J (E,),; so that oy, =id and «(6R"

k=zn—1
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x [0, 1JUR” x {1}) =(S,-,);- Thus by Waldhausen [13, Lemma 5.3], R" is
parallel to the surface in (S,_,); bounded by 0R”. From this together with
(3.12) we see that ((E,_;);» (S,—1)1> (S,)) is homeomorphic to (S,);
x ([0, 1], 0, 1); this contradicts the assumption that K, is not fibred.

CasE 2: k> 1. In this case, by using similar argument as in the case 1,
we can show that ((E,),, (So)z, (S1),) is homeomorphic to (S,), x ([0, 1], 0, 1).
This contradicts the assumption that K, is not fibred.

Thus (3.7) and hence (ii) are proved. The proof of Proposition 3.5 is now
completed. [
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