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0. Introduction

This paper is concerned with the oscillatory (and nonoscillatory) behavior

of solutions of second order quasilinear ordinary differential equations of the

type

(A) (r( i )^(/)) '+/( i ,y) = 0, t>to,

subject to the hypotheses:

(B)

(a) r: [ ί 0 , oo) -* (0, oo) is continuous, and l im^^ r(t) = oo

(b) φ : R -+ R is continuously differentiable, φ( — s) = —φ(s) and

φ'(s) > 0 for s € R
(c) / : [ ί 0 , oo) x R -* R is continuous, sgn f(t, y) — sgn y9 and

/(ί, y) is nondecreasing in y for each fixed t >t0 .

By a solution of (A) is meant a function y:[Ty, oo)-*/?, Ty > ί0, such that

y and r(t)φ(y') are continuously differentiable and satisfy the equation (A)

for t > Ty. Those solutions of (A) which vanish in a neighborhood of infinity

will be precluded from our consideration. A solution of (A) is said to be

oscillatory if it has infinitely many zeros tending to infinity, and nonoscillatory

otherwise.

Our objective is to establish criteria for (A) to have various types of

nonoscillatory solutions, as well as criteria for all solutions of (A) to be

oscillatory. The desired criteria will be developed in Sections 1 and 2 dealing

respectively with the cases

Γ00 at Λ f00 at
—- = oo and —-

Jr0 r(t) J ί 0 r(ί)
In Section 3, results for (A) are shown to be applicable to derive information

about the oscillatory properties of partial differential equations of generalized

mean curvature type of the form

Du Ί , Λ
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in exterior domains in RN, where x = (x 1 ? . . .,xN) e RN, Du = (D1u9...,DNu),

A = d/dxh i = 1, ..., N9 and |ΰtι| = β j = 1 \DiU\ψ2.

For closely related results the reader is referred to the papers [4, 6, 7,

8] in which equations of the form (A) with different nonlinear functions φ

are considered and oscillation theory for such equations is so designed as to

apply to the partial differential equation

d i v ( \ D u \ p ~ 2 D u ) + g(x9 u) = 0 , p > l ,

in exterior domains in RN.

1. The case | —— = oo
Γ0 0 dt

1.1. Nonoscillation theorems

We begin with a simple observation regarding the function φ in (A). By

the hypothesis (B)-(b), φ has the inverse function defined on φ{R)\ φ(R) may

or may not be identical with R. Throughout the paper the inverse function

of φ is denoted by φ. It is clear that φ( — s)=—φ(s) and φ'(s) > 0 for all

s e dom φ = φ{R\ and that for any positive α e dom φ there exist positive

constants a(oc) and b{<x) such that

(1.1) a(φ < φ(s) < b(φ f o r O < 5 < α .

First we consider the equation (A) in which r(ί) satisfies

We make use of the function

P ds
(1.3) R(t, τ) = — , t > τ > t0 R(t) = R(t, t0).

Clearly, R(t, τ) -• oo as t -• oo for any fixed τ > t0.

Three types of asymptotic behavior at infinity are possible for nonoscilla-

tory solutions of (A) as the following lemma shows.

LEMMA 1.1. One and only one of the following cases occurs for each

nonoscillatory solution y(t) of (A):

( I ) limf^Q03;(ί)/Λ(ί) = const # 0;

(II) H m H β y(t)/R(t) = 0, l i m ^ \y(t)\ = oo;

(III) Kmt^ODy(t) = const # 0.
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PROOF. Let y(t) be a nonoscillatory solution of (A). With no loss of

generality we may assume that y(t) is positive for t>t1 ( > ί o ) The func-

t i o n r(t)\l/(y'(ή) is decreasing for t > tl9 since [r(t)ψ(y'(t))J = —f{t9 y(ή) < 0

for t > t ι . W e c l a i m t h a t r(t)ψ(y'(t))> 0, t > t ί 9 so t h a t t h e finite l imit

lim^^ r(t)ψ(y'(ή) > 0 exists. In fact, if r(t2)φ(y'(t2)) = — k < 0 for some t2 > tι

and k> 0, then r(t)φ(y'(ή) < -k for t > ί2, or

(1.4) Ψ(y'(t))< - ^ r for t > t 2 .

Since k/r(t) -• 0 as ί -• oo by (B) — (a), for any fixed positive α E dom ^ there

is ί3 > ί2 such that k/r(t) < α for t > ί3. From (1.4) and (1.1) we then have

Integrating the above inequality from ί3 to ί and letting t -• go, we conclude

in view of (1.2) that y(t)-+— oo as ί-^oo, which contradicts the assumed

positivity of y(t). Therefore r(t)φ(y'(t)) > 0 for t > tί9 and l i m ^ ^ r{t)ψ(y'(ή) =

const > 0. This implies that ψ(y'(ή) -• 0 and y'(ί) -• 0 as t -+ oo because r(ί) -•

oo as ί -• oo.

Suppose that l im^^ r(t)ψ(y'(ή) = c > 0, then we have by LΉospitaΓs rule

v(t) v(ί)
lim £± = lim r(ί)y'(ί) = lim r(t)φ(y\t))^- = cφ'(O) > 0 ,

κ(t) ψ(y (t))

which implies that y(t) is of the type (I).

Suppose next that l im^^ r(t)ψ(y'{t)) = 0. Then, we have l im^^ y(t)/R(t) =

0 as above. Since y'(t) > 0 for t>t1, y(t) is an increasing function which

either grows to infinity or tends to a finite positive limit as ί->oo. In the

former case y(t) is of the type (II), and in the latter y(t) is of the type

(III). This completes the proof.

We want to obtain criteria for the existence of nonoscillatory solutions

of (A) of the types (I), (II) and (III).

THEOREM 1.2. The equation (A) has a nonoscillatory solution of the type

(I) if and only if

Γ l/(ί, -
Jίo

(1.5) I |/(t, cR(t))\ dt < oo

for some nonzero constant c.

THEOREM 1.3. The equation (A) has a nonoscillatory solution of the type

(III) if and only if
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f(1.6) Λ(f)|/(f,c)|Λ<oo
Jto

for some nonzero constant c.

PROOF OF THEOREM 1.2. (The "only i f part) Suppose that (A) has a
nonoscillatory solution y(t) of the type (I). We may suppose that y(t) > 0 for
t >tl9 since a parallel argument holds if y(t) is supposed to be negative. An
integration of (A) shows that

f
w h i c h , c o m b i n e d w i t h t h e i n e q u a l i t y y(t) > c^^Riή, t > t ί 9 c ί > 0 b e i n g a c o n -

stant, yields ftf(s9ciR(s))ds < oo.
(The " i f part) We may suppose that the constant c in (1.5) is posi-

tive. Let α be a fixed positive constant in dom φ. Let α(α) and b(μ) be the

constants appearing in (1.1). Take constants k > 1 and / > 0 such that

b(a) < ka(oc) and (k + 1)1 < c ,

and choose T > t0 so large that

and

/ / r°°
s, (k + 1)/K(s, T))ds ) < (kJ)τ

We now define the set Y a C[Γ, oo) and the mapping ^ : Y -+C[T, oo) by

Y={ye CίT, oo): /K(ί, T) < y(r) < (/c + 1)/K(ί, Γ), ί > T}

and

Ϊ , ί > Γ .

Clearly, Y is a closed convex subset of the Frechet space C[T, oo) with the
topology of uniform convergence on compact subintervals of [T, oo). It is a
matter of routine computation to show that 3F is a continuous mapping
which sends Y into a compact subset of Y. Therefore, the Schauder-Tychonoff
fixed point theorem (see e.g. [3, 5]) is applicable, and & has a fixed point
y in Y. This fixed point satisfies the integral equation
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t > T,

from which it follows that y(t) is a solution of the equation (A) on [T, oo)

and satisfies Wm^^ y(t)/R(t) = φ'(0)l/a((x) > 0. This completes the proof.

PROOF OF THEOREM 1.3. (The "only i f part) Suppose that (A) has a

positive solution y(t) of the type (III) on [ t l s oo). Then y'(t) > 0 for t > ti and

lim^n y'(t) ~ OJ a n ( l s o there exist positive constants cί9 c2 and c 3 such that

(1.7) ct < y(t) < c2 and ψ(y'(t)) < c3y'(t) for t > t1 .

We now integrate (A) over [ί, oo), ί ^ ί ^ Using (1.7) and the fact that

0 as t -> oo, we see that

J_ J " /(S, 3,(s ))ds = ψ{y>{t)) < c3y'(t)

for t>tί. Integrating the above over [ ί l 5 oo), we obtain

which clearly implies (1.6). Likewise, the existence of an eventually negative

solution of the type (III) leads to the inequality (1.6) with a suitable negative

constant c.

(The " i f part) Suppose that c > 0 in (1.6). Let a positive α e dom φ

be fixed. Choose T > t0 so large that

1 f00

< α , ί > T ,

and

< ^ .

If we define

Z={ze C[Γ, oo): cβ < z(t) <c9t>T}

and

<Sz(t) = c - \ φ[—τ\ f(σ, z(σ))dσ )ds, t > T,
Jt V(s)js J

then it can be shown via the Schauder-Tychonoff fixed point theorem that

^ has a fixed point z in Z, i.e.,
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= C-Γ φ(-^Γ f(σ9 z(σ))dσjz(ή = c - φI — /(σ, z(σ))dσ Ids , ί > T.
Jt \r(S)js J

It is easy to see that z(t) is a solution of (A) on [T, oo) satisfying limt_+o0 z(t) =
c>0.

If c < 0 in (1.6), the same procedure as above establishes the existence
of a negative solution of the type (III) of (A). The proof is complete.

Unlike the solutions of the types (I) and (III) it is not easy to characterize
the type (II) solutions of (A). Only sufficient conditions for the existence of
such solutions will be given below.

THEOREM 1.4. The equation (A) has a nonoscillatory solution of type (II) if

(1.8) Γ|/(t,cΛ(t)) |Λ<oo

for some nonzero constant c, and

(1.9) fG°Λ(ί)|/(ί,d)|dί=oo

for all nonzero constants d with cd > 0.

PROOF. We may assume that c > 0 in (1.8). Let α e dom φ and / e (0, c)
be fixed. Let T > t0 be such that

r f(s, I + lR(s, T))ds < α , t > T,

and

Γ00

/(s, / + lR(s9 T))ds < I./
Then, applying the Schauder-Tychonoff fixed point theorem, we can show
that the mapping Jf defined by

= 1+1 φLLy /(σ, W(σ))dσ\f(σ9w(σ))dσjds, t > T,

possesses a fixed element w in the set W given by

W={we C[T, oo): / < w(ί) < / + lR(t9 T), ί > T} .

From the integral equation for w

f f / l f00 \
w(ί) = / + φ -ΓT f(σ9 w(σ))dσ ds ,

Jr V(s)js J
t>T,
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it follows that

(1.10) ιA(w'W) = ^ J°° As, w{s))ds < ^ ί°° /(5, / + lR(s))ds , t > T,

and

(1.11) w(0 > / + fl(α) I - ί I A°, l)dσds, ί > T.

From (1.10) we see that l i m , ^ w(t)/R(t) = 0, and from (1.11) we conclude that

l i m , ^ w(ί) = oo. Thus w(ί) is a positive type (II) solution of (A). This com-

pletes the proof.

1.2. Oscillation theorems

We are now interested in the situation in which all solutions of the

equation (A) are oscillatory. In view of the Atkinson-Belohorec oscillation

theory [1, 2] one may expect that a characterization for such a situation for

(A) can be obtained under additional conditions on the nonlinear function

Auy)

DEFINITION 1.5. (i) /(ί, y) is said to be strongly superlίnear if there is a

constant γ> 1 such that \y\~γ\f(t, y)\ is nondecreasing in \y\ for each fixed

t >t0.
(ii) /(ί, y) is said to be strongly sublinear if there is a constant <5, 0 <

δ < 1, such that |y|~5 |/(i, y)\ is nonincreasing in \y\ for each fixed t > t0.

THEOREM 1.6. Let A^y) t>e strongly superlinear. All solutions of (A) are

oscillatory if and only if

f(1.12) R(t)\f(t,c)\dt = oo

for every nonzero constant c.

THEOREM 1.7. Let f(t,y) be strongly sublinear. All solutions of (A) are

oscillatory if and only if

(1.13) Γ
for every nonzero constant c.

PROOF OF THEOREM 1.6. The "only if part" of Theorem 1.6 readily follows

from Theorem 1.3.
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To prove the "if" part, suppose that (A) has a nonoscillatory solution

y(t) on [tl9 oo), t1 > ί0. We may assume that y{t) > 0 for t > ί1# As was

seen in the proof of Lemma 1.1, y'(t) > 0 for t > t1 and y'(ί)->0 as ί-» oo,

and so there are two positive constants cί9 c2 such that

(1.14) )>(*)> î and Ψ(y'(t)) < c2y'(t) for t > ίx .

A n i n t e g r a t i o n o f ( A ) o v e r [ ί , o o ) , t > t ί 9 g i v e s

j >r(t)φ(y'(ή) > I f ( s , y(s))ds , t > t , ,

which combined with the second inequality in (1.14) implies

(1.15) c2y'(t) > JL Γ /( S ) 3,( s ) ) d s , ί > t l .

On the other hand, from the strong superlinearity of f(t, y) and the first

inequality in (1.14) it follows that

(1-16) f(t, y(t)) = ίy(t)Trf(t, y(t))ίy(t)T

Using (1.16) in (1.15) and noting that y(i) is increasing, we have

/(t)>C-h \ f&cjlytfyds

Dividing the above inequality by [y(ί)P and integrating from tγ to oo, we
obtain

y-y

which contradicts (1.12). This completes the proof of the "if" part of Theorem
1.6.

PROOF OF THEOREM 1.7. We need only to prove the "if" part, since the

"only if" part follows from Theorem 1.2. Let y(t) be a nonoscillatory solu-

tion of (A) which may be assumed to be positive on [tί9 oo) without loss of

generality. As in the proof of Theorem 1.6 the inequality (1.15) holds for
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some constant c2 > 0. Let t2 > tx be fixed and integrate (1.15) over [ ί l 9 ί],

t > t2. We then see that

(1-17) Φ(t)>R(t)\ f(s,y(s))ds, t>t2

for some constant cf > 0. Since there is a constant ct > 0 such that y(t) <

for t>t2, the strong sublinearity of f(t,y) implies that

(1.18) f(t,y(t)) = ly(t)rδf(t>:

> cϊδf(t, c1R(t))l ^ - 1 , t > t 2 .

Combining (1.17) with (1.18), we have

from which, denoting the right-hand side by z(ί), we find

An integration of this inequality shows that

/ ( ί , C l Λ ( ί ) ) Λ < o o ,

which contradicts (1.13). This completes the proof.

EXAMPLE 1.8. Consider the equation

(1.19) (ί sinh / ) ' + q(t)\y\λ sgn y = 0 , ί > 1 ,

where λ > 0 and g: [1, oo) -> /?+ is continuous. The function R(t) defined by

(1.3) is taken to be R(t) = log ί. Applying the above theorems to (1.19) we

have the following statements.

(i) There exists a nonoscillatory solution y(t) of (1.19) such that

ί = const Φ 0 if and only if

(1.20) βWOog tfdt < oo .

(ii) There exists a nonoscillatory solution y(t) of (1.19) such that

lim^^ y(t) = const / 0 if and only if

(1.21) q(t) log tdt < oo .Γ
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(iii) There exists a nonoscillatory solution y(t) of (1.19) such that

Iimf_>00iy(ί)/log t = 0 and lim^^ y(t) = oo (or —oo) if (1.20) holds and

(1.22) q(t) log tdt = oo .
J i

Note that (1.20) and (1.22) are consistent only if 0 < λ < 1.

(iv) All solutions of (1.19) with λ > 1 are oscillatory if and only if (1.22)

holds.

(v) All solutions of (1.19) with 0 < λ < 1 are oscillatory if and only if

f 0 0

(1.23) q(ή(\ogt)λdt=oo.

Γ0 0 dt
2. The case —— < oo

Jr. Λt)
2.1. Nonoscillation theorems

We now turn to the case where the function r(ί) in (A) satisfies

(2.1)

We define the function p(t) by

(2.2) p(ί)= I -==-, t>t0._ Γ00 ds

"Jr Φ ) '
Throughout this section we make the additional assumption that the inverse

function φ of φ in (A) satisfies inf {φ(s)/s: s e dom φ9 s > 0} > 0, that is, there

is a constant k > 0 such that

(2.3) ^(s) > ks for s e dom φ, s > 0 .

LEMMA 2.1. // y(ί) is a positive solution of (A) such that y'(t) is eventually

negative, then

(2.4) y(t)>-kr(t)φ(y'(t))p(t)

for all sufficiently large t, where k is a constant in (2.2).

PROOF. Suppose that y(t) > 0 and y\t) < 0 for t > tγ. Since r(t)φ(y'(ή)

is decreasing, r(t)φ{y'(t)) > r(s)φ(y'(s)) for s > ί, i.e.,
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We operate the function φ on both sides of the above inequality, obtaining

in view of (2.3)

„ x kr{t)φ{-y'{t))
-y'(s) > κ ' ψ ) / w ; , s > t > t x .

r(s)

An integration of this inequality yields

y(t)>kr(t)ψ(-y'(t))p(t)9 t>t,.

The asymptotic behavior of possible nonoscillatory solutions of (A) is

described in the following lemma.

LEMMA 2.2. // y(t) is a nonoscillatory solution of (A), then there exist

positive constants cί9 c2 and tλ > t0 such that

(2.5) clP(t)<\y{t)\<c2 for t>t,.

PROOF. Let y(t) be a nonoscillatory solution of (A). Assume that y(t)

is eventually positive. Then (A) implies that r(t)ψ(y'(ή) is eventually decreasing,

so that y'(t) is eventually of constant sign. If y'(t) > 0 for t > tl9 then from

the inequality r(t)ψ(y'(ή) < ritJψWitJ) = ku t > tu we have φ(y'(ή) < kjr(t)9

t>tί. Noting that kί/r(t)-+O as t -• oo and using (1.1), we see that there

are constants k2 > 0 and t2 > t1 such that y'{t) < k2/r(t) for t > ί2, which

implies y(t) < k2p(t2) -f y(t2) for t > t2. This proves the second inequality in

(2.5). If y'(t) < 0 for t>tί9 then noting that (2.4) holds for t > t2, t2 > tί

being sufficiently large, and r(t)φ(y'(ή) < r(t2)φ(y'(t2)), t > t2, we see that

y(t) > -kr(t2)φ(yf(t2))p{t% t>t2, proving the first inequality in (2.5). A

parallel argument holds if y(t) is an eventually negative solution of (A).

Lemma 2.2 shows that the following three types of asymptotic behavior

at infinity are possible for nonoscillatory solutions y(t) of (A) subject to (2.1)

and (2.3):

( I ) l i m ^ y(t) = const φ 0;

(II) l i m , ^ y(t) = 0, lim s u p , ^ \y(t)\/p(t) = oo;

(III) 0 < l i m i n g \y(t)\/p(t)9 limsup^^ \y(t)\/p(t) < oo.

We begin by characterizing the solutions of the type (III) of (A).

THEOREM 2.3. The equation (A) has a nonoscillatory solution of type (III)

if and only if

Γ(2.6) I |/(ί,cp(ί))|Λ<oo

for some nonzero constant c.

PROOF. (The "only if" part) Let >>(ί) be a nonoscillatory solution of

type (III) of (A). We may assume that y(t) is eventually positive, in which
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case y'(t) is eventually negative. So, there is tx > t0 such that y(t) > 0 and

y'{t) < 0 for t > ti. Integrating (A) from tγ to t and using (2.4), we have

(2.7) W)~ki f{s'y{s))ds'

Since c1p(t) < y(t) < c2p(t), t>tί9 for some positive constants cx and c2, it

follows from (2.7) that

s,cxp{s))ds<c2.

(The " i f part) We may suppose that the constant c in (2.6) is posi-

tive. Let α G dom φ9 α > 0, be fixed and let k > 1 be such that b(oc) < ka(oc),

where a(cή and b(cή are given by (1.1). Choose / > 0 and T > t0 so that

(k + 1)/ < c,

: α , ί > T ,

4-,+ P°/(s>
Φ) JT

6(α) - — + /(s, (it + l)lρ(s))ds )< (k + 1)/,
\β(α) J r /

and consider the set y and the mapping 3F defined by

Y = {ye C[Γ, oo): lp(t) < y(t) < (k + l)/p(t), t > T}

and

5, t>T.

It is not difficult to verify that 3F is a continuous mapping which sends 7

into a compact subset of Y Therefore, the Schauder-Tychonoff fixed point

theorem ensures the existence of an element y e Y such that y = 3Fy9 which

gives rise to a positive solution of type (III) of (A). This completes the proof.

The next theorem concerns the solutions of the type (I) of (A).

THEOREM 2.4. The equation (A) has a nonoscίllatory solution of the type

(I) if and only if there exist constants c φ 0 and tί > t0 such that

(2.8) — I \f(s, c)\dse d o m φ , t>tx

and
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h, < 00 .

PROOF. (The "only if" part) Let y{t) be a type (I) solution of (A) which

is positive on [ ί l 9 oo). There is a constant c > 0 such that y(t) > c for ί > tx.

Suppose first that y'(t) > 0 for t > tx. An integration of (A) then shows

that

f(s, c)ds < /(s, y(s))ds < r(t1)ι/ί(3;/(t1)) < oo ,

from which both (2.8) and (2.9) follow immediately.

Next suppose that y'(t) < 0 for t > tλ. We then have

If' If'
(2.10) φ{ — yr(t)) > —- /(s, y(s))ds > —— f{s, c)ds , t > tγ ,

r(t)Jti r(t)Jtι

which clearly implies [ r ( ί ) ] " 1 f f l /(s, c)ds e ψ(R+) c= dom ^ for t > tί. Integrat-

ing the inequality

CL [ f(s,
which follows from (2.10), we conclude that

< 00 .

(The " i f part) We suppose that c> 0 in (2.8) and (2.9). Let T > tγ

be large enough so that

f(s, c)ds e d o m φ, t>T,

a n d

Φ\ — /(σ> c)dσ) dt < - .
Jr VΦ)JT / 2

The desired positive type (I) solution of (A) will be obtained as a fixed point

of the mapping

2 Jf \Φ)Jr /

in the set Z = {z e C[Γ, oo): c/2 < z(ί) < c, ί > T}. The verification is left to

the reader. This finishes the proof.
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Sufficient conditions for the existence of a type (II) solution are given

below.

THEOREM 2.5. Let L* = sup (dom φ). Suppose that there are constants

Lo e (0, L*), c Φ 0 and tι>tό such that

- Γ(2.11) ^ I \f{s,c)\ds<ZL09 t>tl9

and

(2.12) — |/(s, c)\dsdt < oo .

// furthermore

(2.13) fG°|/(ί,dp(ί))|Λ=oo
J f i

for every d φ 0 vviί/i cd > 0, ί/zen ί/ze equation (A) Λαs α nonoscillatory solution

of the type (II).

PROOF. Suppose that c> 0 in (2.11) and (2.12). Take an Le{LQ,L*)

and let / > 0 be fixed. Choosing T > tx so that

lp(T)<c,

where a{L) and b(L) are constants appearing in (1.1) with α = L, we define

W={we C[T, oo): lp(t) < y(t) <c,t>T}

and

Γ.

Let w e W be a fixed point of ^ guaranteed by the Schauder-Tychonoff

theorem. Then, w = w(ί) is a positive solution of (A) on [T, oo). It is clear

that w(ί) -• 0 as t -» oo. That w(t)/p(t) -> 0 as ί -• oo follows from LΉospitaΓs

rule and (2.13) as follows:
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!z }z
> lim / + a{L) \ /(σ, lp(σ))dσ ) = oo .

f->oo \

This completes the proof.

2.2. Oscillation theorems

The purpose of this subsection is to present criteria for the oscillation of

all solutions of the equation (A) which is either strongly superlinear or strongly

sublinear in the sense of Definition 1.5. The superlinear case is easy to

investigate.

THEOREM 2.6. Let f(t, y) be strongly superlinear. All solutions of (A) are

oscillatory if and only if

f(2.14) |/(r,cp(t))|dt=oo

for every nonzero constant c.

PROOF. The "only i f part follows from Theorem 2.3. Suppose that

(2.14) holds and that (A) has a nonoscillatory solution y(t). It suffices to

consider the cases: {y(ή > 0, y'(t) > 0, t > tt} and {y(ή > 0, y'(t) < 0, t > ί j .

In the first case, it can be shown that J^/(ί, cx)dt < oo for some constant

cλ > 0, which implies Jί°/(ί, c1p(t))dt < oo, a contradiction to (2.14). In the

second case, we note that (2.7) holds:

(2.7) ^ > k I / ( 5 , y ( s ) ) d s , t > t l .

By L e m m a 2.2 t h e r e is a c o n s t a n t c2 > 0 s u c h t h a t y(t)/p(ή > c2 for t > tί9

a n d s o

f(t, y(ή) > c?f(u c2p(t))

by the strong superlinearity of /(ί, y). Combining this with (2.7), we have

3>W . , -

Pit) ~ z

If we denote by z(ί) the right-hand side of the above inequality, we obtain

zf(t)>kc^f(t,c2p(t))lz(t)T9 t>t,,
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an integration of which yields for any ί2 > tί

Γ 0

J f 2

f(s, c2p(s))ds < L l 2j;J < oo .
ϊ

This again contradicts (2.14), and the proof of the " i f part is complete.

For the sublinear case of (A) only a sufficient condition for the oscillation

of all solutions will be presented.

THEOREM 2.7. Let f(t, y) be strongly sublinear. All solutions of (A) are

oscillatory if

(2.15) — |/(s,c)|dsdί = oo

for every nonzero constant c.

REMARK 2.8. The condition (2.15) is equivalent to

Γ(2.16) p(t)\f(t,c)\dt = co.

PROOF OF THEOREM 2.7. Let y(t) be a positive solution of (A) on [tί9 oo).

If / ( ί ) > 0 for t > tl9 then there is a constant cx > 0 such that J^/(s, c^ds <

oo, which contradicts (2.15). If yf{t) < 0 for t > tl9 then we have (2.10), from

which after operating φ, we see that

(2.17) - y > i t ) > - - f ( s , y ( s ) ) d s 9 t > t x .
r\ι) J T

Noting that y(ή < c 2, t > tl9 for some constant c2 > 0, and using the strong

sublinearity of /(ί, y\ we obtain from (2.17)

ly(s)rδf(s, y(s))ly(s)Yds

t > t l .

Divide the above by IXί)]"5 and integrate from t1 to oo. We then have

l-δ

— f{s9 c2)dsdt < ^ j λ_Δ < oo ,

which contradicts (2.15). This completes the proof.

EXAMPLE 2.9. Consider the equation
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(2.18) |V log ( / + ^ 1 + ( / ) 2 ) ] ' + q(t)\y\λ sgn y = 0 , t > 0 ,

where 2 > 0 is a constant and g(ί) is a positive continuous function on

R+. Since the inverse function of ψ(s) = log (s + y/l + s2) is ^(s) = sinh 5,

which clearly satisfies (2.3), all the theorems of this section can be applied

to this equation. Noting that the function p(t) defined by (2.2) is ρ(t) = e~\

we have the following statements.

(i) The equation (2.18) possesses a nonoscillatory solution y(t) satisfying

0 < liminf e f |y(ί)l, limsup e f |y(t)| < oo
r->αo t-*co

if and only if

(2.19) e-λtq(t)dt < oo .
Jo

(ii) Suppose that

(2.20) q(s)ds = O(e') as t - oo
Jo

and

(2.21) \ e~l \ q(s)dsdt< oo .

Then the equation (2.18) possesses a nonoscillatory solution y(t) such that

lim^^ y(t) = const φ 0. Note that under (2.20) the condition (2.21) is equiva-

lent to

(2.22) e-'q(t)dt < oo .
Jo

(iii) Suppose that (2.20) and (2.22) hold. If in addition

(2.23) Γ e-λtq(t)dt = oo ,

then the equation (2.18) possesses a nonoscillatory solution y(t) such that

Umt^aoy(t) = 0 and l imsup^^e 'Mί) ! = oo. Note that (2.22) and (2.23) are

consistent only if 0 < λ < 1.

(iv) All solutions of (2.18) with λ> 1 are oscillatory if and only if (2.23)

holds.

(v) All solutions of (2.18) with 0 < λ < 1 are oscillatory if

ί e ιq(t)dt = oo .
o



662 KUSANO Takasi, Akio OGATA and Hiroyuki USAMI

3. Application to partial differential equations

3.1. The oscillation theory for (A) developed in the preceding sections

will now be applied to derive information about the oscillatory behavior of

solutions of quasilinear elliptic equations of the type

(3-D d

subject to the hypotheses:

(3.2) (a) m is a constant with 0 < m < 1/2

(b) F(ί, ύ) is continuous on [a, oo) x /?, sgn F(t, u) = sgn u and F(t, u)

is nondecreasing in u for each fixed t > a .

The importance of such equations has been widely recognized in connection

with the study of capillarity and surfaces with prescribed mean curvature; see

e.g., [6, 7, 8].

Our consideration will be restricted to radial solutions of (3.1) defined

in exterior domains of the form ΩR = {x e RN: \x\ > R}, R> a. Basic to the

subsequent discussion is the observation that the equation (3.1) for radial

functions u = y(\x\) in ΩR reduces to the ordinary differential equation

( 3 3 )

for t > R, where a prime denotes differentiation with respect to t. This equa-

tion is a special case of (A) with

(3.4) r(ί) = ί"-1, φ(s) = S , f(u y) = tN~ιF{u y),
(•*• • s )

for which the conditions in (B) are clearly satisfied. Let φ denote the inverse

function of ψ appearing in (3.4). Then dom φ = R i f θ < m < 1/2, dom φ =

(— 1, 1) if m = 1/2, and we see that inf {φ(s)/s: s e dom φ, s > 0} = 1, implying

that the condition (2.3) is satisfied for (3.3). We also see that the function r(t)

in (3.4) satisfies (1.2) or (2.1) according as N = 2 or N > 3, and that the

functions R(t) and p(t) defined by (1.3) and (2.2) can be taken to be

R(t) = log t (N = 2) and p(ί) = ί2"" (N > 3).

The above observation enables us to apply the theorems of Sections 1 and

2 to the two-dimensional and higher-dimensional cases of (3.3), respectively.

3.2. The two-dimensional case :N =2. In this subsection we give a list

of results for the two-dimensional equation (3.1) which follows from Theorems

1.2-1.4, 1.6 and 1.7 applied to (3.3) with N = 2.
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(i) The equation (3.1) (with N = 2) has a nonoscillatory radial solution

u(x) which is defined in an exterior domain ΩR, R> a, and satisfies

(3.5) lim Λ , = const Φ 0

w-oo log |x|

if and only if there is a nonzero constant c such that

(3.6) t\F(t, c log t)\dt< o o .

(ii) The equation (3.1) (with N = 2) has a nonoscillatory radial solution

u(x) which is defined in ΩR, R> a, and satisfies

(3.7) lim u(x) = const φ 0

if and only if there is a nonzero constant c such that

Γ 0 0

(3.8) t log t-\F(t9c)\dt< oo .

(iii) The equation (3.1) (with N = 2) has a nonoscillatory radial solution

u(x) which is defined in ΩR, R> a, and satisfies

(3.9) lim ^ ^ = 0, lim |tφc)| = oo
W ^ o o lOg |X| |χ|.-Q0

if (3.6) holds for some nonzero constant c and

Γ 0 0

(3.10) flogt | F M ) | Λ = oo

for every nonzero constant d with cd > 0.

(iv) Let the function F(ί, y) be strongly superlinear. All radial solutions

of (3.1) (N = 2) are oscillatory if and only if (3.10) is satisfied for every nonzero

constant d.

(v) Let the function F(ί, y) be strongly sublinear. All radial solutions

of (3.1) (N = 2) are oscillatory if and only if

Γ(3.11) r|F(ί,έΠogί)|Λ=oo

for every nonzero constant d.

3.3. The higher-dimensional case: N > 3. This subsection is concerned

with radial solutions of the higher dimensional equation (3.1). The results

following from Theorems 2.3-2.7 are listed below.
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(i) The equation (3.1) (N > 3) has a nonoscillatory radial solution u(x)

defined in ΩR satisfying

(3.12) k, \x\2~N < \u(x)\ < k2 \x\2~N , \x\>R

for some positive constants kl9 k2 and R if and only if

(3.13) Γ ί N - 1 | F ( ί , c ί 2 " Λ r ) | Λ < oo

for some nonzero constant c.

(ii) The equation (3.1) (N > 3) has a nonoscillatory radial solution u(x)

which is defined in ΩR and satisfies

(3.14) lim u{x) = const φ 0
|x|-αo

if and only if there exist constants c φ 0 and tx> a such that

(3.15) ί 1 " " sN-1\F{s,c)\dsedomφ, t>tx

J f i

and

Γ00 / ff \
(3.16) φ ί1"^ s^lFfacyds )dt< oo .

(iii) Let L* = sup (dom φ). Suppose that there are constants L o e (0, L*),

c 7̂  0 and t1 > a such that

(3.17) ί 1 - i V I sN~1\F(s,c)\ds<L0, t>tι

a n d

(3.18) I ί1"^ I sN~λ\F(s, c)\dsdt < oo .

If in addition

M.>-
(3.19) \ tN~1\F(s,dt2-N)\dt = 0 0

for every nonzero constant d with cd > 0, then (3.1) (N > 3) has a nonoscilla-

tory radial solution u(x) such that

(3.20) lim u(x) = 0 , lim |X|"- 2 |M(:X)| = oo .
|x|-*oo |x|-»oo

(iv) Let F(t9 u) be strongly superlinear. All radial solutions of (3.1)

(N > 3) are oscillatory if and only if (3.19) holds for every nonzero constant d.
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(v) Let F(t9 u) be strongly sublinear. All radial solutions of (3.1) (N > 3)

are oscillatory if

Γ t1-" | ίsΛ Γ- 1 |F(s,
J a J a

(3.21) ί1 N \ sN 1\F(s,d)\dsdt = oo

J-
for every nonzero constant d.

REMARK 3.1. Assume that there is a constant c Φ 0 such that

(3.22) Γ t |F(r, c)| A < o o .
Ja

Then, the conditions (3.15) and (3.17) are satisfied, since for any t1 > a

ti-N s

N~1\F(s9c)\ds< \F(s, c)\ds< \F(s,c)\ds, t > t l 9

and the last integral tends to zero as ίx -» oo because of (3.22). Note that

both (3.16) and (3.18) are equivalent to (3.22), and that (3.21) is equivalent to

f
J a

(3.23) ί |F(r ,d) |Λ=oo.
J a

EXAMPLE 3.2. Oscillation and nonoscillation criteria will be given for the

particular equation of mean curvature type

(3-24) d

where λ is a positive constant and g(ί) is a positive continuous function on

[α, oo).

The desired criteria are selected from the following list:

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

i;
Γ

Γ

ί(log t)λq(t)dt < oo ,

ί(log t)λq(t)dt = oo ,

ί log ί q(t)dt < oo ,

ί log ί q(t)dt = oo ,

Γ 0 0

tq(t)dt < oo ,

N = 2;

N = 2;

N = 2;

N - 2 ;
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(3.30)

(3.31)

(3.32)

JΓ
Γ° tq{t)dt =

q\t)(tt <!

00 ,

00 ,

00 ,

N > 3 ;

N > 3 ;

Λ Γ > 3 .

From the results of the above subsections we have the following state-

ments regarding radial solutions of (3.24) in exterior domains.

(i) (3.25) is a necessary and sufficient condition for (3.24) to have a non-

oscillatory radial solution u(x) satisfying (3.5).

(ii) (3.27) is a necessary and sufficient condition for (3.24) to have a non-

oscillatory radial solution u(x) satisfying (3.7).

(iii) (3.25) and (3.28) are sufficient conditions for the sublinear equation

(3.24) (0 < λ < 1) to have a nonoscillatory radial solution u(x) satisfying (3.9).

(iv) (3.28) is a necessary and sufficient condition for all radial solutions

of the superlinear equation (3.24) (λ > 1) to be oscillatory.

(v) (3.26) is a necessary and sufficient condition for all radial solutions

of the sublinear equation (3.24) (0 < λ < 1) to be oscillatory.

(vi) (3.31) is a necessary and sufficient condition for (3.24) to have a non-

oscillatory radial solution u(x) satisfying (3.12) for some positive constants ku

k2 and R.

(vii) (3.29) is a sufficient condition for (3.24) to have a nonoscillatory

radial solution u(x) satisfying (3.14).

(viii) (3.29) and (3.32) are sufficient conditions for the sublinear equation

(3.24) (0 < λ < 1) to have a nonoscillatory radial solution u(x) satisfying (3.21).

(ix) (3.32) is a necessary and sufficient condition for all radial solutions

of the superlinear equation (3.24) (λ > 1) to be oscillatory.

(x) (3.30) is a necessary and sufficient condition for all radial solutions

of the sublinear equation (3.24) (0 < λ < 1) to be oscillatory.
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