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0. Introduction

Alekseev, Faddeev and Shatashvili showed in [1] that any irreducible
unitary representation of compact groups can be obtained by path integrals.
They computed characters of the representations. We showed in [3] that path
integrals give unitary operators of the representation which is constructed by
Kirillov-Kostant theory for the Heisenberg group, the affine transformation
group on the real line, SL(2,R) (^Sί/(1, 1)) and SU(2). For the affine trans-
formation group, we took a real polarization, for SU(2) a complex polarization
(but computed without Hamiltonians), and for the Heisenberg group and
SL(2, R) both a real polarization and a complex polarization. (For a complex
polarization of SL(2,R), we realized it as SU(1,1) and computed without
Hamiltonians.)

In [4] we found that, in order to compute the path integrals with non-
trivial Hamiltonians for Sl/(1, 1) and SU(2) to obtain unitary operators real-
ized by Borel-Weil theory, we have to regularize the Hamiltonian functions,
and in [5] we extended the results to the case that the maximal compact
subgroup K of a connected semisimple Lie group G has equal rank to the
complex rank of G.

In this paper we work with a linear connected noncompact semisimple
Lie group G and consider real polarizations.

Let g be the Lie algebra of G. We fix a Cartan involution θ of g and
let the corresponding Cartan decomposition [6] be

Let α be a maximal abelian subalgebra of p and m the centralizer of α in
ϊ. If we fix a notion of positivity for α-roots, we can let n be the nilpotent
subalgebra given as the sum of the root spaces for the positive roots.

In this paper, we explicitly compute the path integrals with Hamiltonians
for Y e m © α or n, to give unitary operators of the representation which is
constructed by Kirillov-Kostant theory. When we compute the path integral
with the Hamiltonian for 7 e n, we make the following assumption.
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Put

#°n = n and W+1n = [n, «*n] .

Then

Assumption Tn = {0} if i > 3 .

Lie groups which satisfy the above assumption include SL(n, k) (n = 2,

3, 4, k = /?, C) and linear connected semisimple Lie groups of real rank one

etc..

For Y e n = 0n, we have not yet succeeded in computing the path integral

explicitly, even under the above assumption.

We also show that one can obtain the formal intertwining operator

between the representations which are constructed by Kirillov-Kostant theory

with two polarizations, by the path integral. This is a generalization of the

results in [3] to our G, which we showed for the Heisenberg group and

SL(2,R).

Acknowledgement. I am very grateful to Professor K. Okamoto for valu-

able advice and warm encouragement. I am also grateful to Professor R.

Sawae for comments from the physical point of view, and to K. Ogura for

checking calculation.

1 Preliminaries

Let G be a linear connected noncompact semisimple Lie group, g its Lie

algebra. We fix a Cartan involution θ of g and denote the Cartan involution

of G corresponding to that of g, also by θ. Let

be the corresponding Cartan decomposition [6], B the Killing form on g.

Since B is nondegenerate, the dual space g* of g is identified with g by

g, (1.1)

where

B(XV9 X) = v(X) for all X e g .

We also use <v, X} for v(X). Note that B is negative definite on ί and is

positive definite on p. Moreover f and p are mutually orthogonal with respect

to B.

Let Q c p be a maximal abelian subspace, Σ the corresponding set of

nonzero restricted roots, and m the centralizer Zx{a) of α in ϊ. Fix a Weyl
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chamber in α and let Σ+ denote the corresponding set of positive restricted

roots. Then we have the decomposition

9 = 9o θ X gα ,
<xe Σ

where

g0 = α θ m and gα = {X e g; [if, AT] = OL{H)X for He a).

This decomposition has the following properties:

(i) 0gα<=g-α> (1.2)

(ii) β(gα, a,) = 0 unless α + β = 0. (1.3)

Define

π =

where mα = dim gα. Note that n is a nilpotent Lie algebra.

Let K, A9 N be the analytic subgroups corresponding to ϊ, α, n, respec-

tively, and M the centralizer Zκ(α) of α in K. Then G = KAN, and NMAN

is an open subset of G whose complement is of lower dimension and has

Haar measure 0, where N = ΘN.

For any element v e α* we denote by Hv the element of α such that

B(H, Hv) = v(H) for all H e a . (1.4)

We extend any linear form v on α to a linear form on g by defining v to

vanish on the orthogonal complement of α with respect to the Killing form.

Let λ be an element of α* which corresponds to a regular element of α

by (1.4). We denote the coadjoint action of G on g* by Ad*. Then it is

easy to see that the isotropy subgroup

Gλ={geG; Ad* (g)λ = λ}

at λ equals MA, and its Lie algebra gA equals m 0 α. As a real polarization

we take s_ = m 0 α ® n, where n = θn. Correspondingly, we put 5_ = MAN.

Then the Lie algebra homomorphism

lifts to the unitary character of 5_:
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5_ -• (7(1), m exp

We define a one-dimensional representation ξλ of 5_ by

ξλ: S_ -• C x ,

Let Lλ be the C°°-line bundle over G/S_ associated to the one-dimensional

representation ξλ of S_. Then we can identify the space of all C°°-sections

of Lλ with

C™(Lλ) = {fe C°(G); f(xb) = ^WYW, x e G, b e S.}.

For any / e C™{Lλ) we put

•ί.
where rf/c is a Haar measure on X. Then || || defines a norm on C™{Lλ). We

define a Hubert space KΛ to be the completion of C 0 0 ^ ) with respect to the

norm. For g e G, f e C°°(Lλ) and x e G, we define

Then one can show that πλ is an isometry of C 0 0 ^ ) into itself, hence πλ

can be uniquely extended to a unitary operator on Vλ9 which we also denote

by πλ.

For each oce Σ+ we can find nonzero root vectors £ α ι eg α (ί = 1,..., mα)

such that

using (1.2), (1.3) and the fact that — B( ,θ) gives a positive definite inner

product on g, where <50 is Kronecker's delta. We put E_ai= — Θ E Λ Λ . We

introduce differentiable coordinates on n and ft as follows:

I T - > n , x = (x β i i ) α e rv=i f . . . .m. | -> Σ Σ *<*,,-£«,;
αeΓ + i = l

R ^ ^ ή , y = (^α,i)«e^,i=l,...,ma^ Σ Σ^α,i£-«,i'
α e l + » = 1

where m = dim n, and put

Σ Σ \ Λ « e i V (! 5)
m α _

X Σ y*,iE-*J G N - ( L 6 )

We define a map L of C™{Lλ) into C°°(ΛΓ) by
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Lf(n)=f(n) f o r / e C°°(Lλ). (1.7)

The Haar measures, when suitably normalized, satisfy

I f(k)dk= I f(κ(n))e2pHin)dn for / e C^LJ ,
JK JN

where, κ( ) and H() denote K-component and logarithm of ^-component in

the decomposition KAN, respectively.

Then one can show that

where the norm of the right hand side is with respect to the Haar measure

dn on N.

Let JfA be the completion of the image of C 0 0 ^ ) by L. Then one can

show that L is extended to an isometry of Vλ onto J^λ. We define a represen-

tation (Uλ, J^λ) of G such that the following diagram commutes for any g e G:

nλ{g) Uλ(g)

For g e NMAN, we write as

g = n(g)m(g)a(g)n(g). (1.8)

Then

Uλ(g)F(x) = ^ιλ+»M-ι*>*F(n(g-ιnx)) (1.9)

for F e L(C™(Lλ)).

2 Quantization

We retain the notation of §1. Moreover, for x = (xα,, )αer+,i=i,...,mβ>
 w e

put

= Σ Σ
<ze Σ+ » = 1

In this section we compute the differential representation dUλ of Uλ and

quantize the Hamiltonian functions for Y e m © α or n.

We decompose Ad(e~x)Y as

Ad (ίΓ*) y = X+ + JT0 + H + X_ (2.2)
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with X+ en, I 0 E t n , H e a and X. e n.

LEMMA 2.1. For Y e g and F e CC°°(JV)> dί/A(y) is gfi

dUλ(Y)F(x) = - ( / = Ί < λ , Ad ( n j ^ y ) + <p, Ad (n J C)"1y»F(x)

- Σ Σ CaΛ.ιF(χ)>

where x = (xα>ι ), nx = exp X, dΛti = d/dxΛti and

a d * „

(2.3)

c*,t =
1-e -adΛ"

PROOF. For F e CC°°(ΛΓ), let / be the element of C*(Lλ) which corresponds

to F under the map L of (1.7).

Then we have

dUλ(Y)F(x) = -

Jt

d

Jt

d

f{exp(-tY)expX)
f = 0

/(exp X exp ( - AT) exp ( - ί Y) exp X)
r=0

/(exp X exp ( - ί Ad (<Γ*)7))
( = 0

f = 0

ί = 0

e χ p (-

P)(H) - Σ

Here we used the Baker-Campbell-Hausdorff (BCH) formula (see, e.g. [12]):

aάX
exp X exp ( — tX+) = exp I X — t

Since we extend a linear form v on α to one on g so that it vanishes on

the orthogonal complement of α with respect to the Killing form, we have

p)(H) = -W-

This completes the proof.

Define a 1-form φ by
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= <Ad*

where d is the exterior derivative on G and n = m ^ α ^ ή ^ H m ^ α t g ) ) " 1 . Since

the second term is an exact 1-form, we choose

αs_ = <Ad* (n)λ, n{g)-H

and parametrize n{g) as n(α) = expX, where X is of the form (2.1). Let

P*,i = α._(3βιi)

i.e. p α ι is the coefficient of dx α i in α5 :α 5 = Xa,i/?a,idxa,i.

LEMMA 2.2. For each oceΣ+ and i, p a i is given by

PROOF. Note that dX = ΣaidxaiEaii. Then we have

n(g)'ιdn(g) = exp(-X)d exp X

-dX
ad AT

Since B( , •) is ad-invariant, now the statement follows. •

Recall from [3] that, by definition, the Hamiltonian function is given by

H(g :Y) = (Ad* (g)λ,Yy.

THEOREM 2.3. For Y e g, we have

H(g:Y) = (λ9 Ad (nxΓ
1Y}+ £ £ c β i Λ t i , (2.4)

where gf G NMAN, n(g) = nx = exp Λ', c α ί and p β i i as above.

Before proving the theorem, we prepare a lemma from linear algebra.

LEMMA 2.4. Let V be a vector space over R with a nondegenerate bilinear

form (*,-)• V there exists a basis {u l 5 . . . , u s, vί9..., vs, wί9..., wt} of V such

that
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{ui9 Uj) = 0 , (ui9 Wj) = 0 ,

(υi9 Vj) = 0 , (vh Wj) = 0 ,

(uh Vj) = δij, (Wj, Wj) = δij .

77ιen we have

s t

(χ> y)=Σ K χ ' ui)(υi> y) + ( χ ' ϋi)(Mι > ^)) + Σ (x» WJ)(WJ> y)

for any x, y e V.

PROOF. This is an easy calculation. •

We apply the lemma taking {£„,,-}, {£-«,/} and {Ht} as {MJ, {I J and

{wf}, respectively, where {//,} is an orthonormal basis of m © α with respect

to the Killing form such that the first n( = dim α) vectors are the orthonormal

bases of α.

PROOF OF THEOREM. By the choice of Eah X+ can be written as

Then we have

ad AT
= B

1 ^

= Σ B

= ΣB(Ad(nx)-1Y,E.βJ)
βj

Therefore, using Lemma 2.4, we obtain

Σc*,iP*,i= Σ BiAdinJ^YtE-βJl

^ ^ A d ( n ) H , , £

= Σ B(Ad (B χr y, ̂ ^ ( j ^ ^ r f i ^ ^ ^ Ad (SJif

Since B is ad-invariant,
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β j ' A d { n ) H λ ) •

Thus, again by Lemma 2.4,

Σ Ci.ίP«.ί = Σ {β(Ad ί"*)"1^ E.βJ)B(EβJ, Ad (n)Hλ)

+ B(Ad (ii,)-1 y, E-,JB(E-tJ, Ad (n)HΛ)

+ Σ β(Ad (n j " 1 y, #,)*(#„ Ad (n)//Λ)
i

- £ β(Ad (nxy
x 7, Hi)B(Hh Ad

i

The first three terms can be rewritten as

B(Ad ( n j " 1 y, Ad (n)Hλ) = B(Ad (g)Hλ, Y),

and the last term is nothing but

-B(Hλ9 Ad (nxy
ιY).

This completes the proof. •

Now, using Theorem 2.3, we quantize the Hamiltonian function for Ye

m © α or n, replacing xai and yj— lpaJ in H(g: Y) by xai x (multiplication

operator) and δβ f i, respectively, (canonical quantization !) and choosing an

operator ordering between x α ί x ' s and dajs.

COROLLARY 2.5. For Y e m φ α or n, we define quantized Hamίltonians

H(Y) as follows:

(i) For Γemφα,

' - 1

(ii) For Yen,

where o denote the composition of operators. Then the quantized Hamiltonian

coincides with y/—ldUλ(Y).

PROOF. If 7 e τ n θ α , then c a ί is given by cai = a{Y)xaJ. Thus (i) fol-

lows immediately from the fact that

<yl, (ad XyY} = 0 if > 1 .
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(ii) is obvious if one notes that

</ί, (ad xyyy = o if j > o

and that daicaJ = 0. The latter follows from the fact that, if xβJ is in c α ί , then

height of β < height of α . •

REMARK 2.6. If Yen, since daΛcafi, = 0, we obtain

= - /-I Y Y c δ

But we do not adopt these quantizations in the present paper.

3 Path integrals

In this section we explicitly compute the path integrals with Hamiltonian
functions, but only for Y em® a or n.

The path integral is, symbolically, given by

\®(x, p) exp (y^T Γ y*αs_ - H(g : Y)dλ

for Y e g, where γ denotes certain paths in the phase space [3].
Here we divide the time interval [0, Γ] into N small intervals

k- 1 k

[k-ιτkτ\On each small interval T, — T , Corollary 2.5 indicates that we should
\_ N N J

take the following ordering of Hamiltonian functions Hk{g: Y) with Y e m © α
or π.
(i) For Yemφa,

Hk(g: Y) = <A, 7> + J Σ X ( c * ^ 1 + Pί .T 1 ^ 1 ) ,

where cα

fc

 t =
(ii) For Yen,

Hk(g:Y)=



Kirillov-Kostant theory and Feynman path integrals 617

where

= B
eadX - 1

and A"* = Σ..X *.*,,£«.,.
Now the computation of the path integral.
For x = (xα>1 ), x' = (*;,,) given, let x°, = xxj, x£, = JC^. We put

dx>= Π and Π Π ^

for brevity, where m = dim n, and put τ = —. Remark that the Haar measure

dx = ΠαeΓ+Π^i^α.ί o π ^ equals the Haar measure dn given in §1, up to
constant multiple.

A. Path integral for Y e m 0 a
Recall that if Y e m 0 α, then Hk(g: Y) is given by

where c£t = a(y)x£t. Then

J 9(x, p) exp ί / - ϊ Γ y*as_ -

Γ ( N Γ(k/N

= lim 0(x, p) exp £
N-*oo J \fc = l J((fc-

= iimί ί π 1 ^ π 1

ΛT-00 jRm jRm j = l j = 0

(k/N)T

y*as_ - H f c(^:

Σ
a, ί

γ fe — 1 \

x exp (-v^ y> + i X a(Y)pk.;t

1(xi.t + xί.71)i X

l i m f ... Γ j ^ 1

lim f •••[ π ' ^ Γ Ί
ΛΓ-00 J Rm J Rm j = l a, £
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Ί
α, i

where <5( ) is the Dirac delta function on R. This is nothing but the kernel

function of the unitary operator Uλ(exp TY) given by (1.9) in §1 with

Y e m 0 α.

5. Pαί/i integral for Yen
Recall that if Yen, then Hk(g: 7) is given by

Hk(g Y)= Σ

where

and Xk = ΣajXajEati. Now we assume that

where #°n = n and ^i+1n = [n, ^ n ] . Therefore

^ l x
 Y = y - 1

(3.1)

(3.2)

We prepare a lemma for the computation of the path integral. Let Ck be

the right hand side of (3.2).

LEMMA 3.1. // {Xk}k>0 satisfy

χ k _ χk-i _ τCk-i = Q (fe > 1),

then Xk is given by

τk(γ- ±ιx, y] + -^ίx, I*,

(3.3)

with X = X°.
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PROOF. We prove this lemma by induction on k. It is trivial for k = 0.
Suppose that (3.3) is true for k > 0. Then we have

ίXk, 7] = [X + kτY - kτ^X, 7], 7]

= [X, Π ~ \kτl[_X, 7], 7] ,

since [X, [X, Y~\~] and [7, £X, 7]] are in the center of n by (3.1).
Similarly, we can obtain

[_X\ IX", 7]] = IX + kτY - kτKX, Yl IX,

= IX, IX, 7]] + kτlY, IX, 7]] .

Hence

Xk+1 =X + τk(γ-l-ίX, 7] + 1 [ Z , IX, YB) ~ ^τ2k(k - 1)[7, [*, 7]]

,[X, 7]])

= X + (k + l)τ(γ - l-\X, 7] + ~iX, IX, 7]]

fc(fc+l)τ[7,[X

This shows (3.3) is true for k + 1. •

Now we go into the computation of the path integral.

(klN)T

y*αβ_ -
l)/iV)Γ

r / , ΓT \
£&(x9 p) exp [J -1 y*αs - H (g : Y)dt

J V Jo /
r N pfc/A

= l i m 3f(x9 p) exp ^
V̂-̂ oo J fc = l J((fc-

= lim
N-KX) J Rm

J V - 1 J V - 1

dxj Π ^P7

j=o

N

k=l d,i

= lim f f Π1 dx}t\ Π «5«, - 47 1 -
N->ao J Rm J Rm j=l k=l a,i
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If we integrate in each x\ we have

X* - X1'1 - τC'1 = 0 (i > 1).

Then by Lemma 3.1, XN is given by

xκ = x + T(Y- ±ιx, Y] + ̂ ιx, ιx, Y]]) - 1 Γ 2 J V ( J ^ 2 V , \x,

Letting N tend to oo, we obtain

' = x + r ( y

Then by BCH formula one can show that

expX' = exp T7exp X ,

which shows the whole integral is nothing but the kernel function of the

unitary operator Uλ(exp TY) ((1.9)) with Yen.

Thus we have obtained the following theorem.

THEOREM 3.2. (i) For Y em® a, taking the ordering of the Hamiltonian

function H(g: Y) (g e NMΛN) described in this section, the path integral with

the Hamiltonian gives the kernel function of the operator Uλ(exp TY).

(ii) Assume that the length of the central descending series of n is < 3

(see (3.1)). Then for Yen, taking the ordering of the Hamiltonian function

H(g :Y)(ge NMAN) described in this section, the path integral with the Hamil-

tonian gives the kernel function of the operator t/λ(exp TY).

REMARK 3.3. We denote by |x> Dirac delta function on Rm with support

{x} and put |p>( ) = e^^p °, where denotes the standard inner product

on Rm. Then, under the ordering in this section, Hk(g: Y) with 7 e t n φ Q

or n satisfies

k\dUλ{Y)\xk-ιy = dpk-\xk

= -y/^ϊ ί
J Rm

^-^H^g : Y). (3.4)

Therefore, if we proceed modulo τ 2, then, without using the assumption

on n in Theorem 3.2 (ii), we have

(x'\Uλ(expTY)\x}= lim (x'\Uλ(exp(T/N)Y) Uλ(exp(T/N)Y)\x)
N-*ao

= lim f ••• f Nγ[dx\xN\Uλ(^p(T/N)Y)\xN-1}
N->CC J Rm J R m j=l
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Γ Γ N~1

lim ••• f ] dxj(xN\I + τdUλ(Y)\xN-

using (3.4),

C Γ N-l N-l N ,

= lim Π ^ Π dpj Π e ^ '
N^oojRm jRm J = l j=0 k = l

x (1 - J^τHkiQ : Y))

Γ Γ N-l N-l

- lim ••• Π dχJU dPJ

N-00 jRrn JRm j=l j=Q

e χ P ( x / ^ Ϊ Σ pk~''(χk-χk~x)-τHk(g

4 Intertwining Operator

In this section we take another real polarization and show that the
formal intertwining operator between the two representations can be obtained
from the path integral.

Let λ be the same element of α* as in §1. We take another real polariza-
tion 5+ = m φ α 0 n. Correspondingly, we put S+ = MAN. Then the Lie
algebra homomorphism

- V - U : *+ - V - 1 R > *o + H + X+ h- - J - U{H)

lifts to the unitary character of S+:

S+-+U(l), m exp Hn h-> e~ V ^ " ) .

We define a one-dimensional representation ξλ of S+ by

ξλ : S+ - C x , m exp if n H- β(" V^Ϊ^+P)^) .

Let (J^χ, U~λ) be the unitary representation of G which is constructed from ξλ

as in §1, instead of ξλ. Note that F e 2fχ is a function on Λf, on which we
introduced coordinates by (1.6).

For g e NMAN, we write as

g = n'{g)m\g)a\g)n\g) (4.1)

and parametrize W{g) as n'(g) = ήy = exp Y9 where 7 is of the form
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Y= Σ Σ Λ i (4-2)

Then for g E G and F e J^χ the action is

Uχ(g)F(y) = ^ ^ - ^ ^ " ^ F i n ' f o - ^ ) ) , (4.3)

where y = (yβii) and ήy = exp ^ α e Γ + y α / £ _ α ι . If we use the parametrization

(4.1), then φ is given by

φ = <λ,

= <Ad* (n')λ, n'{

where /t' = ^ ' ( ^ ' ( ^ ' ( ^ ( m ' ^ α ' ί g r ) ) " 1 . Since the second term is an exact

1-form, we choose

α5+ = <Ad* (n')K n\g)-Hn'{g)y .

Fixing y' = (y'Λti) and ^ = (yaJ), we can explicitly compute the path integral

with Hamiltonian function for Y e m 0 α or n, in the same way as in §3.

LEMMA 4.1. For g e NMANΠNMAN, write g in two ways:

g = n(g)nm(g)a(g)

= ϋ'{g)n'm'(g)a'(g).

Then we have

αs_ - αs+ = <A, a^da} ,

where a = a(n'(g)~ιn(g)).

PROOF. By hypothesis,

nf-1nf(g)-1n(g)n = m'(g)m(g)-1af(g)a(g)-1 .

Putting nι=n{n'{g)~1n{g)\ m = m(n'{g)~1n{g)\ _and nx = n(n/(flr)~1w(fir)), then

by the uniqueness of the decomposition NMAN, we obtain

nx = n' and

Thus

Ad (^-^nί^-^πί^)) - Ad (n

= Ad foKnteΓΛite)) - Ad (n1)-1(n'(^)-1dn'(^)). (4.4)

On the other hand, noting that ma = n\1n'{g)~1n(g)n^1, we have
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Ad {ay^m^dm) + a~ιda = -Ad (maΓHn^dnJ

- Ad (may1 Ad {n^in'igY'dn'i

+ Ad (n^nigΓ'dnig)) - dnγn^

Therefore we obtain

<A, fl-^α) = -<Λ, Ad (mfl)-1^:1^!)) - α Ad (mα)"1 Ad (niΓVfo

+ <λ, Ad (nJinigΓ'dnig))}

= -<Ad* (WΛ)A, wΓ'^i) - <Ad* (nuήλ, Ad ( ^ Γ V t e Γ 1

Since each element of MA fixes λ, combining this with (4.4), we obtain the
result. •

We parametrize n(g) = nx = exp X and n'(g) = ήy = exp Y, where X (or
Y) is of the form (2.1) (or (4.2), respectively), and fix x' = (xά,/X x = (*«,*)>
/ = (y'Λti) and y = (yaJ).

Then by Lemma 4.1 we have

rτ ΓT
7*αs_ - H(g : 7)rfί - y*α5+ - //(^ : Y)dt

Jo Jo

= </l, log aiΰy^n^)} — <>i, log a(n~ιnxy) ,

which implies that

ί: Y)dt - <λ, log a{n;ιnx)}ί1
Jo

Jo
= - α log α^" 1 ^,)) + 7*ocs_ - H(^ : r)Λ . (4.5)

Suggested by (4.5) we consider an integral operator with kernel function

exp {-y/^ϊλ log a(ΰ~ιnx)).

Since this operator does not intertwine Uλ with Uχ9 however, we modify the
kernel function by multiplying exp (p log ain^nj). Thus our kernel function
becomes

exp ( ( - 7 = 1 + p) log aiΰ 'nj). (4.6)

This integral operator coincides with the formal intertwining operator
A(S+ : S_ : 1: J — l/l) given in [9] [10], as we shall see soon. The integral
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operator with kernel function (4.6) is not well-defined in the sense that the

integral

7(-y/-ϊλ+P)loga(nylnx)j?ίχ\ fa

need not converge for F e / A . Knapp and Stein showed in [9][10] that if

one regularizes the integral suitably, then the regularized operator, s/(S+ : 5_ :

1 : y/—lλ) in their notation, is a well-defined intertwining operator and is

invertible, i.e., the following diagram commutes for all g e G.

Uλ(9) Uj(g)

£, ^(S+:S-:W-

THEOREM 4.2. The path integral with the action defined by (4.5) pro-

vides the formal intertwining operator A(S+ : S_ : 1: y/—lλ), where A(S+ : 5_ :

l'.yV—lλ) is given by

K ) = f(nyn
JN

: S_ : 1: V - lλ)f(ny) = f{nynx) dx for f e Vλ

JN

when the indicated integrals are convergent.

For this, we need a lemma.

LEMMA 4.3. For geG and FeCC°°(AΓ), the following integral formula holds:

Γ Γ
F(n(g-1n))dn= \ F(n)e2plosaign)dn .

JN JN

For the proof, we refer to [6].

PROOF OF THEOREM 4.2. We decompose nynx as

nynx = n(nynx)m{nynx)a(nynx)n(nynx).

Putting nξ = n(nynx\ we have

nx = ny

ιnξm(nynx)a{nynx)n(nynx)

— n(ny

ιnξ)m(ny

ιnξ)a{n~ιnξ)n(riy

1nξ) x m(nynx)a{ήynx)n(nynx)

= n{n~ιnξ)m(ny

ιnξ)m(nynx)a(n~ιnξ)a{nynx) x (a member of N).

Therefore, by the uniqueness of the decomposition we have

nx = nin'^nΛ and aίn'^nΛafan^ = 1 . (4.7)
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Then we obtain

L f(nynx

using Lemma 4.3 and (4.7),

"~ " T>l"ύf{nξ)dξ,

=
JN

=
JN)N

We can compute the path integral for Yen using the polarization given in

this section in the same way as in §3.

Thus, considering the composition

s/(S+ : S_ : 1 : y/^ϊλ)'1 o Uλ(exp TY) o ̂ (S+ : S_ : 1 : yf^ϊλ),

we can obtain the unitary ope rators ί/A(exp TY) for 7 e ft by the path

integrals. *

Finally, we give a direct proof that A(S+ : S_ : yj— lλ) is a formal inter-

twining operator between Uλ and U~λ.

PROOF. Let F be an element of CC°°(JV). By (1.9), we have

=

On the other hand, by (4.3),

=

=
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Here, if we decompose g~ιnx as

~ιnx =

and write nξ = n(g~1nx), then

nx = g

^mign^mig^njaign^aig'1^) x (a member of N).

Therefore by the uniqueness of the decomposition,

a{gnξ)a{g~ιnx) = 1 and nx = n(gnξ).

Hence, by Lemma 4.3, we have

(A(S+:S-:l:J=ϊλ)oUλ(g))F(y)

=

Now the statement follows from Lemma 4.4 below.

LEMMA 4.4. Using the notation above, we have

log a(n~ιn(gnx)) + log a(gnx) = log ^ ' ( ^ Γ 1 ^ ) " 1 ^ ) - log a'{g~ιny).

PROOF. For x, y e G, let x y denote yxy"1. Then, since

g~ιny = n\g~ιny)m\g-ιny)a\g~ιny)n\g~ιήy\

putting n'^ίgwj = nmαπ, we have

x nm(gnx)a(gnx)Π(gnx)

= (n\g-%)n)m'ig~1Ry)a'i9~ι"yW(g-%)af(g-1ny)ma

x m(gnx)a(gnx)nimi9n*)aign*)rln(gnx).

Hence the uniqueness of the decomposition NMAN implies that
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Now the statement follows immediately.
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