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Introduction

This paper is concerned with the Cauchy problem for a nonlinear degener-
ate parabolic equation of the form:

ut + VA(u) = Aβ(u) (x, t) s RN x (0, oo)

U(X, 0) = M0(x)

where V is the spatial nabla, Δ is the Laplacian in RN; A(s) = (A1{s)9..., AN(s)),
A1 e Cι(R}\ i = 1, ..., N, and β is a locally Lipschitz continuous and strictly
increasing function on J?1. In view of the assumptions on /?, the derivative
β' may have a countable number of zero points, and so the parabolicity of
the above equation may degenerate at those points. A broad class of non-
linear degenerate parabolic equations can be written in the form (M) by
choosing suitable functions β and A\ i = 1, ..., N. Since this equation is a
combination of the single conservation laws and the so-called porous medium
equations, the degeneracy of β(u) may interact with that of A(u\ and so the
study of the problem (M) is important from not only the theoretical point
of view but also from the point of view of the application to various evolution
problems. On the other hand, it does not seem to be known except some
special cases that the semigroup approach to the problem (M) is considerably
effective. Therefore it is important to make an attempt to treat the problem
(M) in an operator theoretic fashion and construct semigroup solutions to (M).

In this paper we discuss the Cauchy problem (M) via the so-called kinetic
approach for scalar quasilinear first order equations of conservation type
which was proposed by Giga and Miyakawa [10]. This approach is suitable
for treating nonlinear evolution problem of this type and their result was
extended to a more general form of conservation laws in the subsequent
paper [11] by Giga, Miyakawa and Oharu. In both of the two papers cited
above, the convergence of approximate solutions is obtained through the
compactness theorem for functions of bounded variation. On the other hand,
Kobayashi [13] constructed the approximate solutions by using the solutions
of the linear Boltzmann equation and established their convergence via the
nonlinear semigroup theory. Making careful observations of the limiting pro-
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cedure, Miyakawa [16] derived a linear viscosity term and Kobayashi [14]
treated the porous medium equations in the same spirit. It is interesting
to note that in each of the above-mentioned typical cases the nonlinear
semigroup theory was efficiently applied to obtain the convergence of the
approximate solutions. In this paper we show that this approach is also
appropriate for constructing physically right weak solutions to the problem
under consideration.

Our problem (M) is a linear combination of the quasilinear first-order
hyperbolic conservation laws and the porous medium equations. Therefore,
in order to apply the kinetic approach to the problem (M), we necessitate
formulating the associated linear Boltzmann equation so that the macroscopic
quantity (u in our case) is decomposed into microscopic quantity by means
of appropriate kernel functions. The substantial obstruction to be encoun-
tered is to solve the uniqueness problem for the stationary problem associated
to (M). Concerning the uniqueness of solutions to (M), VoΓpert and Hudjaev
[19] have established a uniqueness theorem for a more general case by using
their theory of functions of bounded variation. However, the concept of their
solution does not fit our approach.

Recently, Yin [21] succeeded in proving the uniqueness of the so-called
BV solution of (M) which is more natural and convenient than the solutions
treated by VoΓpert and Hudjaev. He showed that the set of jump points
of BV solutions is negligible with respect to the ΛΓ-dimensional Hausdorff
measure. Appealing this fact, he removed the difficulty which is caused by
the discontinuities. Inspired by his results, we find a dissipative operator
associated with (M). It turns out that the kinetic approach is applicable to
the nonlinear degenerate parabolic equations of the form (M) in a natural way.

Throughout this paper we employ the same notation as in Miyakawa
[16]. Further, some of the results stated here have already obtained in the
works [10, 11, 12, 13, 14 and 16] and some other results can be easily derived
through slight modifications of well-known results, although we shall give a
full description of those results for the sake of completeness.

ACKNOWLEDGEMENT. In the preparation of this paper, the author received
many valuable suggestions and constant encouragement from Professor T.
Miyakawa. His thanks also go to Professor Y. Kobayashi and Professor S.
Oharu. Without their advice and interests in this work, this paper would
not be accomplished.

1. Formulation and statements of the main result

We first outline the kinetic approach to the Cauchy problem (M). In
terms of kinetic theory of gases, the motion of gases can be described in two
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ways: the macroscopic and microscopic approaches. We regard (M) as a

model of macroscopic conservation laws in fluid mechanics, while the corre-

sponding microscopic model is the linear Boltzmann equation in the phase

space;

ft + ξ\/f = 0 (x, ξ9 t)eRN x RN x (0, oo)

Aχ,ξ,0) = fo(χ,ξ)

where the unknown function / stands for the density of particles of gas at

the position x e RN with velocity ξ e RN at time t ^ 0. In order to justify

this formulation, we regard w(x, t) as a macroscopic quantity and define a

microscopic quantity by

Γu(x,t)

f(x,ξ,t) = χ(ξ-a(s))ds,
Jo

where appearing functions χ and a will be introduced in (1.4) and (1.9) be-

low. Then the following relations can be easily verified:

M) = ίJ
(1.1) u(x, t) = I f(x, ξ, t) dξ ,

(1.2) A(u(x, t)) - Aφ) = \ξf{x, ξ, t) dξ ,

where \_ ~\dξ stands for the usual integral of [•••] over RN. Therefore,

if / satisfies the linear Boltzmann equation (B) at time t, then

h-1 [u(x, t + h)- u(x, t)] = ί h'1 [/(*, ξ,t + h)- f(x, ξ, t)] dξ

-» - j ξVftx, ζ, t)dξ=- VA(u(x, t)) as h i 0 .

This means that u satisfies the following hyperbolic equation (H) at time ί:

(H) u, + VA(u) = 0 [x, t)eRN x (0, oo).

The relation (1.1) means that the macroscopic quantity u(x, t) is decomposed

into microscopic one /(x, ξ, t) in the phase space so that the compatibility

condition (1.2) may hold and the flux A may be treated in an appropriate

way. The above observation suggests that, by means of a suitable decomposi-

tion, the integral with respect to the velocity argument ξ of solutions to the

problem (B) with initial value obtained through the operations u\-*f and

uo\-+f(-,ξ90) may approximate the solution of the problem (M). In fact, we

can construct such a new decomposition in the following way.
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Let χ be a function with the following properties:

(1.3) χ e C £ ( R N ) , χ ^ O o n R N , s u p p χ c= {ξ e R N , \ξ\ ϊ 1 } ,

(l 4) χ(ξ) = χ(\ξ\), \χ(ξ)dξ =

Let

ί>

(1.5)

1 (0 < 5 g W)

- 1 (w ^ s < 0).

0 (otherwise)

We then consider a family of functions {/?ε; ε > 0} contained in C^/?1) which
gives a regularization of β in the sense that

(1.6) β'(s) > 0 for s G Z?1, ft - β as ε J, 0 in LfJR1),

(1.7) sup{#!(s); |s| g r, ε > 0} < oo for each r > 0 .

For the above mentioned functions, we define two functions χε and Fε by

(1.9) Fε(w, {) = f F(w, s)χε(ξ - a(s\ s) ds for (w, ξ)eR1xRN

9

where αf = dA'/ds , α(s) = (a\s), ..., αN(s)).

In the case of hyperbolic conservation laws, it is not necessary to employ
the functions {χε; ε > 0}. Then, the following conditions corresponding to
(1.1) and (1.2) are easily checked by means of above relations.

(D) w = I Fε(w, ξ) dζ for w e / ? 1 ,

(C) A(w) - A(0) = £Fε(w, ξ) dξ for w e R1 .

To verify that the family of functions {Fε; ε > 0} gives the desired decom-
position, we consider solutions of (B) with initial values of the form Fε(u0( ), ξ),
ε > 0. Let {Uξ(t); t ^ 0} be the family of solution operators to the problem
(B). We define a family of nonlinear operators {Sh; h > 0} by

(1.10) Shυ= Uξ(h)Fε(v('),ξ)dξ
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for v e Lloc(RN) for which the right-hand side of (1.10) makes sense and ε is

a positive number satisfying the following stability condition:

(1.11)

For any v e L1{RN)ΠLCO(RN)9 we can show (see the proof of Lemma 4.3

(ii)) that

(1.12) h-1{Shv-v)^Aβ(v)-VΛ{v) in @'(RN) a s ft J O .

Therefore it is expected that for each h > 0 the function

(1.13) uh(t) = S^u0

approximates the solution of (M), where [s] denotes the greatest integer which

does not exceed se R1. To ensure the convergence of approximate solution

uh, we employ the approximation theorem for nonlinear semigroups due to

Brezis and Pazy [8].

In order to treat the problem (M) via the nonlinear semigroup theory,

it is necessary to find a dissipative operator B which is a formal expression

Bv = Aβ(v) — VA(v) in an appropriate function space. To this end, we formu-

late two operators Bo and B. First we define Bo in the following way:

(1.14) υ E D(B0), weBov if and only if v, w e BV(RN) Π L°°(/?N) and

I [β(v)Aφ + i4(ι>)Vφ] dx = \wφ dx for Vφ e C${RN).

Obviously, Bo is a singlevalued operator, hence Bov = ΔjS(t ) — VΛ(ι ) holds in

@'(RN) for t; 6 D(βo) The second operator β is defined to be the closure of

Bo in LX(RN\ i.e., i; e D(β), w e Bϋ if and only if there exists a sequence (vn)™=ί

in D(B0) such that (t;π, βoι;Λ) ->(t;, w) in LX(/?N)2 as n->oo. In Section 4

we show that the operator B is a densely defined m-dissipative operator in

L1(RN\ and so that, by the generation theorem for nonlinear semigroups due

to Crandall and Liggett, there exists a nonlinear semigroup {T(t);t^.O} on

L 1 ^ ) in such a way that for each veL^R")

(1.15) (/ - λB)-[t/λ]v - T(t)v in L 1 ^ ) as λ 10

uniformly for bounded ί.

In order to state our result, we introduce two notions of generalized

solution to the Cauchy problem (M).

DEFINITION. For uoe L1(RN)^LCO(RN), a function M6L°°(/?N x (0, oo))Π

C([0, oo); L 1 ^ ) ) is called a weak solution of the problem (M) if w( ,0) = u0,

Vβ(u) e L2(0, T; L2(RN)N) for all T > 0, and the function M satisfies
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[uφt + A{u)Vφ] dxdt = V0(w)Vφ dxdt.

o J Jo J
for each φ e C£(RN x (0, oo)). If in addition u e BV(RN x (0, T)) for each T >

0, then u is said to be a B V solution of the problem (M).

REMARK. The above notion of BV solution of (M) is a modified version

of the notion proposed by Yin [21] in the sense that the BV solution of

Yin belongs to C([0, oo); Lί(RN)). Since the BV solution in the sense of

Yin is unique, it is obvious that our BV solution is also unique.

Our main result in this paper can be now stated as follows.

THEOREM. Let χ and {/?ε;ε>0} be any functions satisfying (1.3), (1.4), (1.6)

and (1.7). Suppose that the numbers h > 0 and ε > 0 satisfy the stability condi-

tion (1.11). Then, we have:

(a) For each veLι{RN\

(1.16) S[t/h]v-+T(t)v in L^R") as h 10

where the convergence is uniform for bounded t.

(b) // M0 e L H / ^ Π L 0 0 ( / ? " ) , the function u(x91) = [T(ί)iιo](x) gives a

weak solution of the problem (M).

(c) // uoeBV(RN)ΠL«)(RN)nD(Bl where D(B) denotes the generalized

domain of the m-dissipative operator B, the function u(x, t) = [T(ί)wo](x) gives

the unique BV solution of the problem (M).

2. Basic properties of the operators Sh

First we recall the approximation theorem for nonlinear semigroups due

to Brezis and Pazy [8] and state it for our convenience.

THEOREM 2.1. Let X be a real Banach space and {CΛ; h > 0} a given

family of contraction operators on X. If the limit

exists for all v e X and all λ > 0. Then there exists a m-dissipative operator

A in X such that J{λ) = (I - λA)'1 for all λ>0, and

CltJh]v-• T(ήv as h[0 uniformly for bounded t

for each v e D(A), where {T(t); t ^ 0} is the nonlinear semigroup generated in

X by A.

We wish to apply the above theorem to the case where the Banach space

X is L1(RN) and the operators Ch are Sh. To do this, we prepare some basic
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estimates concerning the operators Sh and the resolvents [/ — λh~1(Sh — J ) ] " 1 .

Here and hereafter, || | |p denotes the usual norm of the Lebesgue space LP(RN),

1 ύ P S oo. We represent the duality pairing between the Lebesgue spaces

LP(RN) and Lq(RN\ l/p + l/q = 1, by <,>. The same bracket <,> will also

be used for the case of vector-valued Lebesgue spaces.

LEMMA 2.2. Let τy, y e RN, be the translation operators defined by

lτyvlι(x)Ξ=v(x + y).

( i ) Sh is a contraction operator on L^/?^) and

I I V I I i ^ bill for veL'iR").

(ii) τySh = Shτyfor yeRN.

(iii) I I V L ^ ML for veL™(RN).

PROOF. We first recall the basic properties of the function F defined in

(1.5):

(2.1) F(,s) is nondecreasing for a fixed seR1 ,

(2.2) F(0, s) = 0 , supp F(w, )^{se R1; \s\ ̂  |w|} ,

(2.3) ί/(5)[F(ι;, 5) - F(w, s)] ds = Γ / W ds for f s L]0C{Rι\ v, w e R1 .

In particular, w = F(w, s) ds, |w| = |F(w, s)| ds and

(2.4) | ι ; - w |

See Kobayashi [12] for the detailed argument. We employ these facts,

(i) For each v, weLι(RN),

[ \Shv - Shw\ dx£\dx\ \FM ~ hξ), ζ) ~ F.(w( - hξ), ξ)\ dξ
J J

= \dξ\\FE(v(' ~ hξ)9 ξ) - Fε(w(' ~ hξ)9 ξ)\ dx

= \dξ \ \Fε(v, ξ) - F ε (w, ξ)\ dx= \\v-w\dx.

In the derivation of the extreme right-hand side of the above equality we

have used the following identity which is a direct consequence of (2.4):
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\v-w\= \\Fε(v, ξ) - Fε(w, ξ)\ dξ for v, w e R1 .

Since Sh0 = 0 by definition, we obtain ||SAr||i g \\v\\ι by putting w = 0 in the

above estimate.

(ii) lτySkΌ](x) = [ \Fc(v(-hξ),ξ)dξ)(x

y - HI ξ) dξ

τyύ](x-hξ),ξ)dξ = lShτyΌ]{x).

(iii) Since Fε(-9ξ) is nondecreasing function for fixed ξ e RN by (2.1),

Fε(- \\v\U ξ) ̂  FΛ(Ό(X ~ hξ\ ξ) ̂  FΛ(\\v\L, ξ) a.e. x e RN .

Integrating the resultant inequality with respect to ξ over RN, we obtain

In what follows, we employ the nonlinear operator Bh on L^/?^) defined

by

(2.5) Bh = h~1(Sh-1) ϊoτh>0.

For a fixed h, λ > 0 and yeL^/?^), the operator

+ λ(h 4- λ)~1Shw for w G LH/?^),

defines a strict contraction operator on L^/?^) and the subspace L1(RN)Π

L^iR") is invariant under 3F{p) by Lemma 2.2, the contraction mapping princi-

ple asserts that &(υ) admits a unique fixed point in ^(R**). Thus the re-

solvent (/ — λBf)'1 of Bh exists and the following lemma follows directly from

Lemma 2.2.

LEMMA 2.3. ( i ) (/ - λB^'1 is a contraction operator on L1(RN) and

||(/-λB/lΓ
1ι;||1g||t;||1 for veL^R").

(ii) τy(I - λB,)-1 =(I- λBh)-\ for y e RN.

(iii) ||(/ - W ^ L ^ \\v\L for v e LHRN)

The following lemma plays a central role in ensuring the precompactness

in L1(RN) of various families of functions which will appear in our subsequent

discussions.

LEMMA 2.4. Let v e L 0 0 ^) , keR1 and φ e C$(RN) with φ^O. Then
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(2.6) <sgn(ι? - k)Bhv9 φ>

^ f <sgn(ι; - k)lFε{v, ξ) - Fε(k, £)], h'^U^h)* - Γ\φ> dξ ,

where Uξ(h)* is the dual operators in L°°(RN) of Uξ(h).

PROOF. First we note that Bhk = 0 by the definition of Sh. Therefore

(2.7) <sgn(ι; - k)Bhv9 φ> = <sgn(ι; - k)lBhv - Bhk\ φ>

= i !>, ξ) ~ UK ξ)l h-ι[Uξ{h)* - /][sgn(ι; - k)φ\ )dξ .

Since |sgn(ι; — k)φ\ ^ φ, the order-preserving property of the operators Uξ(h)*

implies that Uξ(h)*[sgn(v - k)φ] ^ Uξ(h)*φ. Using this, the extreme right-

hand side of (2.7) does not exceed

-ί<\FΛ(Ό9ξ)-FΛ(k,ξ)\9Uξ{h)*φ>dξ

-h-1

Λ(Ό, ξ) - Ft(K ξ)l sgn(ι; - k)φ} dξ .

On the other hand, Fε(w, ξ) is nondecreasing in w and \Fe(v, ξ) — Fε(k9 ξ)\ =

sgn(ι; — k)[Fε(v, ξ) — Fε(k, £)], we obtain the desired estimate (2.6). •

3. Dissipative operator Bo

In order to investigate the properties of the operator Bo defined by (1.14),

we prepare some fundamental facts on the functions of bounded variation.

For the basic notions and results we refer to [1], [2], [20] and [22].

We denote by \E\ the Lebesgue measure of a Lebesgue measurable set

EdRN and by 3tfN~ι{E) the (N - l)-dimensional Hausdorff measure of a

Borel set EczRN. We define an extended real valued seminorm ||D | | M on

L1(RN) by

(3.1)

\\D
]V\\M = sup j j v div φ dx; φ = ( φ \ . . . , φ N ) e C%(RN; RN), max, Wφ1^ ^ 1 j .

We say that v e LX(RN) is a function of bounded variation in RN if the quantity
| |Dι;||M is finite. Notice that for υe W1Λ(RN) the left-hand side of (3.1) coin-

cides with £f = 1 Wδv/dXiWί. We denote by BV(RN) the space of all functions of

bounded variation in RN. The space BV(RN) is a Banach space with respect
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to the norm ||ι;||BK = \\Ό\\X + \\Dv\\M. It is easily seen that for v e BV(RN) the

distributional derivatives D{v, ί = 1, . . . , N9 are regarded as elements of the

space M(RN) of Radon measures on RN with finite total variations. We

denote by \Dv\ the total variation of the vector-valued Radon measure Dv =

(Dxυ,..., DNv). The total variation \Dv\ itself defines a measure and for every

open set Ω cz RN the integral of the measure \Dv\ over Ω is given by the

right-hand side of (3.1) with φ e C$(RN; RN) replaced by φ e C£(Ω; RN).

In what follows, we denote by fD{v the integral on a Borel set E cz RN

JE

of a integrable function f'.E-^R1 with respect to the Radon measure Dtv. In

this case, we define the vector-valued Radon measure fDv = (fD1v9...9fDNυ) by

(3.2) LfDiV](E) = fDtv for Borel set E cz RN.
JE

We also write fDv = ££=i / 'Ά^ f° r a vector-valued integrable function
JE JE

Let E cz RN be a Lebesgue measurable set. A unit vector n is called a

measure-theoretic normal to E at a point x ([22], Definition 5.6.4), if

l im r | 0 r~N\B(x, r)0{y9(y - x) n <0, y e Ec}\ = 0
and

l i m r i 0 r~N\B{x9 r)Π{y9(y - x)-n > 09 y E E}\ = 0 .

The measure-theoretic normal to E at x is uniquely determined for x and

£, and is denoted by n{x, E). We write

<3*£ = {xe RN; n(x, E) exists} .

For v G BV(RN), the Fleming-Rishel coarea formula holds as follows:

(3.3)
Γ 0 0

=
J - o

for each Borel set E cz i?N. As a simple consequence of formula (3.3) we have

(3.4) \Dv\(E) = 0 for all Borel set E cz RN with j^N'\E) = 0 .

For a Lebesgue measurable set E cz RN, the upper and lower density of

£ at a point x is defined respectively by

D(E9 x) = limsup r i 0 \E Π 5(x, r)|/|B(x, r ) | ,

D(E, x) = liminf r i 0 |£ Π B(x9 r)\/\B(x9 r)\ .

In the case that the upper and lower densities are equal, we define the density

of £ at a point x, denoted by D(E, x), by their common value.
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Let i? be a Borel function defined on RN. The upper and lower approxi-

mate limit of v at a point x is defined ([22], Definition 5.9.1) by

v+(x) = inf{ί ε [-oo, oo]; D(A i5 x) = 0} where At = {ye RN

9 v(y) > ή ,

v~(x) = sup{ί G [-oo, oo]; D(Bt, x) = 0} where Bt = {y e RN; v(y) < ή ,

respectively. Notice that v+ and v~ are both Borel functions, and that v~ ^

A point xeRN is called a regular point of i; if v+(x) and u~(x) are finite,

and the set of all points of jump of v is denoted by ΓV9 that is,

Γv = {xeRN;υ-(x)<v+(x)}.

The set Γv is a Borel set and negligible with respect to the Lebesgue measure.

For a veBV(RN\ it is known ([22], Theorem 5.9.6) that

( i ) -oo < v~(x) g v+(x) < oo for J f "^-a.e. x ε RN.

(ii) Γv is countably (N — l)-rectifiable, i.e., there exists a sequence of

compact sets (KX = 1 and a set J with jUP^iJ) = 0 such that

and each set Kn is contained in a C^-hypersurface.

(iii) For Jf N~1-a.e. x e Γv, the measure-theoretic normal n(x, As) to As

at x exists whenever v~(x) < s < v+(x\ and n(x, As) does not depend

on the choice of s. In what follows, - rc(x, As) is denoted by vv(x)

for such x G /;. We write v£ for the ith component of vv. Therefore
v _ /vi VN\
vv — \vυ> ' ' ' » vv ) '

For each xe Γv at which the assertion (iii) holds, it is known that

l im r | 0 |β+(x, r)r ί \v{y) - v+(x)\ dy = O,

jB + (x,r)

limrl0 |Λ-(x, r)!"1 f \v(y) - v~(x)\ dy = 0 ,
Jfl-(x,r)

β + (x, r)={ye B(x, r); (y - x)-vv{x) > 0} ,
where

B-(x, r) = {ye B(x, r); (y - x) vv(x) < 0} .

As shown in [20] the restrictions of the measure Dv and its total variation

to Γv admit the following representations: For each Borel set E c RN, we have

(3.5) Dv(EΠΓv)
EΠΓV

Γv)=ί
JE
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(3.6) \Dv\(EΠΓv)Γv)= ί
EΠΓυ

Further, the chain rule for the distributional derivative of the composite func-

tion is formulated as follows ([1], Theorem 2.1): If Ψ is a locally Lipschitz

continuous function on R1 and υ e5K(/?N)nL°° (/?*), then D[^(t;)] is a vector-

valued Radon measure on RN with finite total variation, ΓΨ(V) c Γv and for

each Borel set E a RN,

(3.7) D[Ψ(vmEnΓΨ{υ)) = ί lΨ(v+) - Ψ{v-)-]
JEΓ)ΓV

For a regular point x e RN of a Borel function v, the VoΓpert's averaged

superposition of f e C(RX) and v is defined by

= Γ/(ft>+(
Jo

(3.8) /(i;)(x) = f(θv+(x) + (1 - 0)iΓ(x)) Λ0 .
Jo

In a similar way, for a regular point xe RN of a Borel function u, the average

value of t? at x is defined by

(3.9)

Notice that v(x) = v+(x) = v~(x) at any regular point x e(Γv)
c and

(3.10) v = v a.e. with respect to the Lebesgue measure.

Furthermore it is seen from the definitions that the following relation

(3.H)

holds at the regular points of v outside of Γv.

By means of the above-mentioned functions, the following formulas

concerning superpositions and products are obtained: For v, w e BV(RN)Π

(3.12) DΨ(v)= Ψ\v)Dv in the sense of measures,

(3.13) D(vw) = wDv + vDw in the sense of measures .

Here, the right-hand sides of (3.12), (3.13) are interpreted in the sense of (3.2).

Finally, we prepare the following two lemmas which will be effectively

used in the subsequent discussions.

Let p be a Lebesgue measurable function satisfying the following condi-

tions:

p € L™(RN)+ , supp p c {x e RN; |x| ^ 1} , j p(χ) dx = 1 .
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The corresponding averaging kernel is defined by pδ = δ~Np(-/δ\ δ > 0. In

the case that the kernel function p is radial, the averaging kernel is said to

be symmetric. Then the average value is characterized in the following way

([20], p. 182 Theorem 1):

LEMMA 3.1. Let v be a Borel function defined on an open set Ω a RN

and v e L\0C(Ω). If xe Ω is a regular point of v, then

-IίPδ * v] W = Pδ(* - y)v(y) dy -• v(x) as δ j 0
J Ω

for any symmetric averaging kernel pδ9 0 < δ < d(x, dΩ).

LEMMA 3.2. Let v = (υ\ . . . , iΛ) e BV(RN; RN) and φ e C^(RN). Then

PROOF. We choose a sequence (ufc)£°=1 <= C°°(/?N; RN) in such a way that

K - t > Ί l i - > 0 and \\DΌI\\M ^ | |Di;Ί|M as k ^ c c

by the approximation theorem for BV functions ([22], Theorem 5.3.3). Since

{Dvΐ k^l} is bounded in L1(RNYf(c\f(RNYf), we may assume that Dtv
ι

k

converges weakly in M(RN) to Dι t;
ί as /c^oo. Hence we have

k, Vφ> f
Since supp φ is compact, the integral of £ f D^φvl) over /?N is zero for each

/c by the classical divergence theorem. Thus we obtain the desired asser-

tion. •

Using these powerful properties of functions of bounded variation, we

can prove the next proposition that is essential to establish our main theorem

via the approximation theory for nonlinear semigroups. The idea of its proof

is based on the result due to Yin [21].

PROPOSITION 3.3. The operator Bo defined by (1.14) is dissipative in

Lι(RN); i.e.

(3.14) Hi; - w\\x £ \\(I - λB0)v -(I- λBoMU for υ, w e D(B0), λ > 0 .

PROOF. First we assert that 3tf"~ι(Γυ) = 0 for veD(B0). Since β is lo-

cally Lipschitz continuous and υ e BV(RN)ΠLCO(RN), it follows that Drf(v)e
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M(RN) for f = 1, ..., JV (see [1], Theorem 2.1). Applying formula (3.7) to

Dβ(v\ the following identity is valid:

f fDtβ(υ) = f flβ(υ+) -
jEΓ)Γβ(v) JEΓ\ΓV

for each Borel set E a RN and each Borel function / which is bounded with

respect to Hausdorff measure jfN~ι. Taking / = sgn vj in the above identity

and adding up both sides with respect to i from 1 to JV, we obtain

(3.15) ΣfLx ί sgn v'Mv) = f ίβ(v+) - β(υ')l ΣS-i Kl d*"'1 .
jEΠΓβ(v) JEΓ\ΓV

Now by the definition of Bo, v e D(B0) c BV(RN) Π L°°(/?") c L2{RN) and

\A\υ) - A\0)\ g supflα'ίs)!; \s\ S \\Ό\L}\Ό\ .

Therefore A\v) - Aψ) e L2(RN) and D ^ e Γ 1 ^ ) , where HS(RN), s e R\
denotes the Sobolev spaces defined via the Fourier transform. This together

with the relations Bov e BV(RN)nL°°(RN) cz L2(R% we have

Aβ(v) = Bov + VA(v) e H~ι(RN).

Notice that β(υ) - β(0)eL2(RN), we have Drf(v)eL2(RN). From this we

see that Drf(v) e M(RN)PιL2(RN) c L 1 ^ ) , and hence that the measure Drf(v)

dose not have a singular part with respect to the Lebesgue decomposition.

This implies that the following identity holds:

[A0(ι>)](£)= Diβ(v)dx for each Borel set E c RN .
JE

Therefore (3.15) can be rewritten in the following form:

(3.16) ΣJLi ί sgn v'vDtβ{v) dx = ί [)S(t;+) - /?(»-
JEnΓβ(v) JEΠΓV

Since v+ > v~ holds ^f^'^a.e. on Γv and jβ is strict increasing, it follows

that β(v+)>β(v~) holds ^ " ^ - a . e . on Γυ. Also, £Γ=i |V*(JC)| > 0 holds for

Jf ^"^a.e. x G /^ from vy(x) e S^"1. Combining these results, we see that the

integrand of the right-hand side of (3.16) is strictly positive Jtf?N~1-&.e. on

Γv. On the other hand, since \Γβ{v)\ = 0, the left-hand side of (3.16) is equal

to zero. Therefore it follows that ^^(EΠΓ^ = 0. Now Borel sets E <= RN

are arbitrary, the property (ii) of Γv yields JίfN~1(Γv) = 0.

Next we show (3.14). Set v' = Bov, w' = Bow. By definition,

f=1 |vj|

(3.17) <i>' - w', φ) = -<yβ(υ) - VjS(w), Vψy - ΦDIA(Ό) --ί'
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for each φ e CQ(RN). We then introduce a family of functions {Φp j =

1, 2,...} c C2(RX) which is analogous to the family of functions employed in

Crandall [9] so as to approximate some discontinuous functions:

= ί - O V 2 ) " 1 cos[(jπ/2)s] + Γ 1 (\s\ ̂  Γ1),

The following can be easily verified:

(3.18) lini;-^ Φj(s) = \s\, l i m , ^ Φj(s) = sgn s , lim,-^ sΦj(s) = 0

(3.19) Φj{s) ̂  0 , supp Φ] = [— " 1 , " 1 ] , |sΦ/(s)| ^ π/2 .

In view of the duality mapping of lMβP\ we substitute the test function φ

in (3.17) for sgn(z; — w). To this end, we take any cut-off function φ e CQ(RN)

with 0 ^ φ ^ 1 on RN

9 and then define the desired test functions by

Ψj.s = Ps * ίΦj(β(v) ~ βWW for δ > 0, = 1, 2, . . . .

Apparently, each function φjδ satisfies φjδe CQ(RN\ II^HQO ^ 1 and

Ψj,s - Φ'Mv) ~ βM)<P i n HHR») as δi 0 ,

notice that Φ;(j8(ι?) - jS(w)) e H 1 ^ ) - Hence

<v' ~ W, ιA^> - <*' - W, Φ;(/>(I;) - β(w))φ}

and

/(/ί(i;) - β(w))φ dx

(ι;) - VjS(w), Φί(/S(t7) - i?

£ <Φj(β(Ό) - β(w))9 A φ > a s 5 j O .

Next, in order to handle the second term on the right-hand side of (3.17),

we have to observe the pointwise behavior of φjδ as δ[0. Since Zj = Φj(β(v) —

β(w)) lies in BV(RN), we have J^N~1{1) = 0, where I = {xeRN; x is not a

regular point of Zjψ} (see [22] p. 254). Applying Lemma 3.1 to Zjψ, we have

ΨjAχ) -> Ϊ^ΦΪ W as 510 for x G / c .

Notice that D[X(t;) - A(w)](/) = 0 by (3.4). It then follows from the domi-

nated convergence theorem that
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(3.20) \φjfδD[A(v) - A{w)-] -> I zJφD[A(v) - A(w)] as δ J 0 .

Since zjφ = Φ}(β(v) - β(w))φ holds for j T ^ - a . e . on ( / ; U Γ J C by (3.11), to-

gether with J^N~ι{Γυ) = J^N~\ΓJ = 0 and (3.4), we obtain

jz]φD[A(v) - A(w)2 = j Φj(β(v) - β(w))ψDLA(v) - A(w)] .

Therefore, substituting \j/jδ for φ in (3.17) and then passing to the limit

as <5|0, we have

<»' - w\ Φj(β(v) - β(w))cp) S <Φj(β(v) - β{w))9 Δφ>

-Uj(β(v) - β(w))φDlA(υ) - A(w)l .

Using the properties of Φ} and letting j'-> oo in the above inequality,

W - W, sgn(j8(i;) - j8

•ί- I sgn(/ϊ(i;) - β(w))φDlA(υ) - X(w)] .

Since β is strictly increasing, sgn(/?(t;(x)) — β(w(x))) = sgn(ϋ(x) — w(x)) for

^fN~1-a.e. x, and so the above inequality can be rewritten as

y~ w)[v' - w'], φ)

^ (\β(v) - β(w)\, Aφ} - I sgn(i; - w)φD[A(υ) - ^(w)] .

Using the above estimate, we have

(3.21) <|i; - w|, φ} = <sgn(i; - w)[> - λi;') - (w - Aw')], φ>

^ <|(u — λv') — (w — λw')\, φ} •

— A sgn(ϋ — w)φD[A(v) — A(w)] ,

for each λ > 0. It now remains to show the following identity:

(3.22) sgn(ϊ; - w)φDlA(v) - A(w)] = -<sgn(ι; - w)[A(v) - A(w)l

for all ψeC$(RN). Indeed, suppose that (3.22) holds for all φeC£(RN).

Choose any function φ0 e C£(RN) satisfying 0 ^ φ0 ^ 1, φo(x) = 1 for |x| ^ 1
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and φo(x) = 0 for |x| ^ 2, and define φk = φo('/k). Then

(3.23) \fφk dx -• / dx for all / e L 1 ^ ) ,

(3.24) l|β%lloo.P2Φklloo^O as fc->oo.

Putting φ = φk in (3.21) and then letting k tend to the infinity, we obtain

the desired assertion (3.14) from (3.22) through (3.24).

We then demonstrate that (3.22) holds. As seen in the first step of this

proof, 3tf"~x{Γυ) = e#' i V"1(Γv v) = 0 since v, w e D(B0). Using this fact, Lemma

3.2, (3.11), (3.13) and by integration by parts, we have

(3.25) Φft - xv)ψDlA(v) -

= Φj(v - w)φD[A(v) - Λ(w)]

[)-AW]DlΦ}(v - n # ]

" \LΛ(Ό) -

= [D(Φ;(V - w)φlλ(v) - A(w)]) - [

= ~ - w) - ([A(v) - A(w)~]Φfj(v - w),

Again, we apply (3.11) and (3.12) to transform the first term of the extreme

right-hand side of (3.25) as follows:

-(3.26) - IA(Ό) - A(w)^φΦjf(v - w)D\y - w]

= - I ( a(θϋ
dθ) Ψlv ~ w]Φ/(ϋ - w)Dlv - w] .

Here we have used the fact that #eN~ι(Γv) = tfN~ί{Γw) = 0. Notice that it

is essential in this argument to take the average values v and w. In view

of (3.18), the right-hand side of (3.26) tends to zero as j -• oo by applying

the dominated convergence theorem. Therefore letting j -> oo in (3.25), we

obtain the desired assertion (3.22). •

4. Proof of Theorem

In this section, we give the proof of main theorem. In order to prove

the assertion (a), it is sufficient to show the following two propositions by
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virtue of Proposition 2.1 and Lemma 2.2 (i):

PROPOSITION 4.1. R(I - λB) = L 1 ^ ) far each λ > 0 and

(I - λBh)-χv -> (/ - λBfH

as h 10 in L 1 ^ ) for each veL'iR").

PROPOSITION 4.2. D(B) is dense in L 1 ^ ) .

The proof of convergence as /ijO of (I — λBh)~1v for a general element
VEL1(RN) can be reduced to the case of v e BV(RN)Π L°°(/?") since this inter-
section is dense in L1(RN). In what follows, we set

v}; = (/ - λBk)~ιv for v e L 1 ^ ) .

Notice that

fyvt = λ-Hvi - υ).

LEMMA 4.3. Suppose that the positive numbers h and ε satisfy (1.11). Let
δ > 0 be such that 0 < ε < 1 whenever 0 < h < δ. Then we have:

(i) For each λ > 0 and each v e L ^ Λ ^ Π L 0 0 ^ ) , the set {vϊ; h e (0, δ)}
is precompact in L1(RN).

(ii) Let veBV(RN)ΠLco(RN) and let vλ be any cluster point of the net
{v£;0<h<δ9hl0}. Then vλ e D(BO) and λ~\vλ - v) = Bov\
Therefore R(I - λB0) 3 W(/T) Π L 0 0^") and

vi -> (/ - λBQγH in L\R") as h [ 0 .

PROOF, (i) For λ, h > 0 and y e RN, Lemma 2.3 implies

(4.1) Hitfll, ^ H | p , p = 1, oo, || V i f - ^ | | x ^ ||τ,f; - v\\t .

Therefore the Frechet-Kolmogorov theorem can be applied to prove the
assertion, if it is proved

im sup | ι ; Λ

A |
>too he(O,δ) J\χ\>p

(4.2) lim sup \v£\dx = O.
ptoo he(O,δ) J\χ\>p

In order to show (4.2), we first note that if υ e //(/?*) ΠL0^/?*), then estimate
(2.6) with k = 0 is still valid for any bounded continuous function φ ^ 0 with
bounded continuous derivatives up to the order 2. Take any such φ and
fix it, then the application of (2.6) with v = v^ and k = 0 implies

(4.3) λ-\\v£l φ} - λ-\\v\, φ> ̂  (sgn(vϊ)Bhv£, φ}

<sgn(t;Λ

A)Fε(ι;Λ

Λ, ξ\ φ(- + hξ) - φ}dξI
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+ h Σi.i Γ dθ(l - θ) [ξtξ,<sen(vi)Ft(υi, ξ), DtJφ( + θhξ)> dξ

We estimate the extreme right-hand side term by term. The first term lx

can be written as

Λ = <sgnfaf)|>4faί) - ,4(0)], Vφ> = P <|^|α(σ<), Vφ) dσ ,
Jo

and so it follows that

IΛI ^ Σ £ i sup{|β'(s)|; \s\ £ \\v\\J WDφWJv^ .

Next, by a change of variables, I2 is transformed into

*2 = h Σtj £ dθ(\ - θ) Jjrji + a'W Iξj + fl>(s)]

, s), D yφ( + θh(ξ + α(s)))>χ,(i, s) dξ ds

^ ί 1 - «) f f [A'(*)1/2f» + £ f l ί ( s ) ] [A'(s)1/2»i; + εαJ(5)]

• <sga(υi)F(vi, s), Dij(p(- + βΛε-1[j9,'(s)1'2ιf + εα(s)])>χ(fί) di; ds

Using the fact that supp χ c {η e RN; \η\ ̂  1}, we have

dθ(ϊ - θ) ίjsupίft'ίs)1'2 + |α(s)|; |s| g I^L, ε > 0}2

•<\F(v£,s)\,\\D2φ\L)χ(η)dηds

g [iV2ft/(2ε2)] sup{β '(s) 1 / 2 + |β(s)|; | s | ^ | M | X , ε > O}2||I>2<!E»ll«»llo|li

Thus we obtain the following estimate:

(4.4) λ-ιφi\, φ> £ λ-\\υ\, φ> + (ΣU sup{|a'(s)|; \s\ ̂  \\vU\\Dφ\L

+ [N2ft/(2ε2)] supίft'ίs)1 '2 + |α(s)|; \s\ ί \\v\U, ε > 0}2\\D2φ\\jMi •

We now take any function g e C^iR1) with the properties

g(s) = 1 for s ^ 1 , g(s) = 0 for s g 0 , O^g^l on R1,

and for any pair p, τ with p > τ > 0, we define
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gPAs) = g[(\s\ - τ ) ( p - τ ) " 1 ] f o r seR1.

Then it is easy to check that

gPtZ(s) = 1 for | s | ^ p , gPtX(s) = 0 for \s\ ύ τ

l l ^ τ L - > 0 , I I C I I o o - 0 a s p T o o .

If we set φPtX(x) = £?=i gPtt(
χil t h e n w e h a v e

(4.5)

0S<PP,τύN, φ P i t ( x ) ^ l for |x | ^ pNι>2, φ p » = 0 for | x | ^ τ ,

(4.6) l|βφPiτlloo ^ 0 , HDVp.JL ^ 0 as p T c»

Thus the function φpτ is bounded, continuous and has bounded continuous

derivatives up to the order 2. Thus we can substitute φpτ for φ in (4.4) to get

(4.7) -1 ί Iv^dx^λ-Wv^φ^
J\x\>pN1/2

^ λ \\v\, φPtt) + (ΣJLi sup{|α'(s)|; \s\ g ||t;|

+ [iV2/ι/(2ε2)] sup {i?;(s)1/2 + |α(s)|; | s | ^ | | ι; | | o o,ε>0} 2 | |Z) 2φ p, t | | o o

by (4.5). Therefore (4.5), (4.6), and the relation hε~2 = const, together imply

limsupp T o o supΛ e ( 0 > < 5 ) \v£\ dx ^ N \ \v\ dx .
J\x\>pN1'2 J|x|>τ

Since τ is arbitrary, we finally obtain (4.2).

(ii) For simplicity in notation we write /ijO for the convergence of a

null sequence (/ι(fc))£Li of positive numbers. Thus we write v£ -• υλ for the

convergence of a subsequence (ty,(fc))£Li to a cluster point vλ. We may assume

without loss of generality that υj; -> vλ as / i | 0 in LX(RN) and a.e. in ]?*. First

we will show that the function vλ satisfies the equation

(4.8) λ~ι{vλ -v) = Aβ(vλ) - VA(vλ) in @'(RN).

To this end, for any φ e C£(RN)9 we see from direct calculations that

(4.9)

λ-^vi-v, φ> = /z"1 f <Fβ(ιtf, ξ), φ( + Λξ) - φ> dξ

v£, ξ)ξ, Vφ> dξ + (h/2) ΣtjjξitjWvk* ίλ A7
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u Γ dθ(l - θ) [ξtξj<Ft(vϊ, ξ), Duφ( + θhξ) - Dyφ> dξ

We wish to check each term on the right-hand side of (4.9). First we see
with the aid of (4.1) that

(4.10) Λ = <A(vt), Vφ} -+ <A(vλ\ Vφ> as h j 0 .

Next, J2 can be transformed into

u ί ί [ί« + fli(s)] [ίί + «

Since χ is assumed to be a radial function, it is easy to show that

Ljtfo) ίty = 0 , jηtηjχ(η) dη = N" 1 J\η\2χ(η) dη δtJ .

Using these facts, one can rewrite J2 as follows:

J2 = [Λ/(2ε2)] Σ u j f t ' ί s ) ^ " 1 jl'/l'xί'/) dη δ^ <F(»ί, s), Dυφ> ds

+ (fc/2) Σ u [α' ίsJα^sXF^, s), Dij(p} ds

= J 2 1 + «̂ 22

Applying the relation (1.11) between A and ε, we see that

(4.11) J 2 1 = IjS;(s)<F(ι;Λ

λ,S),Δφ>ds-.<iS(ι;λ),Δφ> as fc|0,

and that

(4.12) I J22\ ^ (A/2) Σu Jsup{|β(s)|; \s\ g \\vU\\F(vt s)\9 \\D2φ\\»> ds

^ [ ( N 2 A ) / 2 ] s u p {\a(s)\; \s\ ̂  \\v\\9}
2\\υ\\1\\D2φ\L-+0 a s A j O .

The last term J3 is rewritten in the following way:
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'3 = hε~2 Σij Γ dθ(ί - θ) [ f [ft'ίs)1'2!?, + εa'isU [A'(s)1/2>y + ββ'(s)]

f, s), A M ' + θhε-ιiβ't(s)mri + ββ(s)]) -

Since supp F(y^(x), •) is contained in £ = {s e J?1; |s | ^ IMIoo} and |F(t»jί(x), s)| ^

l£(s) for a.e. xeRN by the definition of F, | J 3 | is estimated as

(4.13) IJ3 | ^ [(iV2Λ)/ε2] sup {β'(s)1/2 + \a(s)\; \s\ ί | |»L, e > 0}2 f d β ( l - θ)
J
f'

Jo

(1E(S\ IAjφ(' + θhε [βε(s) ' η + εa(s)']) — A/^DZW *"/ " s

^ [(ΛΓ2/i)/ε2] sup {#(s) 1 / 2 + |α(s)|; |s| g \\v\\^ ε > O } 2 ^ ! ^

sup{||D2φ( + θhε~x[_βί(s)ιt2η + εα(s)]) - D2φ\\1

|s | ^ HUIIQO, | ? / | ^ 1 , 0 ^ θ ^ l } - > 0 as/z jO.

Therefore, letting Λ | 0 in (4.9) and using (4.10) through (4.13), we obtain

(4.8). Finally, we show that vλe-D(B0). It is obvious from (4.1) that vλ e

L°°(/?N). On the other hand, it follows from the estimate

||τy!;
A - υλ\\x g liminfΛi0 \\τyv{; - υ{;\\ι ^ ||τyi; - v\\γ

and the condition v e BV(RN) that vλ e BV(RN). Furthermore, by (4.8),

Aβ(vλ) - VA(vλ) = λ-Hvλ -v)e.

which means vλ e D(B0) and vλ = (/ — λB0)~1v. Notice that our argument

stated above remains valid even if we start with any subsequence of (Vhik))^=ί.

This shows that any subsequence of {v^ h > 0} contains a subsequence which

converges in L^/?^) and its limit point is uniquely determined (as (/ — λB0)~1v).

Thus we can conclude that v£ itself converges to (I — λB0)~iv in L1(RN) as

*J0. •

PROOF OF PROPOSITION 4.1. Let (vk)%=1 be a sequence of functions in the

class BF(/?N)nL°°(/?N) such that vk^ v as k-+ oo in L 1 ^ ) . If we set

υlk = (/ - λBh)-\ , vλ

k =(I- λB0ΓX for K h > 0 ,

then it follows that v£k-+v£ as /iJ,0 in LX(RN) for each fe by Lemma 4.3

(ii). Hence Lemma 2.3 (i) implies

||z;fc

Λ - i^Hi ^ liminfΛi0 ||ι;Λ

Λ

>fc - ^ H j ^ ||t?k - i?,^ .

This means that the sequence (Ufc)£Li in D(B0) is Cauchy in L1(RN), and hence

that converges in L^/?^) to some element ^ e L 1 ^ ) . From this and the
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λ'^u^t) - u\t - λ)~] = Aβ(uλ(ή) - VA(uλ(ή)

holds Ίn 3)'{RN) for ίG[s,oo).
Let pn* be the usual Friedrichs mollifier with support {x e RN; \x\ g n~1}

defined for positive integer n by a radial function p. In what follows, we
denote pn * v by υn for a i? e Lloc(RN). Then it is easily seen that

(4.17) λ-ι[uλ{t) - u\t - λ)-]n = Aβ(uλ(t))n - VlA(u\ή) - Λ(0)]π

holds in the classical sense. Multiplying both side of (4.17) by [β(uλ(ή) -
and then integrating over RN, we have

(4.18) \\Vβ(uλ(t))J2

2 ̂  λ-'Wu^t) - u\t - XiUβ^it)) ~

+ C(κ) Σt \\A\u\t)) - A'ml +. κWβ{u\t))n\\l

where the constant C{κ) depends only on K G (0, 1). Therefore

(1 - κ)\\Wβ(uλ(t))n\\2

2 Sλ-'Wu'it) - uλ(t - A)||1-sup {β'(σ); \σ\ g r}r

where r = ||w0lloo Thus, for each fixed λ > 0, the family {Vβ(wλ)M; n ^ 1} is
bounded in L™(s, oo; L2(RNf); in particular, it is bounded in L2(s, Γ; L2(RN)N).
On the other hand, the sequence V/?(MA)Π itself converges to V/?(uλ) in
^(/? N x(s, T))N as n->oo, and so it is easily seen that VJ8(MΛ)GL2(S, T;L2(RNf).

Now suppose that w0 also belongs to D(B), hence

\Buo\ = liminfvi0 v"11|(/ - vB)~xu0 - M0III < °°

By virtue of the above observation, we can show that Vβ(u) e L2(0, Γ; L2(RNf)
for each T > 0. This will be proved via a compactness argument to the set
{Vβ(uΛ); A G (0, s)} in the space L2(s, T; L2(RN)N). Therefore we necessitate
showing the following assertion:

(4.19) r i i i ' W - uλ(t - λ)\\x ^ \Buo\ for te[s, Γ] .

To this end, for each v > 0 and integer j , fe, with j' S k

||(/ - λBΓk(I - vBΓ'uo -(I- λBΓ(I - vB^Uoh

= limΛi0 (k-j)\\(I-λBhy
1(I-vBkr

1u0 - (/-

g limΛi0 (k - nλv-'UI - vBJ^Uo - iiolU .
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by Lemma 2.3 (i) and Proposition 4.1. Hence, taking limits inferior as v j0,

(4.20) λ - 1 1 | ( / - λ B Γ k u 0 - ( I - λB)'Juo\\ x £ ( k - j ) \ B u o \ .

Putting k = [ί/A], j = [(ί - λ)/λ] in the above inequality, we obtain (4.19).

Since Vβ(uλ)n converges weakly in L2(s, T;L2(RN)N) to Vβ(uλ) as n->oo,

-/c) Γ

^ l i m i n g (1 - K) J ||Vj8(ιιA(ί))J|| at

^ (iSiiol-sup {j3'(<τ); |σ| ̂  A + C(fc)||iιollrΣί S U P {l f lV)l; \σ\ ύ r}2) rT.

Therefore {Vβ(uλ); λ e (0, s)} is bounded in L2(s, T; L2(RN)N). Since u\t) -+

u(t) as /IJ,O in L 1 ^ ) uniformly for bounded ί, we see easily that S7β(u)e

L2(s, T; L2(RNf) and

( l - κ ) l ||V/?(iι(ί))|||Λ

/ί'(σ); |σ| ^ r} + C(fc)||Molli " I* S U P U f lV)l; lσl ̂  r

Since the right-hand side of the above inequality does not depend on 5 and

5 can be taken arbitrarily, it follows that Vj8(tι) e L2(0, Γ; L2(RN)N).

To conclude that w is a BK solution of the problem (M) provided u0 e

BV(RN)nL">(RN)nD(B)9 it remains to show that ueBV(RN x (0, T)) for each

T > 0. But this is obvious from

||Dιι(ί)||M g liminfΛi0 | |DnΛ(ί)| |M ^ | |DII0IIM for ί ^ 0 ,

and the following estimate which is obtained by (4.20) with k = [t/λ]9 j = [s/λ]:

(4.21) \\u\t) - u^h ^ dt/λ] - ίsβ-])λ\Buo\ for 0 < 5 < t.

PROOF OF (ii). We first show that a BV solution z in the sense of Yin satisfies

the following identity: For each T > 0 and φ e C?(ΛN),

(4.22) <Ψ(z(t)\φ)-(Ψ(z(s)lφ)

τ)) - A(0\ V([j8(z(τ)) - /?(0)]φ)> rfτ

= - Γ <Vj8(z(τ)), V([/?(z(τ)) - j3(0)]φ)> dτ

holds for a.e. ί, s with 0 < s < t < T where Ψ(r) = \_β(σ) - )8(0)] dσ.
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fact that Bov£ = λ'1^ - vk) converges to A~1(i;A — ι;) in L 1 ^ ) , it follows

that vλ e D(B) and Bvλ 3 λ~1(vλ - v); notice that B is the closure of Bo. Hence

this shows that R(I - λB) = LX{RN) and vλ = (I - λBγιv, Further, it follows

from Lemma 2.3 (i) and Lemma 4.3 (ii) that

limsupΛ i 0 ||(/ - λBhyH -(I-

g limsupΛ i 0 [||(/ - λBhγh -{I- XBh)-\U + | | < k - v^\\x + K λ - Ό

k\\{\

Passing to the limit as k -• oo, we obtain the desired assertion. •

PROOF OF PROPOSITION 4.2. Clearly, it suffices to show that BV(RN)Π

L^iR") a D(βό). Let v e BV(RN)nu°(RN) and vλ = (/ - λBoγH for λ > 0.

Then Lemma 4.3 (ii) asserts that υ{; -+ vλ in L1(RN) as h [ 0. Hence we have

(4.14) | | ι ? λ | | p ^ | M | p , p = l , o o , | | τ X - υ% g | | V - t IU (y e RN)

from (4.1). Moreover, passing to the limit as /ijO in (4.7), we obtain

(4.15) λ~ι \υλ\dx
J\x\>pNV2

^ Nλ'1 I |t;| dx + (Xf=1 supίlα'ίs)!; |s| g IblUJIIDφp.JU

+ const. sup{j8ε'(s)1/2 + |α(s)|; \s\ ̂  \\O\\.,, ε > 0 } 2 | |D 2 φ p > t | | J \\v\\, .

For any positive number λ0 (4.6) implies that

limsupp t 0 0 sup λ 6 ( 0 , λ o ) \vλ\ dx ^ N \ \v\ dx .
J\x\>pNιl2 J\x\>τ

Therefore the set {vλ; λ e(0, >l0)} is precompact in L 1 ^ ^ ) . So we can choose

a null sequence (An)JLl9 y0 e L 1 ^ ) so that i;A" -• i?° as n -+ oo in L1{RN). On

the other hand, we see from the definition of Bo that

(4.16) vλ - v = λlΔβ{vλ) - S7A{vλy] in 9\RN).

Substituting λ = λn in (4.16) and letting H->OO, we see that the right-hand

side of (4.16) converges to 0 in <3'(RN\ since (4.14) and A n |0 . Hence v = v° e

The rest of the paper is devoted to show that the limit function T( )u0

obtained through the convergence (1.16) (with v replaced by the given initial-

value u0) is the desired solution of (M). We first observe that if u0 e L1{RN)f)

L™(RN\ the function u( ) = T(-)u0 lies in L*>{RN x (0,oo))Π C([0, oo);!/(/?")).
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Indeed, by virtue of (1.16), we see that uh(t) = SH/h]u0 -> u(t) as /zJ,0 in
LX(RN), uniformly for bounded t. This, together with the fact that
iιΛeC([0,oo); L X ( / ? N ) ) and \\uh(t)\L ^ K L implies that ueL™(RN x (0,oo))Π

Next we will show that u is a distribution solution to the problem
(M). Choose any φ e C$(RN x (0, oo)) and recall that h^lu^t + h) - wΛ(ί)] =
Bhuh(ή by the definition of wΛ. Multiplying both sides by φ, and then integrat-
ing the resultant equality with respect to (x, t) over RN x (0, oo), we obtain

Γ
Jo

WO - hξ)9 ξ) - FE(uh(t\ ξ\

Recalling that supp φ is compact in RN x (0, oo), we have

" f" <uh(t), (-hΓ'lφi*, t - h ) - φ(; ί)]> rfί
JΛ

£ ° j(uM ξ\ h-'lφi + Λ{, ί) - φ(;

for sufficiently small /i > 0. Therefore, in a way similar to the derivation of
Lemma 4.3 (ii), we obtain

- \uφt dx dt = \ lβ(u) Aφ + A{u)Vφ] dx dt.

We will prove that (i): u is a BV solution of the problem (M) provided
that UoeBViR^nL^iR^ΠDiB), and then that (ii): u is a weak solution of
the problem (M) provided that w0 e L^/f^

PROOF OF (i). First we define, for λ > 0, an L1 (/?*)-valued function:

tι*(ί) = (/ - λB)-[t/λ]u0 for t ^ 0 .

Notice that wΛ(ί)->w(r) as 2 | 0 in L 1 ^ ) uniformly for bounded ί by the
exponential formula. Therefore it is seen that if u0 belongs to BV(RN)f)
L 0 0 ^ ) , then {Vβ(uλ); λ e (0, 5)} c L2(s, T; L2(RN)N) for each 5, T with 0 <
s <T. Indeed, the restriction of the operator (/ - IB)"1 to BV(RN)ΠLCO(RN)
coincides with (/ - XBQ)'1 by Proposition 4.1 and Lemma 4.3 (ii). From this
it follows that

uλ(t) = (/ - λB0Y
ιuλ{t - λ) for t G [s, 00)

since uλ(t - λ) e BV(RN)f) L^R"). According to the definition of Bθ9
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We now proceed our argument in a way similar to [18], Proposition

5. By the definition of BV solution in the sense of Yin, it is easily seen that

for each φeC£{RN x (0, T))

(4.23) I φ(dz/dτ)-\ (A{z(τ)) - A(0), V^(τ)> dτ
JRNx(0,T) Jo

Γ
Jo

Now, applying the same argument as in the proof of Proposition 3.3, we will

substitute (at least formally) the test function \_β(z) — j5(0)]φl [ s ί ] for φ in

(4.23), where l [ s ί ] means the characteristic function of the interval [s, ί]. For

Γ 0 0

this purpose, let j e CQ(R ) with j ^ 0, supp; cz [—1, 1], j(σ) dσ = 1 and
J - 0 0

define for v > 0

αv(τ) = Λ
J —oo

σ) dσ for τ e R1 ,

where jv(σ) = v^jiv^σ). Since supp[αv( - s) - αv( - ί)] c [s - v, t 4- v], ζv =

φ[αv( - s ) - α v ( -f)] belongs to C$(RNx(0, Γ)), provided 0<v<min{s, T-ή.

We then extend \_β{z) - jS(O)]Cv as the zero-extention on RN x R1. Then the

desired test functions are defined as follows:

ψv,s = P5*(ίβ(z)-β(0mv) for δ>0,

where pδ* is the usual (N + l)-dimensional Friedrichs mollifier with support

{(x, τ) G RN+1; |(x, τ ) | ^ δ } defined for positive number δ by a radial func-

tion p. Since ψyfa e C£(RN x (0, T)) for sufficiently small <5, (4.23) is valid for

φVfδ replaced by ψ. On the other hand, [β(z) - j?(O)]Cv € BV(RN x (0, T)) and
V([j8(z)-jS(0)]Cv)eL2(0, T;L2(RN)N\ and so we can take the limit as δ[0

in (4.23) with φvδ in the same way as in the derivation of (3.20);

(4.24)

<p[αv(' - s) - αv( - ί)] Lβ(z) - j?(O)](δz/δτ)
RNx(0,T)

-ί [αv(τ - s) — αv(τ - ί)] <>4(z(τ)) — A(0\ V([/?(z(τ)) — j?(O)]φ)> dτ
o

ΓT

[αv(τ ~ s) - αv(τ - ί)] <Vj8(z(τ)), V([jS(z(τ)) - 0(0)] φ)> dτ .
Jo

Owing to the result due to Yin ([21], Lemma 2.3), the set of jump points
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of z, i.e. {(x,τ)eRN x (0, T); z~(x, τ) < z+(x, τ)}, is negligible with respect to

the Hausdorff measure of dimension N. This implies the identities

dΨ(z)/dτ = [jj(z) - β(O)Wz/dτ) = [j8(z) -

in the sense of measures. Hence the first term on the left-hand side of (4.24)

is transformed as follows:

JΛ N X(O,Γ)

-T
Jo

= [Λ(τ - 0 - Λ(t -
Jo

< Ψ(z(τ)\ φ} (d/dτ) [αv(τ - s) - αv(τ - t)] dτ

Therefore we obtain (4.22) for Lebesgue points ί, s (0 < s < t < T) of the

function <!P(z( )λ <P> by letting v | 0 in (4.24).

We then prove the assertion (ii). For a general element MoeL1(i?Λr)Π

U°(RN\ we can apply Proposition 4.2 to choose a sequence {uOm)™=1 contained

in D(B0)(c:fl7(Λ")nLTO(ΛN)nί)(B)) so that uOm^uo in L 1 ^ ) as m->oo

and ||wOm||oo ^ ||Mollαo- Set um(τ) = T(τ)uOm for τ ^ 0. Then, as shown in (i),

um is a £ F solution (in the sense of Definition in Section 1) with um(0) = uOm

for m ^ 1. Since each wm is the semigroup solution, it is obvious that um e

oJ L 1 ^ ) ) . Hence for each / e Γ f ^ ) , the function τe[0,oo)->

T)),/> is continuous, more precisely Lipschitz continuous by (4.22).

Thus, as seen before, each function um satisfies (4.22) for all ί, s with 0 < s <

t< T.

Therefore we obtain

J'rfτJ|V/?K

< f

f

(τ))|2 <p dx

2dτ+\\Ψ(um(t))-Ψ(u,

\\β(um(τ)) -

for all t, s with 0 < s < t < T. Substituting φk for φ, where ((j9t)ί°=i is the

sequence of smooth functions as defined in the Section 3, and then letting k

tend to infinity, we obtain the following estimate for the energy term by

using (3.23) and (3.24):
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f
^ \\Ψ(um(ή) - Ψiujsfih + J ' \\A(um(τ)) - A(0)\\2\\Vβ{um{τ))\\2

ί sup {\β(σ) -

P - A(0)\\l + *| | Vj8(um(τ))|||)

where r = HMQIÎ , 0 < /c < 1, and a constant C(κ) depends only on K. Hence

( 1 - κ ) ^ \\Vβ(um(τ))\\2dτ

S 2 sup {|jί(σ) - j8(0)|; \σ\ ύ r} -sup {||wOm||i; m £ 1}

+ C(κ)r sup {llwomlli; m ^ l}(ί ~ s) Σ* sup {\a\σ)\; \σ\ ^ r}2 .

Thus {Vβ(uJ;m^ 1} is bounded in L2(s,t; L2(RN)N). Since um(τ) converges

in L 1 ^ ) to u(τ) as m->oo uniformly for bounded τ, we obtain Vβ(ύ)e

L2(s, t; L2(RN)N). Thus w is a weak solution of the problem (M).
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