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Introduction

This paper is concerned with the Cauchy problem for a nonlinear degener-
ate parabolic equation of the form:

{ U+ VA@u) = Apw)  (x,t)e RN x (0, 00)
u(x, 0) = uy(x)

where V is the spatial nabla, A is the Laplacian in RY; A(s) = (4'(s), ..., AV(s)),
A'e CY(RY), i=1,..., N, and B is a locally Lipschitz continuous and strictly
increasing function on R'. In view of the assumptions on B, the derivative
B’ may have a countable number of zero points, and so the parabolicity of
the above equation may degenerate at those points. A broad class of non-
linear degenerate parabolic equations can be written in the form (M) by
choosing suitable functions g and 4% i=1, ..., N. Since this equation is a
combination of the single conservation laws and the so-called porous medium
equations, the degeneracy of f(u) may interact with that of A(u), and so the
study of the problem (M) is important from not only the theoretical point
of view but also from the point of view of the application to various evolution
problems. On the other hand, it does not seem to be known except some
special cases that the semigroup approach to the problem (M) is considerably
effective. Therefore it is important to make an attempt to treat the problem
(M) in an operator theoretic fashion and construct semigroup solutions to (M).

In this paper we discuss the Cauchy problem (M) via the so-called kinetic
approach for scalar quasilinear first order equations of conservation type
which was proposed by Giga and Miyakawa [10]. This approach is suitable
for treating nonlinear evolution problem of this type and their result was
extended to a more general form of conservation laws in the subsequent
paper [11] by Giga, Miyakawa and Oharu. In both of the two papers cited
above, the convergence of approximate solutions is obtained through the
compactness theorem for functions of bounded variation. On the other hand,
Kobayashi [13] constructed the approximate solutions by using the solutions
of the linear Boltzmann equation and established their convergence via the
nonlinear semigroup theory. Making careful observations of the limiting pro-
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cedure, Miyakawa [16] derived a linear viscosity term and Kobayashi [14]
treated the porous medium equations in the same spirit. It is interesting
to note that in each of the above-mentioned typical cases the nonlinear
semigroup theory was efficiently applied to obtain the convergence of the
approximate solutions. In this paper we show that this approach is also
appropriate for constructing physically right weak solutions to the problem
under consideration.

Our problem (M) is a linear combination of the quasilinear first-order
hyperbolic conservation laws and the porous medium equations. Therefore,
in order to apply the kinetic approach to the problem (M), we necessitate
formulating the associated linear Boltzmann equation so that the macroscopic
quantity (u in our case) is decomposed into microscopic quantity by means
of appropriate kernel functions. The substantial obstruction to be encoun-
tered is to solve the uniqueness problem for the stationary problem associated
to (M). Concerning the uniqueness of solutions to (M), Vol'pert and Hudjaev
[19] have established a uniqueness theorem for a more general case by using
their theory of functions of bounded variation. However, the concept of their
solution does not fit our approach.

Recently, Yin [21] succeeded in proving the uniqueness of the so-called
BV solution of (M) which is more natural and convenient than the solutions
treated by Vol'pert and Hudjaev. He showed that the set of jump points
of BV solutions is negligible with respect to the N-dimensional Hausdorff
measure. Appealing this fact, he removed the difficulty which is caused by
the discontinuities. Inspired by his results, we find a dissipative operator
associated with (M). It turns out that the kinetic approach is applicable to
the nonlinear degenerate parabolic equations of the form (M) in a natural way.

Throughout this paper we employ the same notation as in Miyakawa
[16]. Further, some of the results stated here have already obtained in the
works [10, 11, 12, 13, 14 and 16] and some other results can be easily derived
through slight modifications of well-known results, although we shall give a
full description of those results for the sake of completeness.

ACKNOWLEDGEMENT. In the preparation of this paper, the author received
many valuable suggestions and constant encouragement from Professor T.
Miyakawa. His thanks also go to Professor Y. Kobayashi and Professor S.
Oharu. Without their advice and interests in this work, this paper would
not be accomplished.

1. Formulation and statements of the main result

We first outline the kinetic approach to the Cauchy problem (M). In
terms of kinetic theory of gases, the motion of gases can be described in two



Nonlinear degenerate parabolic equations 579

ways: the macroscopic and microscopic approaches. We regard (M) as a
model of macroscopic conservation laws in fluid mechanics, while the corre-
sponding microscopic model is the linear Boltzmann equation in the phase
space;

B) { fi+E9f=0 (x,&t)eRY x RY x (0, 00)

f(x9 é) 0) = f()(x? é)

where the unknown function f stands for the density of particles of gas at
the position x € RV with velocity ¢ € RV at time t 2 0. In order to justify
this formulation, we regard u(x,t) as a macroscopic quantity and define a
microscopic quantity by

u(x,t)

fx, & 0= f & —a(s) ds,

0

where appearing functions y and a will be introduced in (1.4) and (1.9) be-
low. Then the following relations can be easily verified:

(1.1) u(x, t) = ff(x, ¢ 1)dc,
(1.2) Au(x, 1) — A(0) = jéf(x, ¢ dg,

where J[-“] d¢ stands for the usual integral of [---] over RY. Therefore,

if f satisfies the linear Boltzmann equation (B) at time ¢, then

h™ [u(x, t + h) — u(x, )] = jh_‘[f(x, SGt+h)—flx & nldd

> —fﬁVf(x, &) dE = —VAu(x,t) as h|O0.

This means that u satisfies the following hyperbolic equation (H) at time ¢:
(H) u,+VAu) =0 (x,t) € RV x (0,00).

The relation (1.1) means that the macroscopic quantity u(x, t) is decomposed
into microscopic one f(x, & t) in the phase space so that the compatibility
condition (1.2) may hold and the flux A may be treated in an appropriate
way. The above observation suggests that, by means of a suitable decomposi-
tion, the integral with respect to the velocity argument ¢ of solutions to the
problem (B) with initial value obtained through the operations u+— f and
uy— f(+, £, 0) may approximate the solution of the problem (M). In fact, we
can construct such a new decomposition in the following way.
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Let x be a function with the following properties:

(13) xeCy(RY), x=0onR", supp yc{leR";|¢I=1},
(L.4) x(&) = x(1&]), fx(ﬁ) at=1.

Let
1 O<s=zw
(1.5) F(w,s) =< —1 w=ss<0).
0 (otherwise)

We then consider a family of functions {f,; ¢ > 0} contained in C L(RY) which
gives a regularization of B in the sense that

(1.6) Bis)>0 for seR', B —-B asel0inLZ(RY),
(1.7) sup{B.(s); |s| <r,e >0} < © foreach r > 0.

For the above mentioned functions, we define two functions y, and F, by

N
(18) Xe(és S) = <ﬁ£,(:)1/2> X<ﬁ£(:)1,2 é) for (é, S) € RY x R} ,

(1.9 F(w, &) = fF(w, 8)x.(& — a(s), s) ds for (w, £)e R* x RV,

where  a‘=dAYds,  a(s) = (a'(s), ..., a¥(s)).

In the case of hyperbolic conservation laws, it is not necessary to employ
the functions {yx,; &> 0}. Then, the following conditions corresponding to
(1.1) and (1.2) are easily checked by means of above relations.

(D) w= fFe(w, &) dé¢ for we R,

© Aw) — A(0) = f{Fs(w, &) d¢ for we R'.

To verify that the family of functions {F,; ¢ > 0} gives the desired decom-
position, we consider solutions of (B) with initial values of the form F,(uq(*), &),
£>0. Let {Ukt);t = 0} be the family of solution operators to the problem
(B). We define a family of nonlinear operators {S,; h > 0} by

(1.10) Spo = JUg(h)Fe(v('), ¢)d¢
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for ve LL,(RY) for which the right-hand side of (1.10) makes sense and ¢ is
a positive number satisfying the following stability condition:

h

(1.11) NS

JI&IZX(E) dd=1.

For any ve L*(RV)N L*(R"), we can show (see the proof of Lemma 4.3
(i1)) that

(1.12) h™1(S,v — v) = AB(v) — VA(v) in 2'(RY) as h|0.
Therefore it is expected that for each h > 0 the function
(1.13) uh(t) = S,[lt/h]uo

approximates the solution of (M), where [s] denotes the greatest integer which
does not exceed se€ R'. To ensure the convergence of approximate solution
u,, we employ the approximation theorem for nonlinear semigroups due to
Brezis and Pazy [8].

In order to treat the problem (M) via the nonlinear semigroup theory,
it is necessary to find a dissipative operator B which is a formal expression
Bv = AB(v) — VA(v) in an appropriate function space. To this end, we formu-
late two operators B, and B. First we define B, in the following way:

(1.14) veD(By), weByv if and only if v, we BV(R")NL®(R") and
j[ﬁ(v)A(p + A(W)Ve]l dx = fmp dx for Vo € CY(R").

Obviously, B, is a singlevalued operator, hence Byv = Af(v) — VA(v) holds in
2'(RY) for ve D(B,). The second operator B is defined to be the closure of
B, in L'(R"), i.e., ve D(B), w e Bo if and only if there exists a sequence (v,),
in D(B,) such that (v,, Byv,) = (v,w) in L'(R")> as n— . In Section 4
we show that the operator B is a densely defined m-dissipative operator in
L'(RM), and so that, by the generation theorem for nonlinear semigroups due
to Crandall and Liggett, there exists a nonlinear semigroup {T(t);t = 0} on
L*(RY) in such a way that for each v e L'(RY)

(1.15) (I — AB)™"4y  T(t)v in L'(R") as 40

uniformly for bounded t.
In order to state our result, we introduce two notions of generalized
solution to the Cauchy problem (M).

DEFINITION. For ug € L'(R¥)N L®(RY), a function ueL®(R" x (0, c0))N
C([0, ©); L'(R")) is called a weak solution of the problem (M) if u(-,0) = uy,
VB(u) € L*0, T; L*(R")V) for all T > 0, and the function u satisfies
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Jw J[u(p, + Aw)Ve] dxdt = on fVB(u)V(p dxdt .
0 0

for each ¢ € CT(RY x (0,0)). If in addition u € BV(R" x (0, T)) for each T >
0, then u is said to be a BV solution of the problem (M).

REMARK. The above notion of BV solution of (M) is a modified version
of the notion proposed by Yin [21] in the sense that the BV solution of
Yin belongs to C([0,o0); L'(RY)). Since the BV solution in the sense of
Yin is unique, it is obvious that our BV solution is also unique.

Our main result in this paper can be now stated as follows.

THEOREM. Let y and {B,;e> 0} be any functions satisfying (1.3), (1.4), (1.6)
and (1.7). Suppose that the numbers h > 0 and ¢ > 0 satisfy the stability condi-
tion (1.11). Then, we have:

(a) For each ve L'(RV),

(1.16) SEMy Tty in LY(R") as h|0

where the convergence is uniform for bounded t.

(b) If uge LY(R¥)NL*(RM), the function u(x,t) = [T(t)uy](x) gives a
weak solution of the problem (M).

(©) If uge BV(RY)NL*(RN)N D(B), where D(B) denotes the generalized
domain of the m-dissipative operator B, the function u(x,t) = [T(t)up](x) gives
the unique BV solution of the problem (M).

2. Basic properties of the operators S,

First we recall the approximation theorem for nonlinear semigroups due
to Brezis and Pazy [8] and state it for our convenience.

THEOREM 2.1. Let X be a real Banach space and {C,; h >0} a given
family of contraction operators on X. If the limit

J(A)v = lim, o [I — 2h71(C, — D] "o

exists for all ve X and all A >0. Then there exists a m-dissipative operator
A in X such that J(A) = (I — AA)™! for all A >0, and

ClMy - T(t)v as h |0 uniformly for bounded t

for each ve D(A), where {T(t);t = 0} is the nonlinear semigroup generated in
X by A

We wish to apply the above theorem to the case where the Banach space
X is L*(R") and the operators C, are S,. To do this, we prepare some basic
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estimates concerning the operators S, and the resolvents [I — Ah~Y(S, — I)] L.
Here and hereafter, |‘||, denotes the usual norm of the Lebesgue space LP(R"),
1 £p< . We represent the duality pairing between the Lebesgue spaces
LP(RY) and LYRY), 1/p+ 1/g =1, by {,>. The same bracket ¢{,)> will also
be used for the case of vector-valued Lebesgue spaces.

LEMMA 22. Let t,, yeR", be the translation operators defined by
[t,0](x) = v(x + ).

(i) S, is a contraction operator on L'(R") and
1Syoll, £ llvll,  for ve L*(RY).

(ii) 1,8, = S,1, for ye R".
(iii) S0l < lvlly for ve L*(RY).

Proor. We first recall the basic properties of the function F defined in
(1.5):

2.1) F(-, s) is nondecreasing for a fixed se R!,

2.2) F@0,s)=0, supp F(w, -) = {se R'; |s| < |w]|},

2.3) Jf(s) [F(v,s) — F(w, s)] ds = Jvf(s) ds for feL}.(R'), v, we R .
In particular, w = J‘F (w, s)ds, |w| = J|F (w, s)| ds and

(2.4) |v—w|=f|F(v,s)—F(w, s)| ds .

See Kobayashi [12] for the detailed argument. We employ these facts.

(i) For each v, we L'(RN),
JlShU — Swldx < fdx J.|FE(U(‘ — h&), &) — F,(w(- — h¢), &)l d¢
= jdé JIFa(U(‘ — h&), &) — F,(w(- — h¢), )| dx

=fd€f|Fs(v, &) — F(w, &)l dx = jlv—WIdX-

In the derivation of the extreme right-hand side of the above equality we
have used the following identity which is a direct consequence of (2.4):
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v —w| = f]Fe(v, &) — F,(w, &)| dé for v, we R'.

Since S,0 = 0 by definition, we obtain ||S,v||; < |v]|; by putting w =0 in the
above estimate.

(i) [, 8] (x) = <st(v(' —hé), ¢) df) (x+y)
= fFe(v(x +y—h), &) de

= jFE([Tyv](x — hé), &) dE = [S,7,v](x) -

(ili) Since F,(-, ¢) is nondecreasing function for fixed ¢ € RY by (2.1),
F(—= vl &) < F(v(x — k), &) < F(llvllos &) ae. xeRY.
Integrating the resultant inequality with respect to ¢ over R, we obtain
—Ivlle £ [Spv](x) £ V], ae. xeR'. H
In what follows, we employ the nonlinear operator B, on L!(R") defined
by
(2.5 B,=h7'(S, — 1) for h>0.
For a fixed h, A >0 and ve L'(R"), the operator
Fw=hth+ )"+ Ah+ A)7IS,w for we LY(RV),

defines a strict contraction operator on L'(R") and the subspace L'(R")N
L*(R") is invariant under % (v) by Lemma 2.2, the contraction mapping princi-
ple asserts that #(v) admits a unique fixed point in L!(R"). Thus the re-
solvent (I — AB,)™! of B, exists and the following lemma follows directly from
Lemma 2.2.

LeEMMA 23. (i) (I — AB,)™! is a contraction operator on L*(RY) and
(I = AB,) ||y < |lvll, for ve LY(R").
(ii) t,(I —AB,)™' = — AB,)™'1, for ye R".
(iii) (I — AB,) "ol < llvll,, for ve L*(RY)N L™(RY).

The following lemma plays a central role in ensuring the precompactness
in L*(R™) of various families of functions which will appear in our subsequent
discussions.

LEMMA 24. Let ve L®(RY), keR' and ¢ € CY(RY) with ¢ 2 0. Then .
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(2.6) Csgn(v — k)Byv, ¢)
< f(Sgn(v — K[F@, &) — F(k, &)1, h ' [Ug(h)* — o) d¢,

where Ug(h)* is the dual operators in L®(R") of Ug(h).
Proor. First we note that B,k =0 by the definition of S,. Therefore

(2.7) <sgn(v — k)Byv, ) = (sgn(v — k)[B,v — B,k], )
= f<[Fa(v, &) — Fi(k, )1, k™' [Ug(h)* — I1[sgn(v — k)] > d¢ .

Since |sgn(v — k)o| < ¢, the order-preserving property of the operators U,(h)*
implies that U(h)*[sgn(v — k)¢] < Ug(h)*p. Using this, the extreme right-
hand side of (2.7) does not exceed

h! f(lFe(v, ¢) — Ei(k, &), U(W*o) d&

—h™! J([Fe(v, ¢) — Fi(k, &), sgn(v — k) d& .

On the other hand, F,(w, ) is nondecreasing in w and |F,(v, &) — F,(k, &)| =
sgn(v — k)[F,(v, &) — F,(k, £)], we obtain the desired estimate (2.6). W

3. Dissipative operator B,

In order to investigate the properties of the operator B, defined by (1.14),
we prepare some fundamental facts on the functions of bounded variation.
For the basic notions and results we refer to [1], [2], [20] and [22].

We denote by |E| the Lebesgue measure of a Lebesgue measurable set
Ec RY and by #"'(E) the (N — 1)-dimensional Hausdorff measure of a
Borel set E < R¥. We define an extended real valued seminorm |D-|,, on
L'(R) by

3.1)

I Dollp = sup{jv div ¢ dx; ¢ = (9%, ..., ¢") e C3(RY; RY), max; | ¢'|, < 1} -

We say that v e L'(R") is a function of bounded variation in R if the quantity
| Dvl|,, is finite. Notice that for v e W*!(R") the left-hand side of (3.1) coin-
cides with YV, ||ov/0x;|,. We denote by BV(R") the space of all functions of
bounded variation in RY. The space BV(R") is a Banach space with respect
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to the norm ||v]gy = ||v]l; + |[Dvflp. It is easily seen that for v e BV(R") the
distributional derivatives D,v, i =1, ..., N, are regarded as elements of the
space M(RM) of Radon measures on RM with finite total variations. We
denote by |Dv| the total variation of the vector-valued Radon measure Dv =
(Dyv,..., Dyv). The total variation |Dv| itself defines a measure and for every
open set 2 c RV the integral of the measure |Dv| over Q is given by the
right-hand side of (3.1) with @ e CY(R"; R") replaced by ¢ € CX(22; R").

In what follows, we denote by f fD,v the integral on a Borel set E = RY
E

of a integrable function f: E — R! with respect to the Radon measure D;v. In
this case, we define the vector-valued Radon measure fDv = (fD,v,..., fDyv) by

(3.2 [fD:v](E) =J fDw for Borel set E = RV .
E

We also write f fDv = ’,Llf fD,v for a vector-valued integrable function
E E

fiE->RN f=0"1....f").
Let E < RY be a Lebesgue measurable set. A unit vector n is called a
measure-theoretic normal to E at a point x ([22], Definition 5.6.4), if

. lim, ;o r "M B(x, )N {y; (y —x)'n <0,y E}| =0
an

lim, ;o r ¥|B(x, )N {y;(y —x)'n>0,ye E}| =0.

The measure-theoretic normal to E at x is uniquely determined for x and
E, and is denoted by n(x, E). We write

0*E = {x € R"; n(x, E) exists} .

For ve BV(R"), the Fleming-Rishel coarea formula holds as follows:
(3.3) |Dv|(E) = I AN UEN*v>t})dt
for each Borel set E = RY. As a simple consequence of formula (3.3) we have
3.4 tDv|(E) =0 for all Borel set E = RY with #VN " }(E)=0.

For a Lebesgue measurable set E = R", the upper and lower density of
E at a point x is defined respectively by

D(E, x) = limsup, o | EN B(x, n)|/|B(x, ),
D(E, x) = liminf, ;| E N B(x, r)|/| B(x, r)| .

In the case that the upper and lower densities are equal, we define the density
of E at a point x, denoted by D(E, x), by their common value.
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Let v be a Borel function defined on RY. The upper and lower approxi-
mate limit of v at a point x is defined ([22], Definition 5.9.1) by

v*(x) = inf{t € [ -0, 0]; D(4,, x) = 0} where 4, = {y € RY; v(y) > t},
v~ (x) = sup{t € [—o0, 0]; D(B,, x) = 0} where B, = {ye R";v(y) < t},

respectively. Notice that v* and v~ are both Borel functions, and that v~ <
v*.
A point xe R" is called a regular point of v if v*(x) and v~ (x) are finite,

and the set of all points of jump of v is denoted by I,, that is,
I,={xeRv (x)<v*(x)}.

The set I, is a Borel set and negligible with respect to the Lebesgue measure.
For a ve BV(R"), it is known ([22], Theorem 5.9.6) that

(i) —o<v (x)£v*(x) < o for #¥ -ae. xeR".
(ii) I, is countably (N — l)-rectifiable, i.e., there exists a sequence of
compact sets (K,)>, and a set J with #V1(J) =0 such that

I = (U K)UJ

and each set K, is contained in a C'-hypersurface.

(iii) For " !-ae. x eI, the measure-theoretic normal n(x, 4,) to A,
at x exists whenever v~ (x) < s < v*(x), and n(x, 4,) does not depend
on the choice of s. In what follows, —n(x, A;) is denoted by v,(x)
for such x € I,. We write v for the i component of v,. Therefore
v, =L, ...,vN).

For each x e I, at which the assertion (iii) holds, it is known that

lim, o |B*(x, )| J lo(y) —v*(x)Idy =0,

B*(x,r)

lim, o [B™(x, r)| ™! f [o(y) — v (x)|dy =0,
B~ (x,r)
B*(x,r) = {y € B(x, r); (y — x)"v,(x) > 0},
where
B™(x,r) = {y € B(x,r); (y — x)- v,(x) < 0} .

As shown in [20] the restrictions of the measure Dv and its total variation
to I, admit the following representations: For each Borel set E = R", we have

(3.5) Dv(ENT,) = f [v" — v ]v, d#N 1,

ENT,
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(3.6) |Dv|(EﬂI'{,)=J [v* — v ]do#" 1.

ENT,

Further, the chain rule for the distributional derivative of the composite func-
tion is formulated as follows ([1], Theorem 2.1): If ¥ is a locally Lipschitz
continuous function on R! and v € BV(R¥)N L*(R"), then D[¥(v)] is a vector-
valued Radon measure on R" with finite total variation, Iy, = I, and for
each Borel set E c R,

3.7) D[Y()J(ENTy,) = f [Pw*) — P )]y, d#N L.
ENT,

For a regular point x € RM of a Borel function v, the Vol'pert’s averaged
superposition of fe C(R') and v is defined by

N 1
(3.8) fv)(x) = J SO (x)+ (1 — 0~ (x)) db .
0

In a similar way, for a regular point x € RN of a Borel function v, the average
value of v at x is defined by

(3.9) o(x) =27 [v*(x) + v~ (x)] .
Notice that 7(x) = v*(x) = v™(x) at any regular point x € (/)¢ and
(3.10) v=v a.e. with respect to the Lebesgue measure .

Furthermore it is seen from the definitions that the following relation

(3.11) fv) = f(®) = fv)
holds at the regular points of v outside of I.

By means of the above-mentioned functions, the following formulas
concerning superpositions and products are obtained: For v, we BV(RV)N
L*(R"),

(3.12) D¥(v) = ‘I/’\’(v)Dv in the sense of measures,
(3.13) D(vw) = wDv + tDw in the sense of measures .

Here, the right-hand sides of (3.12), (3.13) are interpreted in the sense of (3.2).
Finally, we prepare the following two lemmas which will be effectively
used in the subsequent discussions.
Let p be a Lebesgue measurable function satisfying the following condi-
tions:

peL”(R")*, supppc{xeR";|x| <1}, jp(x)dx=1.
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The corresponding averaging kernel is defined by p;, = 6 Vp(-/8), 6 >0. In
the case that the kernel function p is radial, the averaging kernel is said to
be symmetric. Then the average value is characterized in the following way
([20], p. 182 Theorem 1)

LEMMA 3.1. Let v be a Borel function defined on an open set 2 — R
and ve L} (). If xeQ is a regular point of v, then

Lps*v](x) = L ps(x — y)o(y)dy - 5(x)  as 6,0

for any symmetric averaging kernel p;, 0 < 6 < d(x, 09Q).

LEMMA 3.2. Let v=(',...,v")e BV(RY; RY) and ¢ € C{(RY). Then

f D(qw)(z J y D.-(q»v")) =0.

PrROOF. We choose a sequence (v,)i2; = C*(RY; R¥) in such a way that
lov =0’y >0 and  |Dully — D'y, as k-

by the approximation theorem for BV functions ([22], Theorem 5.3.3). Since
{Dvj;k 2 1} is bounded in L'(R¥)"(c= M(RM)V), we may assume that D,v}
converges weakly in M(RY) to D,v' as k —» oco. Hence we have

jD(q)v) =, Vo) + 3 jq)Div"

= limy., ({0, V) + 2i<0, Dyiyd) = lim,., fZi Dy(¢vy) dx .

Since supp ¢ is compact, the integral of Y ; D,(¢vi) over R" is zero for each
k by the classical divergence theorem. Thus we obtain the desired asser-
tion. W

Using these powerful properties of functions of bounded variation, we
can prove the next proposition that is essential to establish our main theorem
via the approximation theory for nonlinear semigroups. The idea of its proof
is based on the result due to Yin [21].

ProrosITION 3.3. The operator B, defined by (1.14) is dissipative in
L'(R"); ie.

(3.14) lv—wlly £ I — ABy)v — (I — ABy)wl; for v, we D(B,), A>0.

ProoF. First we assert that #VN}(I,) =0 for ve D(B,). Since f is lo-
cally Lipschitz continuous and v e BV(RY)N L®(RN), it follows that D;f(v) €
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M(R™) for i=1, ..., N (see [1], Theorem 2.1). Applying formula (3.7) to
DB(v), the following identity is valid:

f fDipv) = fIBW™) — Bwv™)]v, d#™
ENTy(v) ENT,

for each Borel set E = R" and each Borel function f which is bounded with
respect to Hausdorff measure #V~!. Taking f = sgn v} in the above identity
and adding up both sides with respect to i from 1 to N, we obtain

(315 TV, f

ENTy(v)
Now by the definition of B,, v € D(B,) = BV(R¥)N L*(R") = L*(R") and
|A(v) — 4(0)| < sup{la‘(s)l; Is] £ vllo} o]

Therefore A'(v) — A'(0) e L%(R") and D,;A'(v) e H *(R"), where H*(R"), se R',
denotes the Sobolev spaces defined via the Fourier transform. This together
with the relations Byv € BV(RV)N L®(RY) = L*(R"), we have

sgn v,D;p(v) = Lnr [B@™) — Bw )] XK, vyl do#™" .

AB(v) = By + VA) e H(RY) .

Notice that B(v) — B(0)e L*(R"), we have D,f(v)e L>(R"). From this we
see that D;B(v) e M(RY)N L?(R¥) = L'(R"), and hence that the measure D;B(v)
dose not have a singular part with respect to the Lebesgue decomposition.
This implies that the following identity holds:

[D:B(v)](E) = f D;B(v) dx for each Borel set E < R".
E

Therefore (3.15) can be rewritten in the following form:

3.16) YL f

ENTy(v)

sgn v:D,f(v) dx = j

EN

i [Bw*)— B )N, [vilds#Nt.

Since v* > v~ holds #"'-ae. on I, and B is strict increasing, it follows
that B(v*) > B(v™) holds #" '-ae. on I,. Also, YN, |vi(x)] >0 holds for
H#Nlae xel, from v (x)e S¥!. Combining these results, we see that the
integrand of the right-hand side of (3.16) is strictly positive #" '-ae. on
I,. On the other hand, since |l =0, the left-hand side of (3.16) is equal
to zero. Therefore it follows that #V"1(ENTI,) =0. Now Borel sets E = RY
are arbitrary, the property (i) of I, yields #N~(I) = 0.
Next we show (3.14). Set v’ = Byv, w' = Byw. By definition,

(B17) o' =W ) = —<VB() — VB(W), V) — fl//D[A(v) —Aw)]
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for each y e CP(R"). We then introduce a family of functions {®; j=
1,2,...} = C*(R') which is analogous to the family of functions employed in
Crandall [9] so as to approximate some discontinuous functiomns:

(—Umt eos[(m/DsT + i (sl =Y,
‘D"(s)—{ sl sz ).

The following can be easily verified:
(3.18) lim;_, , @;(s) = |s|, lim;_,, ®(s) =sgns, lim;_, ,, s®/'(s) = 0
(3.19) &/(s)20, supp B =[—j 1 j'],  [s®/(s) = m/2.

In view of the duality mapping of L!(R"), we substitute the test function y
in (3.17) for sgn(v — w). To this end, we take any cut-off function ¢ € C?(R")
with 0 < ¢ <1 on R", and then define the desired test functions by

Vs = ps*[Di(B) — BW)e]  for 6>0, j=1,2, ...

Apparently, each function y;, satisfies ¥; ;€ CF(RY), ||Y;4llo <1 and

;s Pi(B(v) — BwW)e  in H'(RY) as 610,
notice that @;(B(v) — B(w)) € H'(R"). Hence

V' = w550 = o — w', Bi(B(v) — BW)e)

and

—(VB() = VBW), Vi 5>

= —<(VB(©) — VW), VIP;(B) — BW)eld

= —JIVB(U) — VBW)*®] (B(v) — B(w))o dx

—<VB(W) — VB(w), B;(B(v) — BW)Ve)
= <Pi(B) — pw), Ap)  as 6]0.

Next, in order to handle the second term on the right-hand side of (3.17),
we have to observe the pointwise behavior of ;5 as 6| 0. Since z;=®;(B(v)—
B(w)) lies in BV(R"), we have #"7'(I)=0, where I = {xe R"; x is not a
regular point of z;p} (see [22] p. 254). Applying Lemma 3.1 to z;¢p, we have

¥;.5(x) = [z;0]1(x) as 0|0 for xeI€.

Notice that D[A(v) — Aw)](I) =0 by (3.4). It then follows from the domi-
nated convergence theorem that
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(3.20) fl,bj,‘,D[A(v) —Aw)] - fzj@D[A(v) — Aw)] as 6]0.

Since z;¢ = ®;(B(%) — f(W))¢ holds for s#" '-ae. on (I,UL,)° by (3.11), to-
gether with #N~Y(I) = #"(I,) =0 and (3.4), we obtain

JZ?—PD[A(U) —Aw)] = jd’}(ﬂ(ﬁ) — BW)@D[A(v) — A(w)].

Therefore, substituting ;; for ¥ in (3.17) and then passing to the limit
as 00, we have

0’ — w', D(B) — BW)ey < <B(B(K) — B(W), Ap)
—fab;(/f(v) — B)DLA®) — AW)].

Using the properties of @; and letting j— oo in the above inequality,

o' —w', sgn(B) — Bw)e) = <IB1) — BW)l, L)
- f sgn(B(@) — B(W)eD[A(v) — AW)] .

Since f is strictly increasing, sgn(f(v(x)) — B(W(x))) = sgn(v(x) — w(x)) for
AN lae. x, and so the above inequality can be rewritten as

Csgn(v — w)[v' — w'l, @
= <IB@®) — BW)l, A — fsgn(ﬁ — W)@D[A(v) — AW)] .

Using the above estimate, we have
(3.21) v —wl, @) = (sgn@w — w)[(v — 4) — (w — Aw)], @)
+ Alsgn(v — w)[v' — w'], @)
=l = A") = (w — Aw)l, > + AL B) — BW), Ae)

—4 fsgn(ﬁ — W)oD[A(v) — AW)],
for each 1 > 0. It now remains to show the following identity:
(.22 f sgn(@ — W)Y D[A(v) — Aw)] = —{sgn(v — w)[A(v) — AW)], V¥

for all ¥ e C3(RY). Indeed, suppose that (3.22) holds for all ¥ € C?(R").
Choose any function ¢, € CP(R") satisfying 0 < ¢y £ 1, @o(x) = 1 for |x| £ 1
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and @q(x) =0 for |x| = 2, and define ¢, = @o(-/k). Then

(3.23) ff% dx - Jf dx  for all feL'(R"Y),

(3.24) ID@ills 1D*Pillo >0 as k— o0 .

Putting ¢ = ¢, in (3.21) and then letting k tend to the infinity, we obtain
the desired assertion (3.14) from (3.22) through (3.24).

We then demonstrate that (3.22) holds. As seen in the first step of this
proof, #N"Y(I) = #""'([,) =0 since v, we D(B,). Using this fact, Lemma
3.2, (3.11), (3.13) and by integration by parts, we have

(3.25) j &5 — W)YD[A() — Aw)]

_ J &0 = WPDLAW) — AW)]

JD(%(U — WY A@) — AW)]) — J[A(v) — AW)1D[®;(v — w)y]

—J[A(l_)) — AW)1D[Pj(v — w)¥]

= —f[A(ﬁ) — AW YDPj(v — w) — ([A[v) — AW)]Dj(v — w), V¥

Again, we apply (3.11) and (3.12) to transform the first term of the extreme
right-hand side of (3.25) as follows:

(3.26) ~f[A(l7) — A(W)]Y @] — w)D[o — ]

1
= —J(j a(0v + (1 — 6)w) d0> y[o—w]d/ (v — w)D[v — w].
0

Here we have used the fact that #NY(I) = #"'(I,)) =0. Notice that it
is essential in this argument to take the average values v and w. In view
of (3.18), the right-hand side of (3.26) tends to zero as j— oo by applying
the dominated convergence theorem. Therefore letting j — oo in (3.25), we
obtain the desired assertion (3.22). H

4. Proof of Theorem

In this section, we give the proof of main theorem. In order to prove
the assertion (a), it is sufficient to show the following two propositions by
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virtue of Proposition 2.1 and Lemma 2.2 (i):
ProPOSITION 4.1. R(I — AB) = LY(R") for each A >0 and
(I —AB) o> (I — AB) ™'
as h|0 in L*(RY) for each ve L*(R").
PrOPOSITION 4.2. D(B) is dense in L'(R").

The proof of convergence as h |0 of (I — AB,) 'v for a general element
ve L'(R") can be reduced to the case of v € BV(RY)N L*(R") since this inter-
section is dense in L'(RY). In what follows, we set

v} = —AiB,)"'v  for ve L*(RV).
Notice that
By} =17t} —v).

LEMMA 4.3. Suppose that the positive numbers h and ¢ satisfy (1.11). Let
0 >0 be such that 0 < e <1 whenever 0 <h <. Then we have:

(i) For each A >0 and each ve L*(R")NL*(RN), the set {v};he(0,3d)}
is precompact in L'(R").

(i) Let ve BV(RY)NL*(RY) and let v* be any cluster point of the net
{v};0<h<8,h|0}. Then v*eD(B,) and A '(v*—v)= Byv*
Therefore R(I — AB,) > BV(R")N L*(RY) and

v} > —AiBy)'v  in L*(R") as h|O.
Proor. (i) For 4, h>0 and ye R, Lemma 2.3 implies
4.1) logl,  loll,,  p=1, 00, leyoi = villy < ll7y0 — ol -

Therefore the Fréchet—Kolmogorov theorem can be applied to prove the
assertion, if it is proved

4.2) lim sup J vt dx =0.
plo he(0,8) Jix|>p

In order to show (4.2), we first note that if v € L'(R¥)N L®(R"), then estimate
(2.6) with k = 0 is still valid for any bounded continuous function ¢ = 0 with
bounded continuous derivatives up to the order 2. Take any such ¢ and
fix it, then the application of (2.6) with v = vj and k = 0 implies

43)  A7Kvil, @> — A7vl, ) < {sgn(vi) Byvi, @

sh? f(sgn(v;f)Fa(v;f, Sho(c + hd) —@dd
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= j(sgn(vh‘)ﬂ(vi, §)E, Vo) dg

1
+h Zs,,f d6(1 — 0) f&-é,-(sgn(v;f)ﬂ(vf, &) Dijo(- + 6hE)) dg
0

=Il+12'

We estimate the extreme right-hand side term by term. The first term I,
can be written as

1

I, = <sgn(i) [A(v7)) — A(0)], Vo) = j <lvitla(ovi), Vo) da,

0

and so it follows that

1,1 < YL sup{la‘); Is| < llvllo} D@l ol -

Next, by a change of variables, I, is transformed into
IL=h},,; 01 do(1 — 0) Jj[éi +a'(s9][&; + al(s)]
~<sgn(vi)F(vy, 8), Do (- + Oh(& + a(s))> x.(&, ) dE ds
=he Y 01 do(1 — 0) “. [B(5)"n; + ea’(s)1[B(s)*n; + ea’(s)]

~<sgn(vi) F(vy, 8), Dy (- + Ohe ' [B,(5)"n + ea(s)1)) x(n) dn ds

Using the fact that supp y = {n e R"; || < 1}, we have
1
| <he™2 Y, ;| db(1 —0) stup{ﬁé(s)”z + la@s)l; Is| = vll,, & > 0}
0
“(|F (v}, 9)l, | D*@ll,> x(n) dn ds
< [N?h/(2¢%)] sup{B,(s)"/> + [a(s)l; Is| £ V]l &€ > O} D*@ll 0]l -
Thus we obtain the following estimate:
@4) A7t 0> < A7 vl 0> + (UK, sup{lai©)l; Is] £ vllo} 1Dl
+ [N?h/(26*)] sup{B;(s)'"* + |a(s)}; Is| £ l|v]lw> € > O}2(ID%0|,0)lI]l -
We now take any function g e C*(R') with the properties
g(s) =1 fors=1, g(s)=0 for s<0, 0<g=<1onR,

and for any pair p, © with p >t > 0, we define
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9,(8) = gl(sl = 1)(p —1)']  for seR'.
Then it is easy to check that
goe(s)=1for [s|Zp, g,.(s)=0for [s|<7
lgpelle =0,  lgpelle—=0 as pToo.
If we set ¢, (x) =Y, g,.(x;), then we have

@.5)
02¢,. =N, ¢,(x)21 for |x|ZpN'?*, ¢, (x)=0 for |x|<7,

(4.6) 1Dyl =0,  ID*p, llo >0  as pfoo.

Thus the function ¢, is bounded, continuous and has bounded continuous
derivatives up to the order 2. Thus we can substitute ¢, , for ¢ in (4.4) to get

@7 it j | / [vf| dx < A7 v}, Q)
|x|> pN1/2

< A7KvL 050> + (X sup{la’(®)h Is] < ol } 1D clleo
+[N?h/(26*)] sup {B;(s)"/* +la(s)l; Is| < [|0llor >0} D%, o) 10l

by (4.5). Therefore (4.5), (4.6), and the relation he~2 = const. together imply

[v| dngf |v]| dx .

x| >t

limsup,, 1., SUP4e(0,4) J

|x|>pN1/2

Since 1 is arbitrary, we finally obtain (4.2).

(ii) For simplicity in notation we write h |0 for the convergence of a
null sequence (h(k))Z, of positive numbers. Thus we write v} — v* for the
convergence of a subsequence (vy,)ix; to a cluster point v*. We may assume
without loss of generality that v} —» v* as h |0 in L'(R") and a.e. in R". First
we will show that the function v* satisfies the equation

4.8) . A7H(v* = v) = AB*) — VA@?) in 2'(RY).

To this end, for any ¢ € C¥(RY), we see from direct calculations that
4.9)

AN vg—v, @>=h"" f(Fe(v;f, &), o(- + hé) — ¢y d¢

=J<FB(v;f, §)E Vo) di+(h/2) Zi,jf€i£j<Fe(v:’ ¢, Dijp» de
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1
+hY; | d46(1—0) Jéif,-(Fg(v;’}, ¢), Dijo(- + 6h) — Dyj) dE
0

=J1+J2+J3.

We wish to check each term on the right-hand side of (4.9). First we see
with the aid of (4.1) that

(4.10) Jy = (A@y), Vo) - (A", Vo)  as h]0.

Next, J, can be transformed into

=Wy, ff[éi + a'(s)1[¢; + a’(9)]1<F(vh, 5), Dy@) xe(&, 5) dE ds

= [h/(2e*)] 2s,; j J [B:(s)!*n; + ea'(s)1LB:(s)'*n; + ea’(s)]

“CF(vi, 8), Dyjo> x(n) dn ds .

Since y is assumed to be a radial function, it is easy to show that

fmx(n) dn=0, jn.-n,-x(n) dn=N7! Jlnlzx(n) dn 6;; .

Using these facts, one can rewrite J, as follows:

Jy = [h/(2e*)] X jﬁé(8)<N" flnlzx(n) dn 6ij> (F(v}, s), D> ds

+(h/2) L | a'(s)a’(s)<F (i, s), Dy ds
=Jy +Jsz.
Applying the relation (1.11) between h and ¢, we see that
(4.11) o = Jﬂé(SKF(vf, s), Ag) ds - (B(v*), Ap)  as k|0,
and that
(4.12) Jaal S (B2 Xu; | sup{la); Is| < Ivllo}*<F @3, ), 1Dl ) ds

< [(N*h)/2] sup {la()}; Is| < lIvllo}* vl ID?¢ll, >0 as h|O.

The last term J; is rewritten in the following way:



598 Kuniya OkAMOTO

Jy=he2 Y, | do(1-0) ff[ﬂé(S)”zm + ea'(s)1LB:(s)"/%n; + ea’(s)]
0

~CF vy, 8), Dy + Ohe™ [ B{(5)"*n + a(s)]) — Dyyo>x(n) dn ds .

Since supp F(v}(x), *) is contained in E = {s € RY; |s| £ ||v|lo} and |F(vi(x), s)| <
1x(s) for a.e. x e RY by the definition of F, |J5| is estimated as

1

(4.13) |J5] = [(N*h)/e*] sup {B/(9)' + la(s)l; Is] < |lvll, € > 0} f do(1 — 6)

0
'ff(lg(S), IDy(- + Ohe ™ [ Bi(s)"*n + ea(s)]) — Dyel|>x(n) dn ds

< [(N?h)/e*] sup {Bi(5)"/? + |a(s)]; Is| < [Vl s & > O}*[10]l
~sup{|D?¢(- + Ohe ' [B,(s)"*n + ea(s)]) ~ D3oll; ;
Is| < lvllo, <1, 056=<1}-0 as hlO.

Therefore, letting A |0 in (4.9) and using (4.10) through (4.13), we obtain
(4.8). Finally, we show that »*e D(B,). It is obvious from (4.1) that v*e
L®(RY). On the other hand, it follows from the estimate

lz,0* — v, < liminf, ”‘fyvfn1 — il £ [zyo — vy

and the condition v € BV(RY) that v* € BV(R"). Furthermore, by (4.8),
AB@*) — VA®W*) = 27 (v* — v) e BV(RV)N L*(R"),

which means v*e€ D(B,) and v* = (I — AB,) 'v. Notice that our argument
stated above remains valid even if we start with any subsequence of (vj)iz;-
This shows that any subsequence of {v}; h > 0} contains a subsequence which
converges in L!(R") and its limit point is uniquely determined (as (I —AB,) " v).
Thus we can conclude that v} itself converges to (I — ABy) v in L'(R") as
hl0. A

ProOOF OF PrROPOSITION 4.1. Let (v,)-,; be a sequence of functions in the
class BV(RY)NL®(R") such that v, —»v as k— oo in L'(RY). If we set

vie=U—AB) v, vf=(I—4By)'v, for A, h>0,

then it follows that v}, —»v} as h|0 in L'(R") for each k by Lemma 4.3
(i). Hence Lemma 2.3 (i) implies

||U:? - 011”1 =< liminf,,w ||U:,k - Uf.t”x < llog — vylly -

This means that the sequence (v}){-, in D(B,) is Cauchy in L!(R"), and hence
that converges in L!(R") to some element v*e L*(RY). From this and the
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AT — ut(t — ] = ABHE) — VAWAL)

holds in 2'(RY) for t € [s, o).

Let p,* be the usual Friedrichs mollifier with support {x € R"; |x| < n"!}
defined for positive integer n by a radial function p. In what follows, we
denote p,*v by v, for a ve L] (RY). Then it is easily seen that

(4.17) A7) — ut(t = D, = ABWA®), — VIAW (1) — A(0)],

holds in the classical sense. Multiplying both side of (4.17) by [B(u*(t)) — B(0)],,
and then integrating over R", we have

4.18) VB @)l < 27Hlu(®) — u*(t — DIl I B@*(®) — BO)w
+ C(x) ;I A'W*(®)) — A'0)I3 + I VB @)all3
where the constant C(x) depends only on x € (0, 1). Therefore
(1 — IV eNalI3 < A7HIuA(e) — ut(e — )|, -sup {B'(0); [o| S r}r
+ C)llu*@)llyr- )i sup {la‘(@)l; lo] < r}?

where r = ||lupllo. Thus, for each fixed 4 > 0, the family {VB(u?),;n=1} is

bounded in L*(s, co; L2(R")Y); in particular, it is bounded in L%(s, T; L2(R)Y).

On the other hand, the sequence VB(u?*), itself converges to VpB(u*) in

2'(R¥ x (s, T))¥ as n—>o0, and so it is easily seen that VB(u*)e L?(s, T; L>(RV)").
Now suppose that u, also belongs to D(B), hence

| Buo| = liminf, o v |(I — vB) ™ uy — )|, < 0.

By virtue of the above observation, we can show that VB(u) € L%(0, T; L%(R")")
for each T > 0. This will be proved via a compactness argument to the set
{VB(u*); A€ (0,s)} in the space L*(s, T; L*(R™)V). Therefore we necessitate
showing the following assertion:

4.19) A7 ur() — ut(t — Al £ | Buy| for te[s, T].
To this end, for each v >0 and integer j, k, with j <k
(I — AB)™ (I — vB)™'uo — (I — AB)(I — vB)"u,|l;
= limy,o ||(I — AB,)™*(I — vB,)"uy — (I — AB,) (I — vB,) ||,
< limy o Y fejun (1 — AB)7'(I — vB,)'ug — (I — ABy) ™1 (I — vB,) ol
< limy o Yoy 10 = 2B) 75T = VB ttg — (I — VB, ol
= limy, o (k— j)II( —AB,) "I —vB,) ug — (I —AB,) (I — AB,)(I — vB,) 'u||,
< limy o (k — j)Av I — vBy) U — uolly -

=(k — j)lv”lll(l - VB)-luo — uoll;
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by Lemma 2.3 (i) and Proposition 4.1. Hence, taking limits inferior as v | 0,
(4.20) ATHI — AB) ™ uo — (I — AB)Jug|ly < (k — j)|Buo| .

Putting k = [t/2], j=[(t — 4)/2] in the above inequality, we obtain (4.19).
Since Vf(u%), converges weakly in L2(s, T; L*(R")Y) to VB(u*) as n— oo,

T
(1- K)f IVBu*@)I3 dt

< liminf,,, (1 — &) f ' IV B(u*(0)),lI3 dt

< (1Buol-sup {'(0); lo| < r} + C(¥)lluoll, - Y. sup {la‘(o)}; |o| S r}?) rT.

Therefore {VB(u?*); A€ (0,s)} is bounded in L2(s, T; L2(R™)V). Since u*(t)—
u(t) as A0 in L'(RY) uniformly for bounded t, we see easily that Vf(u)e
L*(s, T; L%(R*)") and

T
(- K)f IVB@)I3 dt

< (IBuo|sup {B'(0); lo| < r} + C(®)luoll, - i sup {|a'(o)}; lo| < r}*)rT.

Since the right-hand side of the above inequality does not depend on s and
s can be taken arbitrarily, it follows that YV B(u) e L2(0, T; L*(R")").

To conclude that u is a BV solution of the problem (M) provided u, e
BV(RY)N L*(R")N D(B), it remains to show that u € BV(R" x (0, T)) for each
T > 0. But this is obvious from

IDu(®)llp < liminf, o [Duy(®)llp < [I1Duollyy  for t 20,
and the following estimate which is obtained by (4.20) with k = [t/1], j = [s/A]:
4.21) lu(t) — u*(s)ll, < ([t/A] — [s/A])A|Buy| for0<s<t.

PRrOOF OF (ii). We first show that a BV solution z in the sense of Yin satisfies
the following identity: For each T >0 and ¢ € C?(RY),

(4.22) CH), 9> — CP(2(9), @)

- J CA(z(r)) — A0), V([B(z(7) — B(0)]g)) dr

= —f <VB(z(7), V([B(z(x)) — B(0)] o)) dr

holds for ae. t, s with 0 <s <t < T where ¥Y(r) = j [B(o) — B(0)] do.
0
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fact that Byv} = A7'(v} — v;) converges to A7'(v* —v) in L'(RY), it follows
that v* € D(B) and Bv* > A7}(v* — v); notice that B is the closure of B,. Hence
this shows that R(I — AB) = L*(R") and v* = (I — AB)"*v. Further, it follows
from Lemma 2.3 (i) and Lemma 4.3 (ii) that

limsupy o (1 — ABy)'v — (I — AB)'v||,
< limsupyo [I(I = AB,)™'0 — (I — 4B) vl + Ny — villy + llog — v*4]
< o — vl + lof — 0%, -
Passing to the limit as k — co, we obtain the desired assertion. W

PROOF OF PROPOSITION 4.2. Clearly, it suffices to show that BV(RY)N
L*(R") = D(By). Let ve BV(RY)NL®RY) and v* = (I — AB,)'» for 1> 0.
Then Lemma 4.3 (ii) asserts that v} — v* in L*(RV) as h | 0. Hence we have

@149 o, = loll,,  p=LlLoo, o= <lo—vl, (yeRY)

from (4.1). Moreover, passing to the limit as h ] 0 in (4.7), we obtain

415 A7t f [v*| dx
|x|>pN”2

<N J ol dx + (L1 sup{la‘©)l; Is] = 0]} D@l
|x|>1t

+ const. sup{B;(5)"" + la(s)l; Is| < [[v]lws & > 0}2[D%, . ll0) 101l -

For any positive number 4, (4.6) implies that

|v’1|dx§Nj |v| dx .

|x|>1

limsup, suple(o'lo,J

|x|> pN1/2
Therefore the set {v*; 1€ (0, 4)} is precompact in L'(R"). So we can choose
a null sequence (4,)%,, v° € L'(R") so that v*» —»1° as n— o0 in L}*(RY). On
the other hand, we see from the definition of B, that

(4.16) v* — v = A[ABOY) — VAWH]  in 2'(RY).

Substituting A = 4, in (4.16) and letting n— oo, we see that the right-hand
side of (4.16) converges to 0 in Z'(RY), since (4.14) and 4,]0. Hence v =1°¢

D(By). [ ]
The rest of the paper is devoted to show that the limit function T(-)u,
obtained through the convergence (1.16) (with v replaced by the given initial-

value u,) is the desired solution of (M). We first observe that if u, € LY(RY)N
L*(R"), the function u(-) = T(*)u, lies in L®(R" x (0, o)) N C([0, o0); L (R")).
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Indeed, by virtue of (1.16), we see that u,(t) = SI""uy—>u(t) as h|0 in
L'(R"), uniformly for bounded t This, together with the fact that
u, € C([0, 00); L*(R")) and |u,(t)ll,, < lluoll, implies that u e L*(RN x (0, 00))N
C([0, o0); L*(R")).

Next we will show that u is a distribution solution to the problem
(M). Choose any ¢ € C¥(RY x (0,0)) and recall that A~ [u,(t + h) — u,(t)] =
Bju,(t) by the definition of u,. Multiplying both sides by ¢, and then integrat-
ing the resultant equality with respect to (x, t) over RV x (0, o0), we obtain

I Ch™H uy(t + h) — uy(0)], @(:, 1)) dt

= J dt Jh*(FE(uh(t)(‘ — h&), &) — F(uy(0), &), (-, 1)) dS .
0
Recalling that supp ¢ is compact in R x (0, 00), we have

—fw Cup(@), (=)' [o( t = h) = o(-, )] dt

= JO dt J<Fc(uh(t)a &), h7 Lo(- + hé, 1) — (-, 1] d¢

for sufficiently small A > 0. Therefore, in a way similar to the derivation of
Lemma 4.3 (ii), we obtain

_J‘w fu(p, dx dt = J‘w J[,B(u) Ap + A(u)Ve] dx dt .
0 0

We will prove that (i): u is a BV solution of the problem (M) provided
that u, € BV(R" )ﬂLw(RN)ﬂﬁ(B), and then that (ii): u is a weak solution of
the problem (M) provided that u, e L*(RY)N L*(RN).

PrOOF OF (i). First we define, for A >0, an L!(R")-valued function:
uty=I —AB)y" "y,  for t =0.

Notice that u*(f) > u(t) as 4]0 in L*(R") uniformly for bounded t by the
exponential formula. Therefore it is seen that if u, belongs to BV(RY)N
L*(R"), then {VB(u*); A€(0,s)} = L*(s, T; L*(R")") for each s, T with 0 <
s < T. Indeed, the restriction of the operator (I — AB)™* to BV(R")N L*(R")
coincides with (I — AB,)~ by Proposition 4.1 and Lemma 4.3 (ii). From this
it follows that

u*(t) = — ABy) 'u*(t — 4)  for te[s,0)
since u*(t — 1) e BV(R¥)N L*(R"). According to the definition of B,,
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We now proceed our argument in a way similar to [18], Proposition
5. By the definition of BV solution in the sense of Yin, it is easily seen that
for each y € C2(R" x (0, T))

T
(4.23) f Y (0z/0r) — J CA(z(7)) — A(0), VY (7)) dr
RV x(0,T)

0
T
= —L (VB((), Vi(z)) dr .

Now, applying the same argument as in the proof of Proposition 3.3, we will
substitute (at least formally) the test function [f(z) — B(0)]¢pl, for ¥ in
(4.23), where 1, ,; means the characteristic function of the interval [s,t]. For

this purpose, let j e CF(R') with j =0, suppj < [—1, 1], f j(@)do =1 and

define for v>0
a,(t) = -[ jlo)ds  for e R!,

where j,(6) = vj(v 'o). Since supp[a,(- —$) —a,(- —t)]<[s—v, t + V], {,=
oo, (- —s)—oa,(- —1)] belongs to CF(RN x (0, T)), provided 0<v<min{s, T—t}.
We then extend [B(z) — B(0)]¢, as the zero-extention on RN x R!. Then the
desired test functions are defined as follows:

Yus=ps*([B(z) — BO)IL,)  for 6>0,

where p;* is the usual (N + 1)-dimensional Friedrichs mollifier with support
{(x,7) e R"*; |(x,7)| £ 6} defined for positive number § by a radial func-
tion p. Since ¥, ;€ CF(RY x (0, T)) for sufficiently small 6, (4.23) is valid for
Y, s replaced by Y. On the other hand, [B(z) — B(0)1{, € BV(R" x (0, T)) and
V([ B(2) — B(0)]¢,) € L*(0, T; L*(R™)Y), and so we can take the limit as & |0
in (4.23) with ¢, ; in the same way as in the derivation of (3.20);

(4.24)
j @lo, (- = 5) — o,(- — )] [B(z) — B(0)](9z/d7)
RN x(0,T)

—L Lo (r — ) — a(r — )]<A(2(7)) — A(0), V([B(z(r)) — B(0)]@)) dr

T
= —L [a(t = 5) — a,(t — IV B(2(7)), V(L[B(z(7) — B(0)]9)) dr.

Owing to the result due to Yin ([21], Lemma 2.3), the set of jump points
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of z, ie. {(x,7)eRY x (0, T); z (x, t) < z*(x, 1)}, is negligible with respect to
the Hausdorff measure of dimension N. This implies the identities

0¥(2)/0t = [f(2) — B(0)](02/07) = [BG) — P0)1(8z/20)

in the sense of measures. Hence the first term on the left-hand side of (4.24)
is transformed as follows:

f olo,(t — 5) — a,(t — ] (0¥(2)/07)
R¥x(0,T)

T
—L C¥(z(1), @ (d/d7)[o,(x — 8) — (T — )] dT

L L =0 — )yt — 91<KP(2(), ) dr.

Therefore we obtain (4.22) for Lebesgue points ¢, s (0 <s <t < T) of the
function {¥(z(*)), ¢> by letting v]|0 in (4.24).

We then prove the assertion (ii). For a general element u, € L'(RV)N
L®(R"), we can apply Proposition 4.2 to choose a sequence (u,,,)—; contained
in D(B,)(=BV(R")NL*(R¥)ND(B)) so that u,, —»u, in L'(RY) as m—> o
and |Jugmlleo = gl Set u,(t) = T(t)uo,, for 1= 0. Then, as shown in (i),
u,, is a BV solution (in the sense of Definition in Section 1) with u,,(0) = u,,
for m>1. Since each u, is the semigroup solution, it is obvious that u, €
C([0, ©); L'*(RY)). Hence for each feL*(RM), the function 7e[0,0)—
{¥(u,(t)), f> is continuous, more precisely Lipschitz continuous by (4.22).
Thus, as seen before, each function u,, satisfies (4.22) for all ¢, s with 0 <s <
t<T

Therefore we obtain

Jl dr jlvﬁ(um(t))l2 ¢ dx
= f VB2 IV Ol Bn(2) — BO)2 dr + | P(n(®) — PG 1 @llo

+ J 14 (un(7)) — AO) 2 (IVBUn) 2N @l + Bun(r) — BO)2IVOll,) dr

for all t, s with 0 <s<t < T. Substituting ¢, for ¢, where (¢,)i=; is the
sequence of smooth functions as defined in the Section 3, and then letting k
tend to infinity, we obtain the following estimate for the energy term by
using (3.23) and (3.24).
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J IV B(un(c))3 de

t

< | P(un(®) — PlunDI + J I 4(Un(2)) — AQ)I| IV B(Um(T)l; dT

s

< sup {18(0) — BO); lo] < r}lun(®) — un(s)l
. f (CONAUn(2) — AO)I3 + kI TBun(@)I3) dr
where r = lugll., 0 < x < 1, and a constant C(x) depends only on x. Hence
(-1 f IV Blun() I3 do

< 2 sup {|B(0) — BO)|; lo| = r}-sup {llugnll,; m = 1}
+ C(©)r-sup {llugnll;; m 2 1}t — 5) Y., sup {la'(o)}; |o] S r}*.

Thus {VB(u,); m = 1} is bounded in LZ(s, t; L*(R")¥). Since u,(t) converges
in LY(RY) to u(r) as m— oo uniformly for bounded 1, we obtain Vp(u)e
L2(s, t; LA(R)"). Thus u is a weak solution of the problem (M).
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