HIROSHIMA MATH. J. 23 (1993), 537–550

On modified singular integrals

Dedicated to Prof. Masanori Kishi on the occasion of his 60th birthday

Takahide KUROKAWA (Received February 26, 1992)

1. Introduction

Let R^n be the *n*-dimensional Euclidean space. E. M. Stein [5] gave a weighted norm inequality for singular integrals on R^n as follows (see also C. Sadosky [4; Theorem 6.1]):

THEOREM A. Let $\Omega(x)$ be a homogeneous function of degree -n on \mathbb{R}^n , and suppose that $\Omega(x)$ satisfies the cancellation property

(1.1)
$$\int_{S} \Omega(x) d\sigma(x) = 0,$$

where $d\sigma$ is the induced Euclidean measure on the unit sphere S, and $\Omega(x)$ is bounded on S. Let Tf(x) denote the corresponding singular integral:

$$Tf(x) = \lim_{\varepsilon \to 0} \int_{|x-y| \ge \varepsilon} \Omega(x-y) f(y) \, dy.$$

Then

(1.2)
$$\left(\int |Tf(x)|^p |x|^{-rp} dx\right)^{1/p} \le C \left(\int |f(y)|^p |y|^{-rp} dy\right)^{1/p},$$

provided that 1 and <math>-n/p' < r < n/p where (1/p) + (1/p') = 1.

For the ordinary singular integrals the above restriction of r is necessary. Indeed, when $r \ge n/p$, for $f(y) = (1 + \log |y|)^{-1}$, $|y| \ge 1$, we see $\int |f(y)|^p |y|^{-rp} dy < \infty$ and $\int_{|x-y|\ge \epsilon} |\Omega(x-y)f(y)| dy = \infty$, so (1.2) fails. When $r \le -n/p'$, for $f(y) = (1 - \log |y|)^{-1} |y|^{-\beta}$, $|y| \le 1$, (1.2) does not hold with $n \le \beta \le (n/p) - r$. The purposes of this paper are to introduce modified singular integrals and give integral estimates similar to (1.2) which holds for all r > -n/p' such that $r - (n/p) \ne a$ nonnegative integer.

Let $\Omega(x)$ be a homogeneous function of degree -n, and suppose that $\Omega(x)$ satisfies (1.1) and $\Omega(x) \in C^{\infty}(\mathbb{R}^n - \{0\})$. For an integer $k \ge -1$ we set

Takahide KUROKAWA

$$\Omega_k(x, y) = \begin{cases} \Omega(x - y) - \sum_{|\gamma| \le k} (x^{\gamma} / \gamma!) (D^{\gamma} \Omega) (-y), & k \ge 0\\ \Omega(x - y), & k = -1 \end{cases}$$

where γ is a multi-index $(\gamma_1, ..., \gamma_n)$, $x^{\gamma} = x_1^{\gamma_1} \cdots x_n^{\gamma_n}$, $D^{\gamma} = D_1^{\gamma_1} \cdots D_n^{\gamma_n}$, $\gamma! = \gamma_1! \cdots \gamma_n!$ and $|\gamma| = \gamma_1 + \cdots + \gamma_n$. We define modified singular integrals as follows:

$$T_k f(x) = \lim_{\varepsilon \to 0} T_{k,\varepsilon} f(x),$$
$$T_k^* g(y) = \lim_{\varepsilon \to 0} T_{k,\varepsilon}^* g(y)$$

where

$$T_{k,\varepsilon}f(x) = \int_{|x-y| \ge \varepsilon} \Omega_k(x, y) f(y) \, dy,$$
$$T_{k,\varepsilon}^*g(y) = \int_{|x-y| \ge \varepsilon} \Omega_k(x, y) g(x) \, dx$$

for $\varepsilon > 0$.

Throughout this paper we take p as 1 . For a real number r, we set

$$L^{p,r} = \left\{ f \colon \|f\|_{p,r} = \left(\int |f(x)|^p |x|^{rp} \, dx \right)^{1/p} < \infty \right\}$$

and simply write $||f||_{p,0} = ||f||_p$. Moreover [r] denotes the integral part of r. The main results of this paper are the following.

.

THEOREM 1. Let r > -n/p', $r - (n/p) \neq a$ nonnegative integer and

$$k = \begin{cases} [r - (n/p)], & \text{if } r - (n/p) > 0, \\ -1, & \text{if } r - (n/p) < 0. \end{cases}$$

Then

(i)
$$||T_{k,\varepsilon}f||_{p,-r} \le C ||f||_{p,-r}$$

(ii)
$$|| T_{k,\varepsilon}^* g ||_{p',r} \le C || g ||_{p',r},$$

where C is a constant independent of f, g and ε .

THEOREM 2. Let r and k be as in Theorem 1. Then (i) for $f \in L^{p, -r}$

$$\|T_{k,\varepsilon_1}f - T_{k,\varepsilon_2}f\|_{p,-r} \longrightarrow 0 \qquad (\varepsilon_1, \varepsilon_2 \longrightarrow 0),$$

On modified singular integrals

(ii) for $g \in L^{p',r}$

$$T^*_{k,\varepsilon_1}g - T^*_{k,\varepsilon_2}g \parallel_{p',r} \longrightarrow 0 \qquad (\varepsilon_1, \varepsilon_2 \longrightarrow 0).$$

On account of Theorems 1 and 2 we have

COROLLARY. Let r and k be as in Theorem 1.

(i) If $f \in L^{p,-r}$, then $\lim_{\epsilon \to 0} T_{k,\epsilon}f = T_k f$ exists in the $L^{p,-r}$ -norm and

 $||T_k f||_{p,-r} \le C ||f||_{p,-r}.$

(ii) If $g \in L^{p',r}$, then $\lim_{\epsilon \to 0} T^*_{k,\epsilon}g = T^*_kg$ exists in the $L^{p',r}$ -norm and

 $\|T_{k}^{*}g\|_{p',r} \leq C \|g\|_{p',r}.$

REMARK. For the kernel functions

$$K_{m,\lambda,k}(x, y) = \begin{cases} D^{\lambda}k_m(x-y) - \sum_{|v| \le k} (x^{v}/v!) D^{v+\lambda}k_m(-y), & |y| \ge 1\\ D^{\lambda}k_m(x-y), & |y| < 1 \end{cases}$$

where $k_m(x)$ is the Riesz kernel of order 2m and $|\lambda| = 2m$, Y. Mizuta [2] gave the following weighted L^p -estimates:

$$\int \left| \int K_{m,\lambda,k}(x, y) f(y) \, dy \right|^p \omega^*(|x|) \, dx \le C \int |f(y)|^p \omega(|x|) \, dx.$$

In our case, $\omega(t) = \omega^*(t) = t^{-rp}$.

2. Lemmas

In this section we prepare several lemmas which are necessary for the proofs of Theorems 1 and 2. Hereafter the letter C is used for a generic positive constant whose value may be different at each occurrence. First, by Taylor's theorem we have

LEMMA 2.1. (cf. [1; Lemma 3.1]) For $|x - y| \ge 3|x|/2 > 0$ and an integer $k \ge -1$, it holds

$$|\Omega_k(x, y)| \le C |x|^{k+1} |y|^{-k-1-n}.$$

The following Lemmas 2.2 and 2.3 follow from Hardy's inequalities [6; p. 272].

LEMMA 2.2. If $\alpha > n/p$, then

$$\left(\int \left| |x|^{-\alpha} \int_{|y| \le 5 |x|/2} |y|^{\alpha - n} f(y) \, dy \right|^p \, dx \right)^{1/p} \le C \, \|f\|_p$$

LEMMA 2.3. If $\alpha < n/p$, then

$$\left(\int \left||x|^{-\alpha} \int_{|y| \ge 2|x|/5} \int |y|^{\alpha-n} f(y) \, dy\right|^p dx\right)^{1/p} \le C \, \|f\|_p.$$

To prove the Lemmas 2.5 and 2.6 below, we use Okikiolu's result.

LEMMA 2.4. ([3]) Let K(x, y) be a nonnegative measurable function on $\mathbb{R}^n \times \mathbb{R}^n$. Suppose that there are measurable functions $\phi_1 > 0$, $\phi_2 > 0$ and constants $M_1 > 0$, $M_2 > 0$ such that

(2.1)
$$\int \phi_2(y)^{p'} K(x, y) \, dy \le M_1^{p'} \phi_1(x)^{p'},$$

(2.2)
$$\int \phi_1(x)^p K(x, y) \, dx \le M_2^p \phi_2(y)^p$$

for all $x, y \in \mathbb{R}^n$. Then the operator Kf defined by

$$Kf(x) = \int K(x, y)f(y) \, dy$$

satifies

$$\|Kf\|_{p} \leq M_{1}M_{2}\|f\|_{p}.$$

LEMMA 2.5. If $\alpha > 0$, then

$$\left(\int \left||x|^{-\alpha} \int_{|x-y|<3|x|/2} |x-y|^{\alpha-n} f(y) \, dy\right|^p \, dx\right)^{1/p} \le C \, \|f\|_p.$$

PROOF: For $\phi_1(x) = \phi_2(x) = |x|^{-b} (0 < b < n/p')$ and

$$K(x, y) = \begin{cases} |x|^{-\alpha} |x - y|^{\alpha - n}, & \text{if } |x - y| < 3|x|/2\\ 0, & \text{if } |x - y| \ge 3|x|/2 \end{cases}$$

we shall verify (2.1) and (2.2). From the conditions $\alpha > 0$ and b < n/p' it follows that

$$\int \phi_2(y)^{p'} K(x, y) \, dy = \int_{|x-y| < 3|x|/2} |y|^{-bp'} |x|^{-\alpha} |x-y|^{\alpha-n} \, dy$$
$$= |x|^{-bp'} \int_{|x'-z| < 3/2} |z|^{-bp'} |x'-z|^{\alpha-n} \, dz$$
$$= C|x|^{-bp'} = C \phi_1(x)^{p'}$$

with $x' = x/|x| (x \neq 0)$. Moreover by $\alpha > 0$ and b > 0 we have

On modified singular integrals

$$\int \phi_1(x)^p K(x, y) \, dx = \int_{|x-y| < 3|x|/2} |x|^{-bp} |x|^{-\alpha} |x-y|^{\alpha-n} \, dx$$
$$= |y|^{-bp} \int_{|z-y'| < 3|z|/2} |z|^{-bp-\alpha} |z-y'|^{\alpha-n} \, dz$$
$$= C|y|^{-bp} = C \phi_2(y)^p.$$

Thus we obtain (2.1) and (2.2) and so the lemma follows from Lemma 2.4.

LEMMA 2.6. If $\alpha < n/p$, then

$$\left(\int \left||x|^{-\alpha}\int_{|x-y|\ge |x|/2}|x-y|^{\alpha-n}f(y)dy\right|^pdx\right)^{1/p}\le C\|f\|_p.$$

PROOF: For $\phi_1(x) = \phi_2(x) = |x|^{-n/(pp')}$ and

$$K(x, y) = \begin{cases} |x|^{-\alpha} |x - y|^{\alpha - n}, & \text{if } |x - y| \ge |x|/2\\ 0, & \text{if } |x - y| < |x|/2 \end{cases}$$

we shall show (2.1) and (2.2). By the condition $\alpha < n/p$ we have

$$\int \phi_2(y)^{p'} K(x, y) \, dy = \int_{|x-y| \ge |x|/2} |y|^{-n/p} |x|^{-\alpha} |x-y|^{\alpha-n} \, dy$$
$$= |x|^{-n/p} \int_{|x'-z| \ge 1/2} |z|^{-n/p} |x'-z|^{\alpha-n} \, dz$$
$$= C|x|^{-n/p} = C \phi_1(x)^{p'}$$

and

$$\int \phi_1(x)^p K(x, y) \, dx = \int_{|x-y| \ge |x|/2} |x|^{-n/p'} |x|^{-\alpha} |x-y|^{\alpha-n} \, dx$$
$$= |y|^{-n/p'} \int_{|z-y'| \ge |z|/2} |z|^{-(n/p')-\alpha} |z-y'|^{\alpha-n} \, dz$$
$$= C|y|^{-n/p'} = C\phi_2(y)^p.$$

Hence by Lemma 2.4 we obtain the present lemma.

As a consequence of Lemmas 2.2, 2.3 and 2.5 we obtain the following lemma.

LEMMA 2.7. Let
$$L(x, y) = ||x|^{-r} - |y|^{-r} ||y|^{r} |x - y|^{-n}$$
.
(i) If $r < n/p$, then

$$\left(\int \left| \int_{|x-y| \ge 3|x|/2} L(x, y) f(y) \, dy \right|^{p} dx \right)^{1/p} \le C \, \|f\|_{p}.$$

(ii) If
$$r > -n/p'$$
, then

$$\left(\int \left| \int_{|x|/2 \le |x-y| \le 3|x|/2} L(x, y) f(y) \, dy \right|^p dx \right)^{1/p} \le C \|f\|_p.$$

(iii) For all r, $\left(\int \left| \int_{|x-y| < |x|/2} L(x, y) f(y) \, dy \right|^p dx \right)^{1/p} \le C \| f \|_p.$

PROOF: (i) We note that $|x - y| \ge 3|x|/2$ implies $|x - y| \ge 3|y|/5$. Hence for $|x - y| \ge 3|x|/2$,

$$L(x, y) \le \left(\frac{5}{3}\right)^n (|x|^{-r} + |y|^{-r}|) |y|^r |y|^{-n}$$
$$= \left(\frac{5}{3}\right)^n |x|^{-r} |y|^{r-n} + \left(\frac{5}{3}\right)^n |y|^{-n}.$$

Since $|x - y| \ge 3|x|/2$ implies $|y| \ge |x|/2$, (i) follows from Lemma 2.3. (ii) For $|x|/2 \le |x - y|$,

$$L(x, y) \le 2^n (|x|^{-r} + |y|^{-r}) |y|^r |x|^{-n}$$

= $2^n |x|^{-r-n} |y|^r + 2^n |x|^{-n}.$

Since $|x - y| \le 3|x|/2$ implies $|y| \le 5|x|/2$, (ii) follows from Lemma 2.2. (iii) By the mean value theorem,

$$||x|^{-r} - |y|^{-r}| \le |r||x - y||x + \theta(y - x)|^{-r-1}, \qquad 0 < \theta < 1.$$

If |x - y| < |x|/2, then $|x|/2 < |x + \theta(y - x)| < 3|x|/2$. Therefore for |x - y| < |x|/2,

$$||x|^{-r} - |y|^{-r}| \le C|x|^{-r-1}|x-y|$$

and hence

$$\left| \int_{|x-y| < |x|/2} L(x, y) f(y) \, dy \right| \le C |x|^{-1} \int_{|x-y| < |x|/2} |x-y|^{1-n} |f(y)| \, dy.$$

Consequently (iii) follows from Lemma 2.5.

The following lemma is proved in [6] (Theorem 2 in Chap. II).

Lemma 2.8.

$$\left(\int \left|\int_{|x-y|\geq 1} \Omega(x-y)f(y)\,dy\right|^p dx\right)^{1/p} \leq C \,\|f\|_p$$

Let G(x, y) be a measurable function on $\mathbb{R}^n \times \mathbb{R}^n$ such that

(2.3)
$$G(\delta x, \, \delta y) = \delta^{-n} G(x, \, y) \quad \text{for } \delta > 0$$

and let $D(x, \varepsilon)$ be measurable subsets of \mathbb{R}^n such that

(2.4)
$$D(\delta x, \delta \varepsilon) = \delta D(x, \varepsilon)$$
 for $\delta > 0, x \in \mathbb{R}^n, \varepsilon > 0$.

We set

$$G_{\varepsilon}^{f}(x) = \int_{D(x,\varepsilon)} G(x, y) f(y) \, dy.$$

By the change of variables, we see

$$G^f_{\varepsilon}(x) = G^{f_{\varepsilon}}(x/\varepsilon),$$

where $f_{\varepsilon}(x) = f(\varepsilon x)$. Therefore we obtain

LEMMA 2.9. If

$$\|G_1^f\|_{p,-r} \le M \|f\|_{p,-r}$$

for all $f \in L^{p, -r}$, then

 $\|G_{\varepsilon}^{f}\|_{p,-r} \leq M \|f\|_{p,-r}$

for all $f \in L^{p, -r}$ with the same constant M.

In the proof of Theorem 2, we use the fact that a certain class of C^1 -functions is dense in $L^{p,-r}$, namely the following lemma.

LEMMA 2.10. If $f \in L^{p,-r}$, then there exists a sequence $\{\phi_j\} \subset C^1 \cap L^{p,-r}$ such that

(i)
$$\int |\nabla \phi_j(x)|^p |x|^{-rp} dx < \infty,$$

 $\|\phi_j - f\|_{p, -r} \longrightarrow 0 \qquad (j \longrightarrow \infty),$

where $\nabla \phi$ denotes the gradient of ϕ .

PROOF: Since $f(x)|x|^{-r} \in L^p$, there exists a sequence $\{\psi_i\} \subset C^1 \cap L^p$ such that

$$\operatorname{supp} \psi_j \subset \{x; a_j \le |x| \le b_j\}, \quad 0 < a_j < b_j < \infty$$

and $\psi_j \to f(x)|x|^{-r}$ in L^p as $j \to \infty$. The sequence $\{\psi_j(x)|x|^r\} \subset C^1 \cap L^{p,-r}$ satisfies the conditions (i) and (ii).

The final lemma is easily seen.

LEMMA 2.11. If α is a real number and f is a nonnegative locally integrable

function such that

$$\int |y|^{\alpha} f(y) \, dy < \infty,$$

then

$$\int_{|x-y| \ge 2|x|/3} |x-y|^{\alpha} f(y) \, dy$$

is bounded on $\{|x| \leq 1\}$.

3. Proof of Theorem 1

Since $G(x, y) = \Omega_k(x, y)$ and $D(x, \varepsilon) = \{y; |x - y| \ge \varepsilon\}$ satisfy the conditions (2.3) and (2.4), respectively, by Lemma 2.9 it suffices to show the theorem for $\varepsilon = 1$.

(i) We decompose $T_{k,1}f$ as follows:

$$T_{k,1}f(x) = \int_{|x-y| \ge 1, |x-y| < 3|x|/2} \Omega(x-y)f(y) \, dy$$

$$- \sum_{|r| \le k} \int_{|x-y| \ge 1, |x-y| < 3|x|/2} \frac{x^{\gamma}}{\gamma!} (D^{\gamma}\Omega)(-y)f(y) \, dy$$

$$+ \int_{|x-y| \ge 1, |x-y| \ge 3|x|/2} \Omega_{k}(x, y)f(y) \, dy$$

$$= I_{1}(x) - \sum_{|y| \le k} I_{2}^{\gamma}(x) + I_{3}(x).$$

For $I_3(x)$, since r - (n/p) < k + 1, by Lemmas 2.1 and 2.3 we have

(3.1)

$$\begin{aligned} &\left(\int |I_{3}(x)|^{p} |x|^{-rp} dx\right)^{1/p} \\ &\leq C \left(\int \left(\int_{|y| \geq |x|/2} |x|^{k+1-r} |y|^{-k-1+r-n} |f(y)| |y|^{-r} dy\right)^{p} dx\right)^{1/p} \\ &\leq C \left(\int |f(y)|^{p} |y|^{-rp} dy\right)^{1/p}.
\end{aligned}$$

Since r - (n/p) is not a nonnegative integer and $|\gamma| \le k$, we see that $|\gamma| < r - (n/p)$. Hence by Lemma 2.2,

(3.2)

$$\begin{pmatrix} \int |I_{2}^{y}(x)|^{p} |x|^{-rp} dx \end{pmatrix}^{1/p} \\
\leq C \left(\int \left(\int_{|y| < 5|x|/2} |x|^{|y|-r} |y|^{r-|y|-n} |f(y)| |y|^{-r} dy \right)^{p} dx \right)^{1/p} \\
\leq C \left(\int |f(y)|^{p} |y|^{-rp} dy \right)^{1/p}.$$

For $I_1(x)$, we have

$$\begin{split} & \left(\int |I_1(x)|^p |x|^{-rp} \, dx \right)^{1/p} \\ &= \left(\int |\int_{|x-y| \ge 1, |x-y| < 3|x|/2} |x|^{-r} \Omega(x-y) f(y) \, dy \\ &- \int_{|x-y| \ge 1, |x-y| < 3|x|/2} \Omega(x-y) f(y) |y|^{-r} \, dy \\ &+ \int_{|x-y| \ge 1, |x-y| < 3|x|/2} \Omega(x-y) f(y) |y|^{-r} \, dy |^p \, dx \right)^{1/p} \\ & \leq C \bigg(\int \bigg(\int_{|x-y| < 3|x|/2} ||x|^{-r} - |y|^{-r} ||y|^r |x-y|^{-n} |f(y)| |y|^{-r} \, dy \bigg)^p \, dx \bigg)^{1/p} \\ &+ \bigg(\int \bigg| \int_{|x-y| \ge 1, |x-y| < 3|x|/2} \Omega(x-y) f(y) |y|^{-r} \, dy \bigg|^p \, dx \bigg)^{1/p} \\ &= I_{11} + I_{12}. \end{split}$$

Since r > -n/p', it follows from Lemma 2.7 (ii) and (iii) that

$$I_{11} \le C \left(\int |f(y)|^p |y|^{-rp} \, dy \right)^{1/p}.$$

Moreover by Lemmas 2.6 and 2.8 we have

$$I_{12} \leq \left(\iint \left| \int_{|x-y| \geq 1} \Omega(x-y) f(y) |y|^{-r} dy \right|^p dx \right)^{1/p} + C \left(\iint \left(\int_{|x-y| \geq 3|x|/2} |x-y|^{-n} |f(y)| |y|^{-r} dy \right)^p dx \right)^{1/p} \leq C \left(\iint |f(y)|^p |y|^{-rp} dy \right)^{1/p}.$$

Thus we obtain (i).

(ii) When -n/p' < r < n/p, $T_{k,1}^* = T_{k,1}^{\Omega_1}$ with $\Omega_1(x) = \Omega(-x)$; hence (ii) follows from (i). Let r > n/p and $r - (n/p) \neq a$ nonnegative integer. We shall prove that for $g \in L^{p',r}$ and $f \in L^{p,-r} \cap L^{1,-r}$,

(3.3)
$$\int \left(\int_{|x-y| \ge 1} \Omega_k(x, y) f(y) \, dy \right) g(x) \, dx$$
$$= \int \left(\int_{|x-y| \ge 1} \Omega_k(x, y) g(x) \, dx \right) f(y) \, dy$$

From this equality, (ii) readily follows from (i), since $L^{p, -r} \cap L^{1, -r}$ is dense in $L^{p, -r}$. We have

$$\begin{split} & \iint \left(\int_{|x-y| \ge 1} |\Omega_k(x, y) f(y)| \, dy \right) |g(x)| \, dx \\ & \le \iint \left(\int_{|x-y| \ge 1, |x-y| < 3|x|/2} |\Omega(x-y) f(y)| \, dy \right) |g(x)| \, dx \\ & + \sum_{|y| \le k} \iint \left(\int_{|x-y| \ge 1, |x-y| < 3|x|/2} \left| \frac{x^y}{\gamma!} (D^y \Omega) (-y) f(y) \right| dy \right) |g(x)| \, dx \\ & + \iint \left(\int_{|x-y| \ge 1, |x-y| \ge 3|x|/2} |\Omega_k(x, y) f(y)| \, dy \right) |g(x)| \, dx \\ & = A_1 + \sum_{|y| \le k} A_2^y + A_3. \end{split}$$

For A_3 , since r - (n/p) < k + 1, by a calculation similar to (3.1) and Hölder's inequality we have

$$\begin{split} A_3 &\leq C \int \left(\int_{|y| \geq |x|/2} |x|^{k+1-r} |y|^{r-k-1-n} |f(y)| |y|^{-r} \, dy \right) |g(x)| \, |x|^r \, dx \\ &\leq C \, \|f\|_{p, -r} \, \|g\|_{p', r} < \infty. \end{split}$$

For A_2^{γ} , since $|\gamma| < r - (n/p)$, by (3.2) and Hölder's inequality we have

$$\begin{aligned} A_2^{\gamma} &\leq C \int \left(\int_{|y| < 5 \, |x|/2} |x|^{|y| - r} |y|^{r - |y| - n} |f(y)| \, |y|^{-r} \, dy \right) |g(x)| \, |x|^r \, dx \\ &\leq C \, \|f\|_{p, -r} \, \|g\|_{p', r} < \infty. \end{aligned}$$

For A_1 , since r > n/p > 0, and |x - y| < 3|x|/2 implies |x|/|y| > 2/5, we have

$$A_1 \le C \int \left(\int_{|x-y| \ge 1} |x-y|^{-n} |f(y)| |y|^{-r} dy \right) |g(x)| |x|^r dx.$$

For s with 1 < s < p, we put 1/t = (1/s') + (1/p). Since t > 1 and $f \in L^{s, -r}$, by Young's inequality we see that

$$A_1 \leq C \left(\int_{|x| \geq 1} |x|^{-tn} \, dx \right)^{1/t} \|f\|_{s, -r} \|g\|_{p', r} < \infty.$$

Thus by Fubini's theorem we obtain (3.3), and hence (ii) is proved.

REMARK. By Theorem 1 (i) and (3.3), for $f \in L^{p, -r}$ and $g \in L^{p', r}$ we have

$$\int T_{k,\varepsilon}f(x)g(x)\,dx = \int T_{k,\varepsilon}g(y)f(y)\,dy.$$

4. Proof of Theorem 2

(i) By Lemma 2.10 and Theorem 1 it is sufficient to show (i) for $f \in C^1 \cap L^{p, -r}$ such that

(4.1)
$$\int |\nabla f(x)|^p |x|^{-rp} dx < \infty$$

Let $0 < \varepsilon_1 < \varepsilon_2 < 1$. We decompose $T_{k,\varepsilon_1}f - T_{k,\varepsilon_2}f$ as follows:

$$\begin{split} T_{k,\varepsilon_{1}}f(x) &- T_{k,\varepsilon_{2}}f(x) \\ &= \int_{\varepsilon_{1} \le |x-y| < \varepsilon_{2}, |x-y| < 3|x|/2} \Omega(x-y)f(y)\,dy \\ &- \sum_{|\gamma| \le k} \int_{\varepsilon_{1} \le |x-y| < \varepsilon_{2}, |x-y| < 3|x|/2} (x^{\gamma}/\gamma!)D^{\gamma}\Omega(-y)f(y)\,dy \\ &+ \int_{\varepsilon_{1} \le |x-y| < \varepsilon_{2}, |x-y| \ge 3|x|/2} \Omega_{k}(x, y)f(y)\,dy \\ &= J_{1}(x) - \sum_{|\gamma| \le k} J_{2}^{\gamma}(x) + J_{3}(x). \end{split}$$

By Lemma 2.1 and (3.1) we have

$$\left(\int |J_3(x)|^p |x|^{-rp} dx\right)^{1/p}$$

$$\leq C \left(\int_{|x|<2\varepsilon_2/3} \left(\int_{|y|\ge |x|/2} |x|^{k+1-r} |y|^{r-k-1-n} |f(y)| |y|^{-r} dy\right)^p dx\right)^{1/p}$$

$$\longrightarrow 0 \qquad (\varepsilon_2 \longrightarrow 0).$$

Since $|\gamma| < r - (n/p)$, by (3.2) and Lebesgue's dominated convergence theorem

we have

$$\begin{split} \left(\int |J_2^{\gamma}(x)|^p |x|^{-rp} dx \right)^{1/p} \\ &\leq C \bigg(\int \bigg(|x|^{|\gamma|-r} \int_{|x-y|<\varepsilon_2, |y|<5|x|/2} |y|^{r-|\gamma|-n} |f(y)| |y|^{-r} dy \bigg)^p dx \bigg)^{1/p} \\ &\longrightarrow 0 \qquad (\varepsilon_2 \longrightarrow 0). \end{split}$$

For J_1 , by the cancellation property of Ω we see that

$$\begin{split} B &= \left(\int |J_{1}(x)|^{p} |x|^{-rp} dx \right)^{1/p} \\ &= \left(\int \left| \int_{\epsilon_{1} \le |y| < \epsilon_{2}, |y| < 3|x|/2} \Omega(y) (f(x-y) - f(x)) dy \right|^{p} |x|^{-rp} dx \right)^{1/p} \\ &= \left(\int \left| \int_{\epsilon_{1} \le |y| < \epsilon_{2}, |y| < 3|x|/2} \Omega(y) \left(\int_{0}^{|y|} \nabla f(x-sy') \cdot (-y') ds \right) dy \right|^{p} |x|^{-rp} dx \right)^{1/p} \\ &\le \int_{\epsilon_{1} \le |y| < \epsilon_{2}} |\Omega(y)| \left(\int_{0}^{|y|} \left(\int_{|x| > 2|y|/3} |\nabla f(x-sy')|^{p} |x|^{-rp} dx \right)^{1/p} ds \right) dy, \end{split}$$

where y' = y/|y| and $x \cdot y = \sum_{i=1}^{n} x_i y_i$. Therefore it follows from (4.1) and Lemma 2.11 that

$$B \leq C \int_{\varepsilon_1 \leq |y| < \varepsilon_2} |y|^{1-n} \, dy \longrightarrow 0 \qquad (\varepsilon_2 \longrightarrow 0).$$

We have completed the proof of (i).

(ii) By Theorem 1 (ii) and Lemma 2.10, We may assume that $g \in C^1 \cap L^{p',r}$ and

$$\int |\nabla g(x)|^{p'} |x|^{rp'} dx < \infty.$$

For $0 < \varepsilon_1 < \varepsilon_2 < 1$, we decompose $T^*_{k,\varepsilon_1}g - T^*_{k,\varepsilon_2}g$ as follows:

$$T_{k,\varepsilon_{1}}^{*}g(y) - T_{k,\varepsilon_{2}}^{*}g(y)$$

$$= \int_{\varepsilon_{1} \le |x-y| < \varepsilon_{2}, |x-y| < 3|y|/5} \Omega(x-y)g(x) dx$$

$$+ \int_{\varepsilon_{1} \le |x-y| < \varepsilon_{2}, |x-y| \ge 3|y|/5, |x-y| < 3|x|/2} \Omega(x-y)g(x) dx$$

On modified singular integrals

$$\begin{aligned} &-\sum_{|y| \le k} \int_{\varepsilon_1 \le |x-y| < \varepsilon_2, |x-y| < 3|x|/2} (x^{\gamma}/\gamma!) (D^{\gamma} \Omega) (-y) g(x) dx \\ &+ \int_{\varepsilon_1 \le |x-y| < \varepsilon_2, |x-y| \ge 3|x|/2} \Omega_k(x, y) g(x) dx \\ &= H_1(y) + H_2(y) - \sum_{|y| \le k} H_3^{\gamma}(y) + H_4(y). \end{aligned}$$

By the same discussion as for $J_1(x)$ of (i), we see that

$$\left(\int |H_1(y)|^{p'} |y|^{rp'} dy\right)^{1/p'} \longrightarrow 0 \qquad (\varepsilon_2 \longrightarrow 0).$$

Since $|x - y| \ge 3|y|/5$ and |x - y| < 3|x|/2 imply $|x - y| \ge 3|x|/8$ and $|x| \ge 2|y|/5$, by r > -n/p' and Lemma 2.3 we have

$$\begin{split} & \left(\int \left(\int_{|x-y| \ge 3|y|/5, |x-y| < 3|x|/2} |\Omega(x-y)g(x)| \, dx \right)^{p'} |y|^{rp'} \, dy \right)^{1/p'} \\ & \le C \left(\int \left(|y|^r \int_{|x| \ge 2|y|/5} |x|^{-r-n} |g(x)| \, |x|^r \, dx \right)^{p'} \, dy \right)^{1/p'} \\ & \le C \left(\int |g(x)|^{p'} \, |x|^{rp'} \, dx \right)^{1/p'} < \infty. \end{split}$$

Hence

$$\begin{split} \left(\int |H_2(y)|^{p'} |y|^{rp'} dy \right)^{1/p'} \\ &\leq C \left(\int_{|y| < 5\varepsilon_2/3} \left(\int_{|x-y| \ge 3|y|/5, |x-y| < 3|x|/2} |\Omega(x-y)g(x)| dx \right)^{p'} |y|^{rp'} dy \right)^{1/p'} \\ &\longrightarrow 0 \qquad (\varepsilon_2 \longrightarrow 0). \end{split}$$

We note that $\int_{|x-y| < \varepsilon_2} |x|^{|\gamma|-r} |g(x)| |x|^r dx \to 0$ ($\varepsilon_2 \to 0$) since $|\gamma| < r - (n/p)$. Hence by Lemma 2.3 and Lebesgue's dominated convergence theorem

$$\begin{split} \left(\int |H_{\mathfrak{Z}}^{\gamma}(y)|^{p'} |y|^{rp'} dy \right)^{1/p'} \\ &\leq C \bigg(\int \bigg(|y|^{r-|\gamma|-n} \int_{|x-y|<\varepsilon_{2}, |x|>2|y|/5} |x|^{|\gamma|-r} |g(x)| |x|^{r} dx \bigg)^{p'} dy \bigg)^{1/p'} \\ &\longrightarrow 0 \qquad (\varepsilon_{2} \longrightarrow 0). \end{split}$$

Finally by Lemmas 2.1, 2.2 and r - (n/p) < k + 1,

Takahide KUROKAWA

$$\begin{split} \left(\int |H_4(y)|^{p'} |y|^{rp'} \, dy \right)^{1/p'} \\ &\leq C \bigg(\int_{|y| \le 5\varepsilon_2/3} \left(\int_{|x| \le 2|y|} |x|^{k+1-r} |y|^{r-k-1-n} |g(x)| \, |x|^r \, dx \right)^{p'} \, dy \bigg)^{1/p'} \\ &\longrightarrow 0 \qquad (\varepsilon_2 \longrightarrow 0). \end{split}$$

This completes the proof of (ii).

References

- [1] T. Kurokawa, Riesz potentials, higher Riesz transforms and Beppo Levi spaces, Hiroshima Math. J. 18 (1988), 541–597.
- [2] Y. Mizuta, Integral representations of Beppo Levi functions and the existence of limits at infinity, Hiroshima Math. J. 19 (1989), 259-279.
- [3] G. O. Okikiolu, On inequalities for integral operators, Glasgow Math. J. 11 (1970), 126-133.
- [4] C. Sadosky, "Interpolation of operators and singular integrals," Dekker, New York, 1979.
- [5] E. M. Stein, Note on singular integrals, Proc. Amer. Math. Soc. 8 (1957), 250-254.
- [6] E. M. Stein, "Singular integrals and differentiability properties of functions," Princeton Univ. Press, Princeton, 1970.

Department of Mathematics College of Liberal Arts Kagoshima University Kagoshima 890, Japan