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1. Introduction

One of the important subjects in mathematical biology is to understand

theoretically the interaction between the distribution of organisms and their

environment. In particular, the study of coexistence of multi-competing species

is a very important problem in this field. For the theoretical study, many

mathematical models have been proposed so far in the framework of

reaction-diffusion equations. Among them, Shigesada et al. [17] proposed the

following system for two competing species:

(ut = A[(d1 + α12ι?)w] + (aλ - bxu - cxv)u9

\vt = A\_(d2 + α2 1u)ι;] + (a2 - b2u — c2v)v, xeΩ, t > 0,

(1.2) — [ W i + α 1 2 φ ] = 0 = —[(d 2 + α 2 1 φ ] , xedΩ, t > 0,
on on

(1.3) !i(0, x) = uo(x) > 0, i;(0, x) = vo(x) > 0, xεΩ,

where A is the Laplace operator in R". Ω is a bounded domain in R" with

smooth boundary dΩ. n is the outer unit normal vector on dΩ. u and υ are

the population densities of two competing species. a{ is the intrinsic growth

rate (i = 1, 2). bί9 c2 and cl9 b2 are the coefficients of intraspecific and

interspecific competitions, respectively. d1, d2 and α 1 2 , α 2 1 are the self-diffusion

rates and the cross-diffusion rates, respectively. All parameters are non-

negative constants. We should briefly explain the meaning of the differential

operator in (1.1) from a biological aspect. We rewrite it as the following two

terms:

Δ{{άx + oc12v)u] = div l(d1 + oc12v)Vu] + α 1 2 div [uVύ].

The first term is a nonlinear diffusion with Fickian type, and the second one

is the advection term such that u migrates to the direction of lower density

of v with the speed aί2u\Vv\, which means the intensity of the escape from

the population pressure of the other species. For the precise interpretation,

we refer to the excellent book by Okubo [14].
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By a suitable normalization on u and v, we conveniently rewrite (1.1)—(1-3)

as

' ux = ε2A[(l + OLΌ)U\ + /(M, υ),
(1.4)

1 vt=DA[(1 + βu)v] + #(w, ι;), x e β , ί > 0,

(1.5) — [(1 + OLV)U] = 0 = — [(1 + βu)v\, xedΩ, t > 0,
d/ι 5n

(1.6) w(0, x) = MO(X) > 0, v(09 x) = vo{x) > 0, xe£J,

where f(u, υ) = (1 — w — CI;)M and ^(M, V) = (a — bu — v)v with positive constants

a, b and c.

First of all, we review the known results on a special case of (1.4)—(1.6)

when α and β are absent. The resulting system is a usual reaction-diffusion

system.

(ut = ε2Au+f(u, υ)9

\vt = DAv + g(u,v), XEΩ, t > 0,

(1.8) _ M = 0 = — 1 > , xeδί2, ί > 0,
5/f dn

(1.9) w(0, x) = uo(x) > 0, ι;(0, x) = υo(x) > 0, xeί5.

The asymptotic behaviour of solution to (1.7)—(1.9) is classified into four cases

(for example, see de Mottoni [11]):

( I ) If a < b, 1/c, then l i m ^ M ί , x), v(t, x)) = (1, 0).

(II) lϊb<a<l/c, thenl im^^ίϋί ί , x), υ(t9 x)) = ( ( l - α c ) / ( l - 6 c ) , ( α - 6 ) /

(1 - fee)).

(III) If l/c<a<b, then (1,0) and (0, a) are locally stable. Which

species can survive in competition depends on the initial data.

(IV) If 6, 1/c < α, then l i m ^ M ί , x), v(t9 x)) = (0, a).

Case (III) is further investigated. Kishimoto and Weinberger [4] showed

that even if any non-constant stationary solutions of (1.7)—(1.9) exist, these are

unstable when Ω is convex. On the other hand, Matano and Mimura [7]

proved that there exist stable non-constant stationary solutions for a suitable

dumbbell shaped (non-convex) domain Ω. These results imply that the

coexistence of two competing species crucially depends on the shape of the

domain.

Motivated by the above, we study the problem as to whether or not

(1.4)—(1.6) possibly has stable non-constant stationary solutions when Ω is

convex. In ecological terms, this problem means whether or not the
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coexistence of two competing species is possible by introducing cross-diffusion

effects in the convex habitat.

In this paper, we consider this problem by studying a simple case of

(1.4)—(1.6) when α = 0 and β > 0 in one dimensional space Ω = I = (0, 1).

Then (1.4)—(1.6) is written as

(1.10)

(1.11)

(1.12)

ut = ε2uxx+f{u, v)9

xel, t > 0 ,

Uχ = 0 = [(1 + βu)v]x9 x = 0, 1, ί > 0,

w(0, x) = uo(x) > 0, v(0, x) = vo{x) > 0, XE [0, 1].

For existence problems, there are many studies of the local existence of

solutions of more general evolution equations including (1.10)—(1.12) in suitable

function spaces (for example, see Amann [1]). Masuda and Mimura [6]

proved the global existence of solutions of (1.10)—(1.12) for any initial data in

Hl{I) x #£(/), where H*(I) = {ueH2(I)\ux = 0 at x = 0, 1}. Along this line,

we also refer to Pozio and Tesei [16] and Yagi [18].

For stationary problems of (1.10)—(1.12), Mimura [8] and Mimura et al.

[9] proved the existence of non-constant stationary solutions under some

conditions when ε > 0 is sufficiently small. However, the stability of these

solutions has not yet been proved. The difficulty is that β is present in (1.10)

(i) a= 1.0

Figure 1. Spatially inhomogeneous solution

of (1.10H1.12) where ε2 - 0.001,

D = 10.0, 0 = 3.0 and b = c= 1.1.

(ϋ) a = 0.992
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so that the system possesses a truly nonlinear diffusion, and that these solutions

are not necessarily stable as suggested by numerical simulations. Figure 1

clearly shows that the stability depends on the values of parameters included

in the system.

The purpose of this paper is to give the criterion of the stability of the

stationary solutions of (1.10)—(1.12) constructed in [9].

In section 2, we introduce the stationary solutions constructed in [9]. In

section 3, we study the distribution of eigenvalues of the linearized eigenvalue

problems associated with these solutions by using the SLEP method proposed

by Nishiura and Fujii [13]. In section 4, we show that the stability of these

stationary solutions changes by Hopf bifurcation when some parameter is

varied.

Acknowledgement. The author wishes to express his sincere thanks to

Professor Masayasu Mimura for continued encouragement and guidance

throughout the course of this work.

2. Preliminary

In this section, we consider the stationary problem of (1.10)—(1.12) which

is described by

u, V)9

(2.2) ux = 0 = [(1 + βu)υ]x, x = 0, 1.

We impose the following (A.1)-(A.3) on (2.1)-(2.2).

(A.I) a, b and c satisfy the condition of Case (III) or Case (IV).

(A.2) β>l.

Using the change of variables, w = u and z = (1 + βu)v, we conveniently
rewrite (2.1)-(2.2) as

, z),

, z), xel,

(2.4) wx = 0 = zx, x = 0, 1,

where

( cz \
/(w, z) = 1 - w - — w,

V 1+/W
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g{w, z) = [a-bw -
1 + βw J 1 + βw

We first consider the reduced problem (ε = 0) of (2.3)-(2.4):

(2.5) | ° = / ( W ' Z ) '

(0 = Dzxx + g(w9 z), xeJ,

(2.6) zx = 0, x = 0, 1.

From the first equation of (2.5), we obtain three different solutions:

Define z* by the zero of β_ίz)/(s' z ) ^ s which is uniquely determined by the
assumption (A.2).

(A.3) a < z* and Λ + (z*)< (1 - αc)/(l - be) (Figure 2).

l - f c c

Figure 2. Functional form of / and g.

For any fixed 0 < ξ < (1 + β)2/(4cβ), we define Jϊ(z; <*) by

H(z;ξ) =
0<z<ξ

Then, substituting w = //(z; ξ) into the second equation of (2.5), we obtain

the scalar equation with respect to z:
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(2.7)
xe/,

Zχ = 0, x = 0, 1.

Since H{z; ξ) is discontinuous at z = £, we note that g(H(z; ξ)9 z) is also

discontinuous at z = £ (Figure 3). It is proved in Mimura et al. [10] that

there is DN > 0 such that, for D^ < D, there exist JV non-constant solutions

Zi(x; ξ) (i = 1, 2,...,N) of (2.7) which have the following properties:

( i ) For each i (/= l52,...,iV), zi is a C1-class function satisfying

l/c < zt (x; ξ)<(β + l)2/(4cy8) for all xe[0, 1].

(ii) For each i(i = 1,2,...,N), there exists a strictly increasing sequence

{xjyj=1 such that z^x,-; ξ) = ξ for any j(j = 1, 2,...,i).

(iii) For each / and j(i= 1, 2,...9N;j = 0, 1,...,/ - 1), z£ satisfies (zf(x; ξ)

- ξ)(z£(y; ξ) - ξ) < 0 for all xe(xj9 xj+1) and j e ( x i + 1 , xj+2), where

x 0 = 0 and x ί + 1 = 1.

y a

1 -

-b

-be

α\

|

{ (1 + β)2

4cβ

Figure 3. Functional form of g{H{z; ξ), z).

Thus, putting z = z,(x; £) into //(z; ξ), we obtain the solution (w(x; ξ), z(x; ξ))

= (//(z^x; ί ) ; ί), z t(x; ξ)) of (2.5)-(2.6).

For the sake of brevity, we consider the simple case when N = 1 only. So,

it turns out that z(x; ξ) is monotone increasing or decreasing in /, and that

z(x* ξ) = ξ at the only one point x = x*. We assume here the case when

z(x; ξ) is monotone increasing in /. Then w(x; ξ) is given by

h_(z(x;ξ)H=0)

h + (z(x;ξ))

0 < x < x*

x* < x < 1

(Figure 4).

THEOREM 2.1. (Mimura et al. [9]). Suppose α9 b, c9 β and z* satisfy

(A.1)-(A.3). Then there exist positive constants ε0 and Do such that non-negative
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0 x* 1 0 x* 1

Figure 4. Reduced solution (w(x; ξ), z(x; ξ)).

solution (wε>D(x), zε>D(x)) of (2.3)-(2.4) exists for all (ε, D)eΩ0 = {(ε, D ) e R 2 | 0

< ε < ε0, D > Do}, and satisfies

l im ε i 0 wε'D(x) = H(z(x; z*); z*) compact uniformly in xeT\ {x*}

We call (wε'D(x), zε'D(x)) a singularly perturbed solution of (2.3)-(2.4) since

wε'D possesses an internal layer near x = x* when ε > 0 is sufficiently small

(Figure 5).

By the inverse transformations, u = w and υ = z/(l + βw), it turns out

that a solution (Meil>(x), ι;ε'D(x)) of (1.10)-(1.12) is given by the form

(w£'D(x), zε'D(x)/(l + jSwε'D(x))), where

zε'D(x)

0 x* 1 0 x* 1

Figure 5. Singularly perturbed solution (wε'D(x), zε'D(x)).

0 x* 1 0 x* 1

Figure 6. Singularly perturbed solution (ΦD(x), vε'D(x)).
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'(0, z(x; z*)) 0 < x < x *

(x; z*)), z(x; z*)/(l + βh + (z(x; z*)))) x* < x < 1.

We note that both w and i; exhibit an internal layer near x = x*e/ (Figure 6).

3. Stability of singularly perturbed solutions

In this section, we study the stability of singularly perturbed solutions

given in the previous section. Let φ(u9 v) and φ(u, υ) be φ(u, v) = u and

φ{u9 v) = (1 + βu)v9 respectively. Since det = 1 + βu > 0 for all (u, ι;)e

5 ( M , t?)

0 = [0, oo) x [0, oo), there exists a smooth inverse map (Φ, ϊ7) of (φ, ^) in

0. By the change of the variables used in the last section, w = φ(u, v) and

z = i/φ, ι;), (1.10)—(1.12) becomes

>wwt + Φzzt = ε2wxx + f(w, z),
f

wwt + y zz, = Dz x x + flf(w, z), xe/, ί > 0,

(3.2) wx = 0 = zx, x = 0, 1, ί > 0,

w(0, x) = φ(wo(x), vo(x))(> 0),

Ό, x) = φ(uo(x), vo(x))(> 0), xe[0, 1],

Let wε'D = (wε'D, zε'D) be a non-negative singularly perturbed stationary

solution of (3.1)—(3.3) given in Theorem 2.1 for (ε, D)eΩQ. Then ΦΌ

= (ΦD,vε>D) = (Φ(wε>D),Ψ(>vε>D)) is a solution of (1.10)-(1.12). By H2(I)

c CX(Γ) and the regularity of (Φ, ϊ7), we find that the stability of ΦD coincides

with that of wε'D. So, we may only consider the stability of wε-D.

We define J(z) by J{z) = fi:g/(s, z)ds, and also define R-,R+ by

K_ = {(w, z)|w = ^Ϊ-(Z) for 1/c < z < z*},

R+ = {(w, z)\w = Λ+(z) for z* < z < (/f + l)2/(4c)8)},

respectively. Then we obtain

βh+(z)



Stability of solutions to nonlinear diffusion systems 517

By Theorem 2.1, we find that l im ε i 0 wε>D(x)eR_ ϋR+ for all xe[0, l]\{x*},

i.e., l i m ε i 0 / w ( ^ ' D ) < 0 in [0, l]\{x*}.

The linearized eigenvalue problem associated with wε D is given by

f λ{Φε^DW + Φε

z

DZ) = ε2Wxx+f£DW+fz

ε>DZ,

(3.4) I λ(Ψ%DW+ Ψε

z

DZ) = DZXX + &DW+ gε

z

DZ, xel,

[ Wχ = 0 = ZX9 x = 0, 1,

where f^D(x) — /W(M'£ I J )(X)) and other partial derivatives are defined similarly.

In order to study the distribution of eigenvalues of (3.4), we apply the algorithm

of the SLEP method, which was proposed by Nishiura and Fujii [13], to (3.4).

Let us first consider the following Sturm-Liouville problem:

(3 5) {0 U(λ)W=ε2Wxx + (f: D-λΦϊD)W, xel,

1 Wx = 0, x = 0, 1.

By the definition of (Φ, Ψ), we have

f>0.
(u, v)

By virtue of the above inequality, it turns out that the sequence of eigenvalues

and the corresponding eigenfunctions {(A '̂D, ΦnD)}n>0 of (3.5) satisfies the

following properties:

( i ) For each n > 0, λ^ is real and λε

n>
D > Λ ^ . Moreover, X";D -> - oo

as n -> oo.

(ii) φ%D has n zeros for each n > 0.

(iii) {Φn'D}n>o i s a complete orthonormal set (CONS) in L2(I) with respect

to the weight Φε^D.

We normalize φϊD as <|<^'D | 2, Φ ^ > = 1 for all n > 0, where < . , . > is the

inner product of L2(/). Throughout this paper, we denote /ι°'D, /zε'°° and Jz0'00

by

/i 0 ^ = l im ε i 0 /zε'D, /ιε'°° = limDToo hε>D and /z0'00 = l im ε i 0 limDToo /iε'D,

respectively. We also denote the stretched function of heC2(I) by heC2(7)

where 7 = ( - **/*>> (1 - x*)/ε), i.e., fi(y) = h(x* + εy), and put ^ ' D =

LEMMA 3.1. (Lemmas 1.2 and 1.4 in [13]). φ[jD satisfies the following

properties:

(i) fcD -* 4oD = κ*(dw/dy)° D asε^O, where (K*)'1 = \\(dw/dy)°'D\\L2iR).

The convergence is uniform on any compact subset of R.
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(ii) \iΦoDdx = y/εL(e, D) as ε -> 0, where L(ε, D) is a positive continuous

function of (ε,D)eΩ0. Moreover, L* = lim ε i 0L(ε, D) = κ*{h + (z*)

LEMMA 3.2. (Corollary 1.3 in [13]). There exist positive constants Λ*, Cγ

and γι independently of (ε, D)eΩ0 such that

λεoD = εlo(ε, D) + Exp(ε, D) and λε{D < - zf*(< 0)

hold for all (ε, D) e Ωo where

(κ*Ϋ ά ί
lξ = l im ε i 0 X0(ε, D) = L J _ (Z*)

D dz

\Exp(ε, D)\ £ Ctexp(- γjε):

Since wε'D is uniformly L00-bounded for (ε, D)eΩ0, there exists μ0 > 0

such that

/°'D(x)
s u p D > D o supxe[0Λ]X{x*} ™ <-μo<0.

Let ω and μ be constants satisfying 0 < ω < π/2 and 0 < μ < min (A*, μ0),

respectively, and define a subset Σ(ω, μ) in the complex plane C by

Σ(ω, μ) = {Λ,eC|ReΛ > - μ or |arg/I| < π/2 + ω}.

Set ^ = Σ Π

G ° = 0 ^ ^ ' j D = Lε'Z)μ)-1/z where heL2(I) and A^{^'D}n>0- Since

{0nD}n>o i s a CONS in L2(/) with respect to the weight Φl;D, we have

,ε,D

Define Lε>D(λ)f by

ί ε ' D r;vA V 0 0 ^ ^ n ' ^

for all heL2(I). Then the following lemma is easily obtained.

LEMMA 3.3.

\\Le'D(λY\\L2(I) < — ^

for all λeΣ(ω, μ) where

Cϊι = inf (ε,B,x)εβox [O,i] Φw°(> 0).
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By the first equation of (3.4), we have

λ*6

D - λ ψ0

(3.6)
+ L' D(Xfl-(fz'

 D - λΦ'z
 D)Z~].

LEMMA 3.4. (Lemma 2.2 in [13]). Let F(w, z) be a smooth function of w

and z. Then

0̂ ΓLo
Jw' — λφw'

ίn

for any /ieL2(/)nL°°(/) and λeΣ(ω, μ), where Fε D = F(wε D) and F° D = F{w°'D).

The convergence is uniform for D > Do and λeΣ(ω, μ).

LEMMA 3.5. (Lemma 2.3 in [13]).

κ*λ f ΦZ°
 D — °'Ddy\δ*

J d J

in H~1(I)-sense and

c* - κ*λ ί Ψl'D~dy\δ*
JR dy )

in H'1 (I)-sense hold uniformly for D > Do where δ* is the Dirac's δ-function

at x = x*, and

c* = _ ^ ( z ) ( > o ) , ci κ
dz

LEMMA 3.6. Let h be a C2-class function. Then

W'D(Xflh] —» - - ^ + </ι, φ*oD) φe6D strongly in L2{I)

as \λ\ -• oo and λeΣ(ω, μ). The convergence is uniform for (ε, D)eΩ0.

PROOF. Set XLe-D(Xf[h] = HεDλ - (h/Φ^) + <h, φεόD>ΦεdD By multi-

plying LεZ)(/l) into the both hands, we have Lε-D(λ)Hε'D-λ = RεDλ where

Λ«.D.A = L-.i>(θ)[Λ/Φ5^] " ASD<fc, 0 ^ D > Φ ^ D φ ^ . From the regularity of H>ε'D

for any fixed (ε, D)ei20, it follows that | |L ε j D (0)[/ϊ/Φ^] | |L 2 ( / ) and \\Φε^DφεdD\\L2(I)

are bounded. Therefore, | | # ε ' D ' λ | | L 2 ( / ) is uniformly bounded with respect to

1 Since (Rε>D>\ φε

6

D} = 0, we obtain HεDλ = Lε>D(λyRε>D>λ. By Lemma 3.3,

we find
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ii ττε,D,λ\\ ^ || Tε,Dί Ί\f \\ \\ nε,D,λ\\

I I « I I L 2 ( / ) < I I ^ \Λ) \\LHI)\\R WLHD
II Rε>D>λ\\ ,

< c2

— > 0 as \λ\ • oo and λeΣ(ω, μ).

Substituting (3.6) into the second equation of (3.4), we have

(3.7) 0 = DZXX +
ΛQ — λ

+ (gε

z

 D - λΨl D)Z.

We introduce the following bilinear form associated with the above equation:

AQ A

- <(9ΪD- λΨε

z>
D)Z\ Z 2 > for all Z 1 , Z2eHlί{l).

Let λ and Z be an eigenvalue and its eigenfunction which is normalized as

1 ,

^ a(w, z)

Then Z satisfies C 3 | |Z | | 2 2 ( / ) < 1 < C 4 | | Z | | | 2 ( / ) , where

)ε D

LEMMA 3.7. There exists M x > 0 .swcA ί/zα/ \λ\< Mλ for all (ε, D ) e ί 2 0

and λeΣ(ω, μ)f)σ(3A), where σ(3Λ) represents a set of all eigenvalues of (3A).

PROOF. Let Z be an eigenfunction associated with the eigenvalue λ. It

follows from Lemma 3.6 that

0 + ι + R { λ z )

A A

where Rε-D(λ, Z) = O(\\Z\\L2(I)/λ) as |Λ| —• oo and λeΣ(ω, μ). Since C 3 is
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independent of ε, D and λ, we know that

Rε>D(λ,Z) >0 as |/l| >oo and λeΣ(ω9 μ).

This implies that the eigenvalue λ with λeΣ(ω, μ) is uniformly bounded for

all (ε, D)EΩ0.

LEMMA 3.8. Let Z be an eigenfunction associated with λeΣ(ω, μ)Πσ(3.4).

Then there exists M2 > 0 such that

PROOF. Since λ and Z satisfy Bε>D>λ(Z, Z) = 0 and wεJ) is L00-bounded,

we find that | |Z x | |£2 ( / ) < M 2 | |Z | |£ 2 ( / ) where M 2 > 0 is independent of (ε, D)eΩ0

and λeΣ{ω9μ)n{λeC\\λ\^M1}.

Let Bδ be a closed ball with center at the origin and radius δ in the

complex plane C. We shall say that λ = λ(ε, D) is a non-critical eigenvalue

of (3.4) if there exists δ > 0 such that λφBδ for small ε > 0, and that λ = λ(ε, D)

is a critical eigenvalue of (3.4) if A is not a non-critical eigenvalue of (3.4).

Let δ > 0 be an arbitrary fixed constant. Since limε i Oλo'D = 0 and

$jφεόDdx = O(y/ε) as ε-»0, it holds that

I)

I t h e s e c o n d t e r m of B ε ^ \ Z \ Z2)\ < ^ ^ \\Zι \\HHI) \\Z2\\H

δ

for (ε, D)EΩ0 and Λe(Σ(ω, μ){\BMi)\Bδ, where C5(λ) > 0 depends on

only. Therefore, we obtain

I r}ε,D,λcyl 7^\\ ^ Π II 7 l II II 7 2 1

\B* \Z , Z )\ < D\\ZX\\L2(I)\\ZX\
II II 7 11

C5{λ)ε χ

1 ^ — I I ^ WHHDW^ WHHD

0

where C6(λ) depends on λ only. The above inequality shows the boundedness

of βε'D'λ. By Lemma 3.4, we have

noj (f.° D - λΦΪW - λΨΪ*) , z | 2 )

D - λΨI D)Z, Z} ^ <g°'D - λΨ°'D, |Z| 2>
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uniformly for | |Z | | H i ( / ) < y/(l + M2)/C3 and λeΣ(ω9 μ)(]BMι. We define

B°-D-λ by

fO,D _ lφO,D

Z

If \B°>D>λ(Z, Z)\ > CΊ\\Z\\HHI) holds for some positive constant C 7 , then the

similar inequality holds for ^ ' ^ ^ ( Z , Z) with the appropriate change of

constant. Rewrite B°'D'λ as

,, Z x>

where

_

,>0,,
, z)

ιmε,B\2

d e t

(w, z)

We assume ^ ( w ' z )

Ί )// ~\ I <^ Π
yyΨvΛ \(Φ, Ψ)(R + \JR-) ^>

g(/g) > 0

Reβ° D(A) satisfies

(A.5) det

ReQ° D(λ) = β ° D

, z)
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By (A.4), (A.5) and fw\R+ϋR_ < 0, we find that there exist positive constants

μ i ( < μ 0 ) and C 8 independently of δ > 0 such that ReQ0D{λ)> C8 for all

xe[0, l]\{x*} 2Lndλe{λeC\Reλ> - μl9 \λ\ < M j . Therefore we find that

\B°>D>λ(Z, Z)\ > |ReB° D λ(Z, Z)\ > C9\\Z\\HHIP

where C 9 = min{Z), C 8}.

We put ω* = t2Ln~1(μί/M1)e(09π/2). From Lemma 3.7 and the Lax-

Milgram theorem, we have the following lemma:

LEMMA 3.9. Suppose λ is an arbitrary non-critical eigenvalue of (3.4). If

the assumptions (A.4) and (A.5) are satisfied, then ΛeC\Σ(ω*, μ j .

Now we consider the distribution of critical eigenvalues. To do it, we

take the asymptotic form of λ(ε, D) as λ(ε, D) = ετε'D where τ ε ' D is a continuous

function of ε and D. Let Zε'D be an eigenfunction associated with λ(ε, D). By

using Lemma 3.5, we have

r ε,D
)Z ,Φo^

°όD-λ(ε,D)

as ε >0
Λ0 — τ

in f f - ^ - s e n s e where τ°'D = l im ε i O τ ε ' D . Normalizing Z°>D as <Z°'D, 5*> = 1,

we obtain the following equation:

Z x ' = U, x — 0, 1,

Λ0 — τ

where [Z£'D] = l i m ί i 0 {Z^'D(x* + δ) - Z°>D(x* -δ)}. As D -• oo, we have

/"j o\ _0, oo /

(3.8) τ = ((
d e t \

/w° » 3(w, z)

By (A.5) and the definition of cf, if gf(Λ+(z*)5 z*) > ^(/ι_(z*), z*), we find

τ 0 ' 0 0 < 0. Putting μ*(ε) = min {μj/ε, - τ°'00/2} ( > 0), we know that there exist

positive constants ε* and D* such that τ ε ' D < — μ*(β) for all (ε, D)eΩ* = {(ε, D)|

0 < ε < ε*, D > D*}. We now arrive at the following theorem.

THEOREM 3.10. If the assumptions (A.4), (A.5) and
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(A.6) g\R.<O<g\R+

are satisfied, then Σ(ω*, εμ*(ε)) c p(3A) for all (ε,D)eΩ*, where p(3.4)

represents a resolvent set of (3.4).

The problem which we should do is to show that the stability of stationary

solutions of (3.1)—(3.3) is given by the argument on the corresponding linearized

eigenvalue problem.

Let us introduce the following theorem which justifies the linearized

stability principle for the quasilinear parabolic equations including (3.1)—(3.3).

The interpolation spaces in the sense of Lions and Peetre [5] are denoted by

[ Ϊ ; X\p and their norms by || . \\θtP.

THEOREM 3.11. (Potier-Ferry [15]). Let X and Y be Banach spaces with

Y dense in X. Let the norm of X be denoted by || . ||. Let 0 < θ < 1,

0 < ff < 1, 1 < p < oo. For each u in a neighborhood of u = 0 in [^ X~\Θ,P>

let T(u): y-> X be a closed linear operator. Let f be a nonlinear map from

a neighborhood of u = 0 in Y into [Y, X]θ'tP. Suppose that

( i ) there exist positive constants ωl9 μ2 and C 1 0 such that Σ(ω 1 ? μ2)

c p(T(0)) and

for any λeΣ{ωl9 μ2),

(ii) for any xeY, the map u^> T(u)x from a neighborhood of u = 0 in

[Y, X~\θ,p int0 X w differentiable and there exist positive constants η

and C l x such that

|| [ 7 » - Γ'(«2)t;]x|| < C u ( | | u 2 - M11|β>1,)»||i>||β,p||x||r,

(iii) there exists C 1 2 > 0 such that

II/(«i) - / ( « 2 ) ll .p ̂  C 1 2 1 | U ! - u 2 1 | y , and

(iv) there exists C 1 3 > 0 such that ||/(u)||θ<p < C 1 3 | | M | | ? .

Then

^ + T ( U ) U = / ( M ) , u(0) = u o e Y
at

has a global solution u on the time interval [0, oo), and for sufficiently small

|| M0 | |y there exist positive constants C 1 4 and μ3 such that
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l |w( ί ) | | y<C 1 4 | |w 0 | | yexp(-μ 3 ί ) for t > 0.

To apply the above theorem to (3.1)—(3.3), we substitute w = (w, z) = wε'D

+ W into (3.1)-(3.3) where W = {W, Z), and obtain

(3.9)

where

dt
T{W)W=f{W)

T(W)W= -
, z)

>D+ W)J

DZX

, z)

\g(wε>D +W)

Let X= L2(I) x L2(I) and Y = H%(I) x #£(/). Theorem 3.10 implies that
the assumption (i) in Theorem 3.11 holds for (3.9). In order to check that
the assumptions (ii), (iii) and (iv) in Theorem 3.11 hold for (3.9), we put
θ e(0, 1/4) and #'6(3/4, 1). By the embedding theorem and the interpolation
theorem (see Grisvard [3]), we know

^2{I) c C1/2(T),

cz [F,

H2

N(I) c: [H2(/), L2{I)\2 =

H2(I) c: Cι'2(T) cz W2a-β'),2{1)

Therefore, it turns out that

Γc= [F, X\2 c C1/2(Γ) x C 1 ' 2 ^), Fez

By using the above inclusion, the regularities for T and / and the boundedness

of wε'D, we thus find that the assumptions (ii), (iii) and (iv) in Theorem 3.11

hold. Consequently, the following main theorem is obtained:

THEOREM 3.12. Suppose φ, ψ,f and g satisfy the assumptions (A.4), (A.5)

and (A.6). Then, for any fixed εe(0, ε*), wε'D is exponentially stable for

D>D*.

4. Stability of singularly perturbed solutions when D > 0 is sufficiently large

The final problem is to find the parameter regions with respect to
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(a, b, c, β, ε, D) in which wε'D is stable by using the results shown in the

previous section. It is not easy to do this, because the stability of wε'D depends

on its spatial profiles. To do it, we study a special case when D > 0 is

sufficiently large. Nishiura [12] proved that, for any fixed small ε > 0, wε'D

converges to a solution, say H^' 0 0, of

{ 0 = ε2wxx+f(w, z), xeJ,

Wχ = 0, x = 0, 1,

0 = \ g(w,z)dx

in the C2(T) x C2(7)-topology as D -• oo. By this result and the construction

of H ^ , we find that H>°'°° = (w0'00, z0'00) = l im ε i 0 H>ε'°° satisfies zo'°°(x) = z* and

h+(z*) x * < x < l .

By using this information, let us examine whether or not wε'D is stable when

ε > 0 is sufficiently small and D > 0 is sufficiently large.

We put

w± = (w±, z±) = (Λ±(z*), z*), w± = (M ± , ι;±) = (Φ(w±), ^(w+)),

LJw

β* = ( i d e t 5^4 0 ' 0 0 ' i ) ( = -<β° ' o o ( c

αmlM = min(α + , α_), αmΛ;c = max(α+, α_),

respectively. By some computations, we have

ô.oo _ , l - c z * ( < 0 )^0,00 _ _

1 -h+(z*)(<0) x* <x< 1,

/po.» = - CM° » ( < 0), £?•» = - 6ι>° » ( < 0),

— G + = w + ( > 0 ) ,
5

fw(w±) , z)

respectively. Since z* is independent of a, we find that G + , G_, β + and β_

are increasing linear functions with respect to a. Thus, the following lemma

is obtained.
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LEMMA 4.1.

( i ) α_ <a+ (resp. a+ < α_) if and only if βh + (z*) + be - β > 0 (resp.

< 0). Moreover, if be < 1, then βh + (z*) + be - β < 0.

(ii) If α_ < a (resp. a < a_), then 0 < G_ (resp. G_ < 0).

(iii) sign Q_ = sign (a-2a_) and sign (β+ |α = f l +) = sign (Z?c — 1), where

sign z means the sign of z.

(iv) // G + > 0 am/ foe > 1, then Q+ > 0.

d( f a ) 0 > c o

( v ) 7 / d ^d e t ^ >

<3(w, z)

(vi) If Q* > 0, r/ẑ « ί/zere exw/5 « positive eigenvalue of (3.4) /or sufficiently

small ε > 0 β«J /αrge D > 0.

P R O O F . By using a_ = z* and a+ = fo/z+(z*) + z*/(l + βh+{z*)), we have

fl+ - α_ = - ± ^ {i?/z + (z*) + foe - β}9 G.=(a- a_)z*,
c

d(u, v)

det^l(u+)=G++(lbc)u+
d(u9 v) v +

Thus (i), (ii), (iii) and (iv) are obviously obtained.

By usmg det ψ \ = fj. - f,§e = det dJM det ̂ , we have
o(u v) δ(w, z) ΰ(u, v)

det ω det
3 ( )

Substitute Z 1 = 1 = Z 2 into ^ ^ ^ ( Z 1 , Z 2 ) . Then if λ Φ 0, we obtain

β ε 'D 'Λ(l, 1) K β 0 ' 0 0 ^ ) , ! ) as ε ^0 and D > oo.

Since

<β° »(0), 1> = - β*(< 0), l i m ^ + i<Q° «(λ), 1> = ( β ? ' 0 0 , 1>(> 0)

and <Q0'°°W, 1> is continuous for all Ae[0, + oo), we find that <QOt0O(A), 1>

= 0 has a positive solution. Therefore, for sufficiently small ε > 0 and large

D > 0, (3.4) has a positive eigenvalue and its eigenfunction Z = 1.
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The above lemma shows that (A.4) is obtained by (A.5).

Since G+\a=a+ = 0 and G_|α = f l_ = 0 , and since G + and G_ are increasing

with respect to α, it is shown that, for ae(amin, amax) and β > 1, there exists

a solution of (4.1) for sufficiently small ε > 0. From ^Ig(w°^)dx = 0, we

obtain x* = G+/(G+ - G_) and β* = (G+β_ - G_ρ + )/(G + - G_). From

x*e(0, 1), it follows that G+ and G_ satisfy either G_ < 0 < G + for all

«e(flmill, αmflX) or G + < 0 < G_ for all αe(flmin, amax). Since G+,G_, Q+ and

β_ are linear with respect to α, we know that G + ρ _ — G_ρ+ is a quadratic

function with respect to α, and that

= sign([G+ρ_ - G_ρ + ] | f l = α _[G + ρ_ - G_ρ + ] | f l = α + )

= sign(Q_ \a=a_ Q+ \a=a+) = sign (1 - be)

holds. If be > 1, then G + ρ _ — G _ ρ + has unique zero ac in (amin9 amax), i.e.,

ρ* also has unique zero ac in (amin9 amax).

4.1. Case of be < 1

In this case, we refer to [8] and [9] for the construction of wε'D as shown

in Theorem 2.1, and find that the results shown in the previous section are

still valid.

By Lemma 4.1, we have amin = a+ < α_ = amax, Q+ \a=a+ < 0, ρ_ < 0 for

ae[amini amax] and G_ < 0 < G + for ae(amin, amax). This implies that wε>D

satisfies (A.6) for sufficiently small ε > 0 and large D > 0. Since Q+ is

increasing with respect to a, it follows that there exists aoe(amin, amax] such

that ρ + < 0 for as[amin, a0). From the definition of Q+ and ρ_, we find

that, for αe[flm i n, a0), wε'D satisfies (A.5) for sufficiently small ε > 0 and large

D > 0 .

THEOREM 4.2. Suppose be < 1 and β > 1. For any ae(amin, α0), there

exist positive constants εa and Da such that wε'D is stable for all 0 < ε < εa and

D>Da.

4.2. Case of be > 1

We first assume βh + (z*) + be — β > 0. From Lemma 4.1, we have

amin = a_<a+= amax, G+ < 0 < G_ for ae(amin, amax) and Q+ \a=a+ > 0. Then

ρ* satisfies

< 0 ae(amin, ac)

Q* { = 0 α = αc

> 0 ae(ac,amax).
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For ae(ac, amax), from Lemma 4.1, it turns out that there exists an eigenvalue

with positive real part of (3.4) for sufficiently small ε > 0 and large D > 0.

For ae(amin, αc), we have c% < 0. By (3.8), we find that the critical eigenvalue

of (3.4) is positive for sufficiently small ε > 0 and large D > 0.

THEOREM 4.3. Suppose be > 1, β > 1 and βh+(z*) + be — β > 0. For any

ae(amin9 amax)\{ac}, there exist positive constants εa and Da such that wε'D is

unstable for all 0 < ε < εα and D > Da.

Next we assume βh + (z*) + be — β < 0. From Lemma 4.1, we have

amin = a+ < α_ = amax, G_ < 0 < G+ for ae(amin9 amax), β _ < 0 for ae[amin,

amax] and Q+ > 0 for ae[amin, amax]. Then it turns out that Q* satisfies

ae(amin, ac)

a = ac

ae(ac9 amax).

For ae(amin, ac), it follows from Lemma 4.1 that there exists an eigenvalue

with positive real part of (3.4) for sufficiently small ε > 0 and large D > 0.

For ae(ac, αm α x), it follows from (3.8) that the critical eigenvalue of (3.4)

is negative for sufficiently small ε > 0 and large D > 0. Let λEtD be a non-

critical eigenvalue of (3.4) which is uniformly bounded for all (ε, D)eΩ0, and

let (Wε'D, Zε'D) be its eigenfunction. For any fixed εe(0, εo), normalizing

(WεD, Zε'D) as max(| | Wε>D\\c2{J), | | Z e D||C2(j)) = 1 for all D > D o , it follows from

(3.7) that Z ε ' D converges to a constant function as D -> oo. Then we find that

Z β oo = lim1)TGOZβ l ) = 0 or

(4.2) J _ < / / « - ^ . c o φ . . ^ ^ - ) < ^ - l ^ ^ , <£-•»>

holds. Since λε'D is a non-critical eigenvalue, Zε'°° = 0 shows that Λε'°° need

to satisfy 2ε'°° = /£°°(< 0) for some integer n > 1. By (4.2) and ^φεdDdx

= O(y/ε) as ε -• 0, we obtain ( ρ 0 ' 0 0 ^ 0 ' 0 0 ) , 1> = 0. In consideration of Lemma

3.7, we may study the solutions of <β°'°°(/l), 1> = 0.

By simple computations, we obtain Q°2CO\a=a_ = a_ > 0 and β3'°°|α=fl_ = 0

forxe[0, 1). By taking the real part of <ρo'°° (λ) \a=a_, 1>, if Reλ > 0, then

Re<ρ°' o o μ) | f l = ί J _, 1> = <β? °°|βββ_, l>ReA 4- <β^°°|α = Λ_, 1> > 0

shows that <βo'°°(>l)L=α_, 1> = 0 has no solution with non-negative real part.

Since <Q°'°°(A), 1> is a continuous function with respect to as\_amin, amax],

there exists a1elac, amax] such that <βo'°°(/l), 1> = 0 has no solution with
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non-negative real part for all ae(aί9 amax], and that <β°'°°(A), 1> = 0 has a

solution with non-negative real part at a = ax. Since <β°'°°(0), 1> = — β* > 0

for ae(ac, amax), if ac < α l 5 we find that <β°'αo(λ), 1> = 0 has a pair of solutions

with pure imaginary number at a = aί.

THEOREM 4.4. Suppose bc> 1, β > 1 and βh + (z*) + be - β < 0.

(i) For tf«y αe(α 1 ? αm α x), there exist positive constants εa and Da such that

wε'D is stable for all 0 < ε < εa and D > Da. Moreover, if ac< al9

then there exists a periodic solution of (1.10)—(1.12) for sufficiently

small ε > 0 and large D > 0 when a is varied in the neighborhood of

a = ax.

(ii) For any ae(amin, ac), there exist positive constants εa and Da such that

wε'D is unstable for all 0 < ε < εa and D > Da.

When the assumptions in Theorem 4.4 and a±= ac are satisfied and a

takes the value near ac, we shall show that a periodic solution appears. Since

wε'D is uniformly bounded for all (ε, D)eΩ0, there exists M 3 > 0 such that

H>ε'D(;c)e[0, M 3 ] x [0, M 3 ] (= <g) for all xe[0, 1] and (ε, D)eΩ0. Since H>E>D

converges to H>ε'°° in C 2([0, 1]) x C2([0, 1]) as D -+ oo, if βε'°°'Λ(l, 1) = 0 has

a solution Λ,(ε) without the multiplicity, then Bε*D'λ(l, 1) = 0 also has a solution

near /l(ε) for sufficiently large D > 0. In consideration of the proof of Theorem

4.4, we may only show that ^ ' ^ ^ ( l , 1) = 0 has a pair of zeros which converge

to 0 as ε->0, and which are pure imaginary numbers at a = ac.

First of all, we put λ = λ(ε) = εηiλ(ε) where 0 < ηx < 1 and lim ε i Oi(ε) = 1*

Φ 0, and study the order estimate of <^°°, ί / ' 0 0 ^// ' 0 0 ) as ε -• 0. After some

computations, we find that ί/ ' 0 0^) 1//' 0 0 is rewritten as

0 = ( ^ ^

where

fε,coφε,c

w Jx

From the definition of Lε β μ)\ it is shown that ^L'-D(Xfhu h2) = (hι, υ D(λfh2y
for all /zj, h2eL2(I). Then we have
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fε,o

Since wε'°° satisfies

2wxx+f(w,z) = 0 and ~(wx)
2 +

f*w(x)

f(s,
Jw(0)

we have

-

Λwε>°
. . .

(O)

where

From /(M>° °°(X)) = 0 and

also have

|/(MF «(X) ) | =

and /iε

2 °° =
2 δw2

s, zo °°)ds = 0 for all xε[0, l]\{x*}, we

- wo °°(x)|

Jwε'°°(0)

w°'oo(0)

/(s,
w ε ' c o(0)

/(s.z' ^ds

- W° »(0)| + |wε °°(x)- w

(X) - wo "(O)| Iz4-- - z° Ί

for all xe[0, l]\{x*}.
For the stretched function wε D(y) of wε β(x), we know the following result:

LEMMA 4.5. (Fife [2]). There exist positive constants C 1 5 and y2

independent of (ε, D)eΩ0 such that

\we D(y) - h±(z*)\ < C 1 5 e x p ( - y 2 \ y \ ) as y • ± oo.
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From the above lemma and the construction of the solution of the singular

perturbation method, we obtain

= O(ε),

| z ε,oo _ z O , α o | =

as ε->0 where y2 is the constant given in Lemma 4.5, that is, Jj I/(>•>*• °°(x))|dx

= O(ε) and J / I J ^ g / f o zε^)ds\dx = O(ε) as ε->0. Since fc^00, Λβ

2 °° and

fift00 are bounded in L°°(/), we have

= 0(8)

'w -Jxx

as ε-»0. From ^jφ^ dx = O(^/ε) as ε-^0, we obtain

Jw
0&»> = O(β)

as ε -• 0.

Put a = ac + εη2ά H- o(εη2) where 0 < ŷ2 < 1. For any function hε'D which

is dependent of (ε, D, a), we denote /zε'D'* by /iε'D'* = /i ε 'D |α = α c. Then we have

as ε->0 where Qt = — Q*\a=a ( < 0 ) . By βε'°°'λ(l, 1) = 0, we have
da

+ o(εηi, ει~η\(4.3) 0 = -Λ^ε1-*1 - αβίε^2 + ̂ ρ j

as ε -> 0 where

/ Λ 0,oo,* rO,oo,* , /Ό,oo,* 70,00,*

n* - /Gw Jv ^ J w Ju

When Y\X = η2 = 1/2, the both sides of (4.3) are well-balanced and λ* satisfies

(i*)2ρ*-<ίρ*i* + c*cf = o.
By simple computations, we have gf^00'*/,,0'001* +/wOlOO>*/«o>OOf* > ° i n [°> * * ) •
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To show 0S/00'*./;0'00'* +/V V

O 'O O '*/M

0 ' 0 0 '* > 0 in (x*, 1], we derive a contradiction

by assuming 0°'°°'* > 0 for some xe(x*, 1]. From Q+ > 0, Φz = 0, /w°'°°'* < 0

and /2°'°°'* < 0, we have

_ -O,oo,*
— Q

_ r\
f O , oo,* 0 , 0 0 , *
z Uw

/v
0,oo,*

i.e., ^'°°'* > 0 because of <FZ

O'°°'* > 0. From Φ w = 1,

< 0, we have

< 0 and 0°'°°'*

0 < 0°'°°'* = + ^ , 0 0 , * ^ 0 , 0 0 , * < Q

This implies a contradiction, i.e., 0S/00'* < 0 in (x*, 1]. From Z^' 0 0 '* < 0 and

Z, 0 ' 0 0 '* < 0, we obtain Q*5 > 0. From cf > 0 and cf > 0, we have the following.

THEOREM 4.6. /Yx b, c α«rf β to satisfy the assumptions of Theorem 4.4,

and suppose a1 — ac. Then there exists a periodic solution of (1.10)—(1.12) for

sufficiently small ε > 0 and large D > 0 when a is varied in the neighborhood

of a = ac.

5. Concluding Remarks

We have shown the criterion of the stability of the singularly perturbed

solution wε'D when ε is small and D is large. In this section, by numerical

computations, we show the bifurcation diagram of this solution when a is

globally varied.

First of all, we consider the case when be < 1. When a is increasing, the

situation varies from Case (I) to Case (IV) through Case (II). Figure 7 shows

the bifurcation diagram. E + o, Eo+ and E + + denote the branches of the

equilibrium points (1, 0), (0, a) and ((1 - αc)/(l — be), {a — b)/(l — be)), respec-

tively. A non-constant stationary solution branch bifurcates from the

E + + -branch at a = a, then turns back at a = at and connects with the

a a at

Figure 7. Bifurcation diagram where ε2 = 0.001, D = 10.0, β = 3.0 and b = c = 0.9.

The solid curves are stable and the broken ones are unstable.
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E + + -branch at a = a. Numerical computations show that the upper branch
corresponds to stable singularly perturbed solutions shown in the previous
sections, and that the lower one is unstable. We have not touched with the
lower branch. But for its construction, we refer to [9].

Next we consider the case when be > 1. As a is increasing, the situation
varies from Case (I) to Case (IV) through Case (III) (Figure 8). The great
difference from the case be < 1 is that the secondary bifurcation of Hopf type
occurs at a = ac. This bifurcation is already shown by the stability analysis
in the last section. By numerical computations, as a is decreasing, the periodic

k
/ \
\ \

*
o ' ^ + +

K• XI V

ι|_j y
. - *m * "* **

1i

U V

£ + o

J

•
£ 0 +

a a

Figure 8. Bifurcation diagram where ε2 = 0.001, D = 10.0, β = 3.0 and fc = c = 1.1.

stable stationary solution,

unstable stationary solution,

stable periodic solution.

(i) β = 0.991

Figure 9. Spatially inhomogeneous solution

of (1.10)-(1.12) where ε, D, β, b and

v c are the same as in Figure 1.

(ii) a = 0.9905
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solution disappear suddenly (Figure 9). In this paper we do not touch with
periodic solutions. The complete understanding of these global bifurcation
diagrams is a future work for us.
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