On a Lemma of Peetre

Ken-ichi Miyazaki

(Received February 20, 1962)

By $H^{s},-\infty<s<\infty$, we shall understand the space of temperate distributions f defined on Euclidean n-space R^{n} such that the Fourier transform \hat{f} is a function satisfying

$$
\left\|\int\right\|_{s}^{2}=\int|\hat{f}(\xi)|^{2}\left(1+|\xi|^{2}\right)^{s} d \xi<\infty
$$

Let \mathscr{L}^{s} be the space of distributions f such that $f \phi \in H^{s}$ for any $\phi \in \mathscr{D}$, and \mathscr{K}^{s} be the space of distributions composed of elements of H^{s} with compact support [4]. A sequence of functions $\psi_{j} \in \mathscr{D}, j=1,2, \ldots$, is called uniform partition of a function $\psi \in \mathscr{B}$ when the following conditions are satisfied:
(i) $\sum_{j} \psi_{j}(x)=\psi(x)$ for any $x \in R^{n}$.
(ii) $\left\{\psi_{j}\right\}$ is bounded in \mathscr{B}.
(iii) For any compact set $A \subset R^{n}$, at most n_{A} of the supports of ψ_{j} can meet A, where n_{A} is a positive integer depending on the diameter of A.
(iv) The diameters of the supports of ψ_{j} are uniformly bounded. If, in addition, $\psi=1$ and $\psi_{j} \geqq 0, j=1,2, \ldots$, we shall say that $\left\{\psi_{j}\right\}$ is a uniform partition of the unity.

In connection with the estimates of differential inequalities J. Peetre has established the following lemma with slightly weaker definition of uniform partition ([2], Lemma 1, p. 65).

Lemma. Let $s \geqq 0$. If $\left\{\psi_{j}\right\}$ is a uniform partition of $\psi^{\in} \in \mathscr{B}$, there exists a constant $C_{s,\left\{\psi_{j}\right\}}$ such that

$$
\sum_{j}\left\|\psi_{j} f\right\|_{s}^{2} \leq C_{s,\left\{\psi_{j}\right\}}\left\|f^{\prime}\right\|_{s}^{2}
$$

for any $f \in H^{s}$.
Conversely, if f is a distribution of \mathscr{L}^{s} such that there exists a uniform partition $\left\{\phi_{j}\right\}$ of the unity with $\sum_{j}\left\|\phi_{j} f\right\|_{s}^{2}<\infty$, then $f \in H^{s}$.

He carried out the proof by making use of the norm ${ }_{0}\|f\|_{s}^{* 2}=\int\left\|f_{a}-f\right\|^{2} /$ $|a|^{n+2 s} d a, 0<s<1$, and of induction with respect to s. But he says nothing about the case $s<0$. His method of the proof seems not to be available in this case. The main purpose of this paper is to show the following lemma which may be regarded as a generalization of his lemma.

Lemma A. Let s be any real number.
(α) If $\left\{\psi_{j}\right\}$ is a uniform partition of $\psi \in \mathscr{B}$, there exists a constant $C_{s,\left\{\psi_{j}\right\}}$ such that we have

$$
\begin{equation*}
\sum_{j}\left\|\psi_{j} f\right\|_{s}^{2} \leqq C_{s,\left\{\psi_{j}\right\}}\|f\|_{s}^{2} \quad \text { for any } f \in H^{s} \tag{1}
\end{equation*}
$$

(β) If $\left\{\phi_{j}\right\}$ is a uniform partition of the unity, there exist two positive constants $C_{s,\left\{\phi_{j}\right\}}, C_{s,\left\{\phi_{j}\right\}}^{\prime}$ such that we have

$$
\begin{equation*}
C_{s,\left\{\phi_{j}\right\}}\|f\|_{s}^{2} \leqq \sum_{j}\left\|\phi_{j} f\right\|_{s}^{2} \leqq C_{s,\left\{\phi_{j}\right\}}^{\prime}\|f\|_{s}^{2} \tag{2}
\end{equation*}
$$

for any $f \in H^{s}$. Therefore $f \rightarrow\|f\|_{s}$ and $f \rightarrow\left(\sum_{j}\left\|\phi_{j} f\right\|_{s}^{2}\right)^{\frac{1}{2}}$ are equivalent norms in H^{s}.
(γ) Conversely, if f is a distribution of \mathscr{L}^{s} such that there exists a uniform partition $\left\{\phi_{j}\right\}$ of the unity with $\sum_{j}\left\|\phi_{j} f\right\|_{s}^{2}<\infty$, we have $f \in H^{s}$.

The lemma may be effectively applied to the estimates of differential inequalities in the uniformly hypoelliptic case contemplated in Peetre's work ([2], pp. 65-69).

The definitions and the notations of L. Schwartz [3] with respect to the spaces of functions or distributions will be used without further reference.

1. Let ρ be a fixed indefinitely differentiable function defined on R^{n} with support in the unit ball B_{1} such that $\rho \geqq 0$ and $\int \rho(x) d x=1$. We put $\rho_{\varepsilon}(x)=$ $\frac{1}{\varepsilon^{n}} \rho\left(\frac{x}{\varepsilon}\right)$.

In $H^{s}, s<0$, there have been considered by L. Hörmander [1] the following two norms $\|\cdot\|_{s, \varepsilon_{0}}$ and $\|\cdot\|_{s, \varepsilon_{0}}$, each equivalent to the original norm $\|\cdot\|_{s}$ of H^{s} :

$$
\begin{align*}
& \|f\|_{s, \varepsilon_{0}}^{2}=\int\left(|\xi|^{2}+\varepsilon_{0}^{-2}\right)^{s}|\hat{f}(\xi)|^{2} d \xi . \tag{3}\\
& \|f\|_{s, \varepsilon_{0}}^{2}=-s \int_{0}^{\varepsilon_{0}}\left\|f * \rho_{\varepsilon}\right\|_{L^{2}}^{2} \varepsilon^{-2 s-1} d \varepsilon \tag{4}
\end{align*}
$$

In these expressions ε_{0} denotes any positive number. He proved that there are positive constants C_{1} and C_{2} depending only on s such that $C_{1}\|f\|_{s, \varepsilon_{0}} \leqq\|f\|_{s, \varepsilon_{0}}$ $\leqq C_{2}\|f\|_{s, \varepsilon_{0}}$ for any $f \in H^{s}$.

For our later use we need the Friedrichs' lemma established by Hörmander ([1], Lemma 5.2) but in somewhat precise form:

Lemma 1. Let $a \in \mathscr{D}, s<0$. Then there exists a constant C_{s} depending on s such that

$$
\begin{align*}
& \int_{0}^{\varepsilon_{0}}\left\|a\left(f * \rho_{\varepsilon}\right)-(a f) * \rho_{\varepsilon}\right\|_{L}^{2} \varepsilon^{-2 s-1} d \varepsilon \tag{5}\\
\leqq & C_{s}\|f\|_{s-1, \varepsilon_{0}}^{2}\left(\int|\hat{a}(\xi)|(1+|\xi|)^{-s+2} d \xi\right)^{2}, \quad f \in H^{s-1}, 0<\varepsilon_{0} \leqq 1 .
\end{align*}
$$

When s is bounded, C_{s} is also bounded.
This is immediately verified by estimating the constants C_{4} and C_{5} considered in his proof of the lemma.

From this lemma we have
Corollary. If $\left\{\psi_{j}\right\}$ is a uniform partition of $\psi^{\in} \in \mathscr{B}$, then there exists a constant C depending on $\left\{\psi_{j}\right\}$ and s such that

$$
\begin{aligned}
& \int_{0}^{\varepsilon_{0}}\left\|\psi_{j}\left(f * \rho_{\varepsilon}\right)-\left(\psi_{j} f\right) * \rho_{\varepsilon}\right\|_{L^{2}}^{2} \varepsilon^{-2 s-1} d \varepsilon \\
& \quad \leqq C\|f\|_{s-1, \varepsilon_{0}}^{2}, \quad f \in H^{s-1}, 0<\varepsilon_{0} \leqq 1 .
\end{aligned}
$$

Proof. Let a_{j} be any vector which lies in the support of $\psi_{j}, j=1,2, \ldots$. By the definition of uniform partition of ψ the set $\left\{\tau_{a_{j}} \psi_{j}\right\}$ forms a bounded subset of \mathscr{D}. Hence the set $\left\{\widehat{\tau_{a_{j}} \psi_{j}}\right\}$ is bounded in \mathscr{S}, so that there exists a constant C^{\prime} depending only on the set $\left\{\widehat{\tau_{a_{j}} \psi_{j}}\right\}$ such that $(1+|\xi|)^{-s+n+3}\left|\widehat{\tau_{a_{j}}} \psi_{j}\right|$ $<C^{\prime}, j=1,2, \ldots$. Consequently we have

$$
\begin{aligned}
& \int\left|\psi_{j}(\xi)\right|(1+|\xi|)^{-s+2} d \xi \\
& =\int\left|\widehat{\tau_{a_{j}} \psi_{j}}(\xi)\right|(1+|\xi|)^{-s+2} d \xi \leq C^{\prime} \int(1+|\xi|)^{-n-1} d \xi<\infty .
\end{aligned}
$$

The preceding lemma together with these inequalities will complete the proof of the corollary.
2. This section is devoted to the proof of Lemma A. Let $\left\{\phi_{j}\right\}$ (resp. $\left\{\psi_{j}\right\}$) be a uniform partition of the unity (resp. of any element $\psi \in \mathscr{B}$).

We shall begin with the proof for the case $s<0$. Since the set \{supp. $\left.\phi_{j}+B_{1}\right\}$ (resp. \{supp. $\left.\psi_{j}+B_{1}\right\}$), B_{1} being the closed unit ball with center 0 in R^{n}, is bounded in diameter, there exists, by definition, a positive integer l such that at most l of ψ_{k} (resp. ϕ_{k}) cannot vanish identically on supp. $\phi_{j}+B_{1}$ (resp. supp. $\psi_{j}+B_{1}$) for any given $j, j=1,2, \ldots$. Let f be any element of H^{s}. Let $0<\varepsilon_{0}<1$. Then

$$
\begin{align*}
\left\|\psi_{j} f\right\|_{s, \varepsilon_{0}}^{2}= & -s \int_{0}^{\varepsilon_{0}}\left\|\left(\psi_{j} f\right) * \rho_{\varepsilon}\right\|_{L^{2}}^{2} \varepsilon^{-2 s-1} d \varepsilon \\
& \leq-2 s \int_{0}^{\varepsilon_{0}}\left\|\left(\psi_{j} f\right) * \rho_{\varepsilon}-\psi_{j}\left(f * \rho_{\varepsilon}\right)\right\|_{L^{2}}^{2} \varepsilon^{-2 s-1} d \varepsilon- \tag{6}\\
& -2 s \int_{0}^{\varepsilon_{0}}\left\|\psi_{j}\left(f * \rho_{\varepsilon}\right)\right\|_{L^{2}}^{2} \varepsilon^{-2 s-1} d \varepsilon .
\end{align*}
$$

We write $\Sigma^{\prime} \phi_{k}$ to denote the sum of ϕ_{k} whose support intersects supp. $\psi_{j}+B_{1}$. Noting that the number of such ϕ_{k} is at most l, and that $\left(\psi_{j} f\right) * \rho_{\varepsilon}=$ $\left(\psi_{j}\left(\Sigma^{\prime} \phi_{k}\right) f\right) * \rho_{\varepsilon}$ and $\psi_{j}\left(f * \rho_{\varepsilon}\right)=\psi_{j}\left(\left(\Sigma^{\prime} \phi_{k} f\right) * \rho_{\varepsilon}\right)$, we get by the Corollary to Lemma 1

$$
\begin{align*}
& -2 s \int_{0}^{\varepsilon_{0}}\left\|\left(\psi_{j} f\right) * \rho_{\varepsilon}-\psi_{j}\left(f * \rho_{\varepsilon}\right)\right\|_{L^{2}}^{2} \varepsilon^{-2 s-1} d \varepsilon \\
\leqq & -2 s C\left\|\left(\Sigma^{\prime} \phi_{k}\right) f\right\|_{s-1, \varepsilon_{0}}^{2} \tag{7}\\
\leqq & 2(-s+1) C \varepsilon_{0}^{2} l \Sigma^{\prime}\left\|\phi_{k} f\right\|_{s, \varepsilon_{0}}^{2},
\end{align*}
$$

where C is a constant depending on $\left\{\psi_{j}\right\}$ and s but not on ε_{0}.
Combining (6) and (7) and summing up with respect to j, we have

$$
\begin{align*}
\sum_{j}\left\|\psi_{j} f\right\|_{s, \varepsilon_{0}}^{2} & \leq 2(-s+1) C \varepsilon_{0}^{2} l^{2} \sum_{j}\left\|\phi_{j} f\right\|_{s, \varepsilon_{0}}^{2}- \tag{8}\\
& -\sum_{j} 2 s \int_{0}^{\varepsilon_{0}}\left\|\psi_{j}\left(f * \rho_{\varepsilon}\right)\right\|_{L}^{2} 2 \varepsilon^{-2 s-1} d \varepsilon
\end{align*}
$$

Setting $M=\sup \sum_{J}\left|\psi_{j}(x)\right|^{2}$, we have

$$
-\sum_{j} 2 s \int_{0}^{\varepsilon_{0}}\left\|\psi_{j}\left(f * \rho_{\varepsilon}\right)\right\|_{L^{2}}^{2} \varepsilon^{-2 s-1} d \varepsilon \leqq 2 M\|f\|_{s, \varepsilon_{0}}^{2},
$$

which together with (8) yields

$$
\begin{equation*}
\sum_{j}\| \| \psi_{j} f\left\|_{s, \varepsilon_{0}}^{2} \leq 2(-s+1) C \varepsilon_{0}^{2} l^{2} \sum_{j}\right\|\left\|\phi_{j} f\right\|_{s, \varepsilon_{0}}^{2}+2 M\|f\|_{s, \varepsilon_{0}}^{2} . \tag{9}
\end{equation*}
$$

Now suppose that $\sum_{j}\| \| \phi_{j} f \|_{s, \varepsilon_{0}}^{2}<\infty$. Substituting ψ_{j} by ϕ_{j} in (9) (with C^{\prime}, M^{\prime} in place of $\left.C, M\right)$ and taking ε_{0} so small that $2(-s+1) C^{\prime} \varepsilon_{0}{ }^{2} l^{2}$ and $2(-s+1)$ $C \varepsilon_{0}{ }^{2} l^{2}<\frac{1}{2}$, we get

$$
\begin{equation*}
\sum_{j}\| \| \phi_{j} f\left\|_{s, \varepsilon_{0}}^{2} \leqq 4 M^{\prime}\right\| f \|_{s, \varepsilon_{0}}^{2} \tag{10}
\end{equation*}
$$

which together with (9) yields

$$
\begin{equation*}
\sum_{j}\| \| \psi_{j} f\left\|_{s, \varepsilon_{0}}^{2} \leqq 2\left(M+M^{\prime}\right)\right\| f \|_{s, \varepsilon_{0}}^{2} . \tag{11}
\end{equation*}
$$

We shall show that (10) and (11) hold for any $f \in H^{s}$. To this end we consider a sequence of multiplicators α_{i} such that $\alpha_{i} f \rightarrow f$ in H^{s}. The inequalities (10) and (11) hold for $\alpha_{i} f$ since $\sum_{J}\| \| \psi_{j} \alpha_{i} f \|_{s, \varepsilon_{0}}^{2}$ is finite. Hence passing to the limit as $i \rightarrow \infty$, we see that (10) and (11) hold for any $f \in H^{s}$. On account of the equivalence of two norms $\left\|\left\|\left\|\|_{s, \varepsilon_{0}} \text { and }\right\| \cdot\right\|_{s}\right.$, we see that the inequality (1) and the second part of the inequalities (2) hold for any $f \in H^{s}, s<0$.

As for the first part of the inequalities (2) we start with the inequalities:

$$
\begin{align*}
& 2 \sum_{j}\| \| \phi_{j} f\left\|_{s, \varepsilon_{0}}^{2} \geq 2 s \sum_{j} \int_{0}^{\varepsilon_{0}}\right\|\left(\phi_{j} f\right) * \rho_{\varepsilon}-\phi_{j}\left(f * \rho_{\varepsilon}\right) \|_{L^{2}}^{2} \varepsilon^{-2 s-1} d \varepsilon- \tag{12}\\
&-s \sum_{j} \int_{0}^{\varepsilon_{0}}\left\|\phi_{j}\left(f * \rho_{\varepsilon}\right)\right\|_{L^{2}}^{2} \varepsilon^{-2 s-1} d \varepsilon=-J_{1}+J_{2} .
\end{align*}
$$

As before we can take ε_{0} so small that $J_{1}<\frac{1}{2} \sum_{j}\| \| \phi_{j} f \|_{s, \varepsilon_{0}}^{2}$. Setting $m=\inf$ $\sum_{J}\left|\phi_{j}(x)\right|^{2}$, we see from (12) that

$$
\begin{equation*}
\sum_{j}\| \|_{j} f\left\|_{s, \varepsilon_{0}}^{2} \geqq \frac{2}{5} m\right\| f \|_{s, \varepsilon_{0}}^{2} \tag{13}
\end{equation*}
$$

which proves the first part of the inequalities (2) since the two norms $\|\cdot\|_{s}$ and $\left\|\|\cdot\|_{s, \varepsilon_{0}}\right.$ are equivalent.

The general case will be proved by using induction on s. We assume that the inequalities (1) and (2) hold for $s<s_{0}$. It then follows that for any $f \in H^{s+1}$, $s<s_{0}$, we have

$$
\begin{aligned}
\sum_{j}\left\|\psi_{j} f\right\|_{s+1}^{2} & =\sum_{j}\left\|\psi_{j} f\right\|_{s}^{2}+\frac{1}{4 \pi^{2}} \sum_{j} \sum_{i=1}^{n}\left\|\frac{\partial}{\partial x_{i}}\left(\psi_{j} f\right)\right\|_{s}^{2} \\
& \leqq \sum_{j}\left\|\psi_{j} f\right\|_{s}^{2}+\frac{1}{2 \pi^{2}} \sum_{j} \sum_{i=1}^{n}\left\|\psi_{j} \frac{\partial f}{\partial x_{i}}\right\|_{s}^{2}+ \\
& +\frac{1}{2 \pi^{2}} \sum_{j} \sum_{i=1}^{n}\left\|\frac{\partial \psi_{j}}{\partial x_{i}} f\right\|_{s}^{2} \\
& \leqq C\left(\|f\|_{s}^{2}+\frac{1}{4 \pi^{2}} \sum_{i=1}^{n}\left\|\frac{\partial f}{\partial x_{i}}\right\|_{s}^{2}\right) \\
& =C\|f\|_{s+1}^{2}
\end{aligned}
$$

where C is a constant depending on $\left\{\psi_{j}\right\}$ and s.
Noting that $\sum_{j}\left\|\frac{\partial \phi_{j}}{\partial x_{i}} f\right\|_{s}^{2} \leqq C^{\prime}\|f\|_{s}^{2} \leqq C^{\prime \prime} \sum_{j}\left\|\phi_{j} f\right\|_{s}^{2} \leqq C^{\prime \prime} \sum_{j}\left\|\phi_{j} f\right\|_{s+1}^{2}, \quad$ where C^{\prime}, $C^{\prime \prime}$ are constants depending on $\left\{\phi_{j}\right\}$ and s, we have

$$
\begin{aligned}
\|f\|_{s+1}^{2} & =\|f\|_{s}^{2}+\frac{1}{4 \pi^{2}} \sum_{i=1}^{n}\left\|\frac{\partial f}{\partial x_{i}}\right\|_{s}^{2} \\
& \leqq C_{1}\left(\sum_{j}\left\|\phi_{j} f\right\|_{s}^{2}+\frac{1}{8 \pi^{2}} \sum_{j} \sum_{i=1}^{n}\left\|\phi_{j} \frac{\partial f}{\partial x_{i}}\right\|_{s}^{2}\right) \\
& \leqq C_{1}\left(\sum_{j}\left\|\phi_{j} f\right\|_{s}^{2}+\frac{1}{4 \pi^{2}} \sum_{j} \sum_{i=1}^{n}\left\|\frac{\partial}{\partial x_{i}}\left(\phi_{j} f\right)\right\|_{s}^{2}+\right. \\
& \left.+\frac{1}{4 \pi^{2}} \sum_{j} \sum_{i=1}^{n}\left\|\frac{\partial \phi_{j}}{\partial x_{i}} f\right\|_{s}^{2}\right) \\
& \leqq C_{2} \sum_{j}\left\|\phi_{j} f\right\|_{s+1}^{2}
\end{aligned}
$$

where C_{1}, C_{2} are constants depending on $\left\{\phi_{j}\right\}$ and s.
Thus we have shown that the inequalities (1) and (2) hold for any s.

Now we turn to the proof of the last part of our lemma. Let f be any element of \mathscr{L}^{s} such that $\sum_{j}\left\|\phi_{j} f\right\|_{s}^{2}<\infty$.

Let $\alpha \in \mathscr{D}$ be a function such that α is 1 near the origin. If we put $\alpha_{k}(x)=$ $\alpha\left(\frac{x}{k}\right),\left\{\alpha_{k}\right\}$ is bounded in \mathscr{B} and forms a sequence of multiplicators. To complete the proof, since H^{s} is complete it suffices to show that $\left\{\alpha_{k}\right\}$ is a Cauchy sequence in H^{s}. We have by (2)

$$
\left\|\alpha_{k} f-\alpha_{k^{\prime}} f\right\|_{s}^{2} \leqq C_{s,\left\{\phi_{j}\right\}} \sum_{j}\| \| \phi_{j}\left(\alpha_{k}-\alpha_{k^{\prime}}\right) j^{f} \|_{s}^{2} .
$$

If k, k^{\prime} are taken so large that $\phi_{j}\left(\alpha_{k}-\alpha_{k^{\prime}}\right)=0$ for $j=1,2, \ldots, N$, then, noting that since $\left\{\alpha_{k}\right\}$ is bounded in \mathscr{B} there exists a constant M such that $\left\|\phi_{j}\left(\alpha_{k}-\alpha_{k}^{\prime}\right) f\right\|_{s}^{2} \leqq M\left\|\phi_{j} f\right\|_{s}^{2}$ for any j, k and k^{\prime}, we have

$$
\left\|\alpha_{k} f-\alpha_{k^{\prime}} f\right\|_{s}^{2} \leqq C_{s,\left\{\phi_{j}\right\}} M \sum_{j \leqq N}\left\|\phi_{j} f\right\|_{s}^{2},
$$

whence it is clear that $\left\{\alpha_{k} f\right\}$ is a Cauchy sequence, which completes the proof.
3. In this section we shall concern ourselves with an application of Lemma A to the estimate of differential inequalities.

To write our differential operators, let $D_{j}=\frac{1}{2 \pi i} \frac{\partial}{\partial x_{j}}$ for $1 \leqq j \leqq n$. Then if $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is any n-tuple of non-negative integers and ξ is an n-dimensional vector ($\xi_{1}, \xi_{2}, \ldots, \xi_{n}$), we shall write $p!=p_{1}!p_{2}!\cdots p_{n}!,|p|=p_{1}+p_{2}+\ldots+$ $p_{n}, \xi^{\phi}=\xi^{p_{1}} \xi_{2}^{\phi_{2}} \ldots \xi_{n}^{\phi_{n}}$ and $D^{\phi}=D_{1}^{\phi_{1}} D_{2}^{p_{2}} \ldots D_{n}^{\phi_{n}}$.

Let $P(x, D)=\sum_{|p| \leqq m} a_{p}(x) D^{p}$ be a differential operator of order m with coefficients $a_{\phi} \in \mathscr{B}$. When x is fixed, $P(x, D)$, which we shall write $P_{x}(D)$, is a differential operator with constant coefficients. Let $M(D)$ be a hypoelliptic differential operator of order m with constant coefficients, i.e. in any domain any distribution solution T of $M(D) T=0$ is indefinitely differentiable. We denote by $M(\xi)$ the polynomial in ξ obtained by substituting ξ for D in $M(D) . \quad M^{(p)}(D)$ stands for a differential operator corresponding to the polynomial $\left(\frac{\partial}{\partial \xi_{1}}\right)^{p_{1}}$ $\left(\frac{\partial}{\partial \xi_{2}}\right)^{p_{2}} \cdots\left(\frac{\partial}{\partial \xi_{n}}\right)^{p_{n}} M(\xi) . P^{(p)}(x, D)$ and $P_{x}^{(p)}(D)$ will have obvious meanings.

The symbol C with various subscripts is used to denote a constant, not necessarily the same at each occurrence, which depends only on the variables displayed.

In the sequel we shall assume that $P(x, D)$ is uniformly of type (M), that is, $M(D)$ satisfies the condition:

$$
\begin{equation*}
\frac{1}{C} \leqq \frac{1+|P(x, \xi)|^{2}}{1+|M(\xi)|^{2}} \leqq C \tag{14}
\end{equation*}
$$

where C is a constant. Then $P(x, D)$ is expressed as $\sum_{j=1}^{N} \beta_{j}(x) M_{j}(D), \beta_{j} \in \mathscr{B}$,
where $M_{j}(D)$ are chosen among $\left\{P_{x}(D)\right\}_{x \in R^{n}}$.
Our aim of the present section is to show the following proposition, a special case of which is found in Peetre ([2], p. 69).

Proposition. Let $P(x, D)$ be uniformly of type (M). If $f \in H^{t}$ and $P f \in H^{s}$, then $M f \in H^{s}$ and we have

$$
\begin{equation*}
\|M f\|_{s} \leqq C_{s}\|P f\|_{s}+C_{s, t}\|f\|_{t} \tag{*}
\end{equation*}
$$

Before proving the proposition, we shall state some lemmas for our later use.

Lemma 2. Let $f \in H^{t}$. If any of $M_{j} f, M f, P_{x} f$ lies in H^{s}, so do the others and we have the estimates:

$$
\begin{align*}
& \left\|M_{j} f\right\|_{s} \leqq \sqrt{2 C}\|M f\|_{s}+C_{s, t}\|f\|_{t} \tag{15}\\
& \|M f\|_{s} \leqq \sqrt{2 C}\left\|P_{x} f\right\|_{s}+C_{s, t}\|f\|_{t} \tag{16}\\
& \left\|M^{(p)} f\right\|_{s,},\left\|M_{j}^{(p)} f\right\|_{s} \leqq \varepsilon\|M f\|_{s}+C_{s, t, \varepsilon}\|f\|_{t}, \varepsilon>0,|p|>0 \tag{17}\\
& \left\|M_{j} f\right\|_{t} \leqq \varepsilon\|M f\|_{s}+C_{s, t, \varepsilon}\|f\|_{t}, t<s, \varepsilon>0 \tag{18}
\end{align*}
$$

Proof. Since M is hypoelliptic, it follows that $M(\xi) \rightarrow \infty$ as $|\xi| \rightarrow \infty$. Hence from (14) we get

$$
\left(1+|\xi|^{2}\right)^{s}\left|M_{j}(\xi)\right|^{2} \leqq 2 C\left(1+|\xi|^{2}\right)^{s}|M(\xi)|^{2}+C_{s, t}^{2}\left(1+|\xi|^{2}\right)^{t} .
$$

Consequently, if $M f \in H^{s}$, then $\left\|M_{j} f\right\|_{s}<\infty$ and we have the inequality (15). The other cases may be proved similarly, so the proof is omitted.

Lemma 3. Let $f \in H^{s} \cap H^{t}$. For any $\phi \in \mathscr{B}$ we have

$$
\|\phi f\|_{s} \leqq(\sup |\phi(x)|+\varepsilon)\|f\|_{s}+C_{s, t, \varepsilon}\|f\|_{t}, \varepsilon>0
$$

Proof. The estimate has been essentially established by Peetre ([2], p. 19) for the case $s \geqq 0$, to which the general case may be reduced by considering a function $f_{1} \in H^{s+2 k}$ with $\left(1-\frac{\Delta}{4 \pi^{2}}\right)^{k} f_{1}=f$, where k is a positive integer such that $2 k+s \geqq 0$. The proof is not supplied here since it is only a matter of calculations often used in Peetre [2].

Lemma 4. Let $B_{x_{0}}^{r}$ be a ball with center x_{0} and radius r, then for any $f \in H^{s}{ }_{B_{x_{0}}^{r}} \cap H^{t}$ we have

$$
\begin{equation*}
\left\|\left(\beta_{j}(x)-\beta_{j}\left(x_{0}\right)\right) f\right\|_{s} \leq r C^{\prime}\|f\|_{s}+C_{s, t, r}\|f\|_{t} \tag{19}
\end{equation*}
$$

where $C^{\prime}=2 \sup _{j} \sup _{x} \mid$ grad. $\beta_{j} \mid+1$.
Proof. Let ψ be a fixed function of \mathscr{D} such that $0 \leqq \psi(x) \leqq 1, \psi(x)=1$
for $|x| \leqq 1$ and $\psi(x)=0$ for $|x| \geqq 2$. Setting $\psi_{r, x_{0}}(x)=\psi\left(\frac{x-x_{0}}{r}\right)$, we have $\left(\beta_{j}(x)-\beta_{j}\left(x_{0}\right)\right) f(x)=\left(\beta_{j}(x)-\beta_{j}\left(x_{0}\right)\right) \psi_{r, x_{0}}(x) f(x)$. Now we can use Lemma 3 to establish (19). The details are omitted.

The Proof of the Proposition. (a) First we shall show that the proposition is valid if the inequality ($*$) holds for any function of $\mathscr{D}_{L^{2}}$ and for any s, t. Suppose that $f \in H^{t}$ and $P f \in H^{s}$. Mf lies in an $H^{s^{\prime}}$. Put $\sigma=\min \left(s-1, s^{\prime}\right)$. Let $\left\{\rho_{\varepsilon}\right\}$ be a sequence of regularizations considered in Section 1. Since $f * \rho_{\varepsilon} \in \mathscr{D}_{L^{2}}$, we have by hypothesis

$$
\begin{equation*}
\left\|M\left(f * \rho_{\varepsilon}\right)\right\|_{\sigma+1} \leqq C_{\sigma+1}\left\|P\left(f * \rho_{\varepsilon}\right)\right\|_{\sigma+1}+C_{\sigma+1, t}\left\|f * \rho_{\varepsilon}\right\|_{t} \tag{20}
\end{equation*}
$$

Noting that $M_{j} f \in H^{\sigma}$ by Lemma 2, we get from (20)

$$
\begin{gather*}
\left\|M f * \rho_{\varepsilon}\right\|_{\sigma+1} \leqq C_{\sigma+1}\left\|(P f) * \rho_{\varepsilon}\right\|_{\sigma+1}+C_{\sigma+1}\left\|\sum_{j} \beta_{j}\left(M_{j} f\right) * \rho_{\varepsilon}-\sum_{j} \beta_{j}\left(\left(M_{j} f\right) * \rho_{\varepsilon}\right)\right\|_{\sigma+1} \tag{21}\\
+C_{\sigma+1, t}\left\|f * \rho_{\varepsilon}\right\|_{t}
\end{gather*}
$$

On the other hand, $\left\|f * \rho_{\varepsilon}\right\|_{t} \rightarrow\|f\|_{t}$ and $\left\|P f * \rho_{\varepsilon}\right\|_{\sigma_{+1}} \rightarrow\|P f\|_{\sigma_{+1}}$ as $\varepsilon \rightarrow 0$ since $f \in H^{t}$ and Pf $\in H^{\sigma+1}$. By Friedrichs' lemma ([2], p. 22), the second term of the right side of (21) tends to zero as $\varepsilon \rightarrow 0$. Therefore from (21) we see that $\left\{\left\|M f * \rho_{\varepsilon}\right\|_{\sigma+1}\right\}$ is bounded, so that $M_{j}{ }^{\beta} * \rho_{\varepsilon} \rightarrow M f$ in $H^{\sigma+1}$ as $\varepsilon \rightarrow 0$. Hence we have from (20)

$$
\begin{equation*}
\|M f\|_{\sigma+1} \leqq C_{\sigma+1}\|P f\|_{\sigma+1}+C_{\sigma+1, t}\|f\|_{t} . \tag{22}
\end{equation*}
$$

By repeating this process if necessary, we can see that $M f \epsilon H^{s}$ and the inequality (*) holds, as desired.
(b) To complete the proof, it remains to show the inequality (*) for any $f \epsilon \mathscr{D}_{L^{2}}$. Since $\|f\|_{t}$ is an increasing function of t, we can assume $t<s$ without loss of generality.

Let $\left\{\phi_{j}\right\}$ be a uniform partition of the unity such that the diameter of each supp. ϕ_{j} is less than r, where r is a fixed number chosen so small that $8 C C^{\prime} N_{r}<1$. Let x_{j} be any point of supp. ϕ_{j}. We have

$$
\begin{equation*}
\left\|\phi_{j} M_{j}\right\|_{s} \leqq\left\|M\left(\phi_{j} f\right)\right\|_{s}+\sum_{|q|>0} \frac{1}{q!}\left\|\left(D^{q} \phi_{j}\right)\left(M^{(q)} f\right)\right\|_{s} \tag{23}
\end{equation*}
$$

Using Lemma 2 we have

$$
\begin{align*}
\left\|M\left(\phi_{j} f\right)\right\|_{s} & \leqq \sqrt{2 C}\left\|P_{x_{j}}\left(\phi_{j} f\right)\right\|_{s}+C_{s, t}\left\|\phi_{j} f\right\|_{t} \tag{24}\\
& \leqq \sqrt{2 C}\left\|\left(P-P_{x_{j}}\right)\left(\phi_{j} f\right)\right\|_{s}+\sqrt{2 C}\left\|P\left(\phi_{j} f\right)\right\|_{s}+C_{s, t}\left\|\phi_{j} f\right\|_{t} .
\end{align*}
$$

On the other hand, we have by Lemma 2 and Lemma 4

$$
\begin{align*}
\left\|\left(P-P_{x_{j}}\right)\left(\phi_{j} f\right)\right\|_{s} & \leqq \sum_{k=1}^{N}\left\|\left(\beta_{k}(x)-\beta_{k}\left(x_{j}\right)\right) M_{k}\left(\phi_{j} f\right)\right\|_{s} \tag{25}\\
& \leqq r C^{\prime} \sum_{k}\left\|M_{k}\left(\phi_{j} f\right)\right\|_{s}+C_{s, t} \sum_{k}\left\|M_{k}\left(\phi_{j} f\right)\right\|_{t} \\
& \leqq \sqrt{2 C} C^{\prime} N r\left\|M\left(\phi_{j} f\right)\right\|_{s}+C_{s, t}^{\prime} \varepsilon\left\|M\left(\phi_{j} f\right)\right\|_{s}+C_{s, t}\left\|\phi_{j} f\right\|_{t}
\end{align*}
$$

and also

$$
\begin{align*}
\left\|P\left(\phi_{j} f\right)\right\|_{s} & \leq\left\|\phi_{j} P f\right\|_{s}+\sum_{|q|>0} \frac{1}{q!}\left\|\left(D^{q} \phi_{j}\right) \sum_{k} \beta_{k}(x) M_{k}^{(q)} f\right\|_{s} \tag{26}\\
& \leq\left\|\phi_{j} P f\right\|_{s}+C_{s} \sum_{|q|>0} \sum_{k}\left\|\left(D^{q} \phi_{j}\right)\left(M_{k}^{(q)} f\right)\right\|_{s}
\end{align*}
$$

(24) together with (25) and (26) yields

$$
\begin{aligned}
& \left(1-2 C C^{\prime} N r-\sqrt{2 C} C_{s, t}^{\prime} \varepsilon\right)\left\|M\left(\phi_{j} f\right)\right\|_{s} \\
& \quad \leq \sqrt{2 C}\left\|\phi_{j} P f\right\|_{s}+C_{s} \sum_{|q|>0} \sum_{k}\left\|\left(D^{(q)} \phi_{j}\right)\left(M_{k}^{(q)} f\right)\right\|_{s}+C_{s, t}\left\|\phi_{j} f\right\|_{t,}
\end{aligned}
$$

in which we take ε so small that $\overline{\sqrt{2} C} C_{s, t}^{\prime} \varepsilon<\frac{1}{4}$. Then

$$
\begin{gather*}
\left\|M\left(\phi_{j} f\right)\right\|_{s} \leq 2 \sqrt{2 C}\left\|\phi_{j} P f\right\|_{s}+C_{s} \sum_{|q|>0} \sum_{k}\left\|\left(D^{q} \phi_{j}\right)\left(M_{k}^{(q)} f\right)\right\|_{s}+ \tag{27}\\
+C_{s, t}\left\|\phi_{j} f\right\|_{t} .
\end{gather*}
$$

(23) and (27) give

$$
\begin{align*}
\left\|\phi_{j} M f\right\|_{s} & \leqq 2 \sqrt{2 C}\left\|\phi_{j} P f\right\|_{s}+C_{s}\left\{\sum_{|q|>0} \sum_{k}\left\|\left(D^{q} \phi_{j}\right)\left(M_{k}^{q} f\right)\right\|_{s}+\right. \tag{28}\\
& \left.+\sum_{|q|>0}\left\|\left(D^{q} \phi_{j}\right)\left(M^{(q)} f\right)\right\|_{s}\right\}+C_{s, t}\left\|\phi_{j} f\right\|_{t},
\end{align*}
$$

whence

$$
\begin{align*}
\left\|\phi_{j} M f\right\|_{s}^{2} & \leq 8 C l\left\|\phi_{j} P f\right\|_{s}^{2}+C_{s}\left\{\sum_{|q|>0} \sum_{k}\left\|\left(D^{q} \phi_{j}\right)\left(M_{k}^{(q)} f\right)\right\|_{s}^{2}+\right. \tag{29}\\
& \left.+\sum_{|q|>0}\left\|\left(D^{q} \phi_{j}\right)\left(M^{(q)} f\right)\right\|_{s}^{2}\right\}+C_{s, t}\left\|\phi_{j} f\right\|_{t}^{2},
\end{align*}
$$

where l is the number of terms on the right side of (28). Summing up (29) with respect to j and using Lemma A we have

$$
\begin{align*}
\|M f\|_{s}^{2} & \leq C_{s}\|P f\|_{s}^{2}+ \tag{30}\\
& +C_{s}^{\prime}\left\{\sum_{|q|>0} \sum_{k}\left\|M_{k}^{(q)} f\right\|_{s}^{2}+\sum_{|q|>0}\left\|M^{(q)} f\right\|_{s}^{2}\right\}+C_{s, t}\|f\|_{t}^{2}
\end{align*}
$$

Since $\left\|M_{k}^{(q)} f\right\|_{s} \leq \varepsilon\|M f\|_{s}+C_{s, t, \varepsilon}\|f\|_{t}$ and $\left\|M^{(q)} f\right\|_{s} \leq \varepsilon\|M f\|_{s}+C_{s, t, \varepsilon}\|f\|_{t}$ by Lemma 2 , we can choose ε so small that we may obtain from (30)

$$
\|M f\|_{s}^{2} \leq C_{s}\|P f\|_{s}^{2}+C_{s, t}\|f\|_{c}^{2},
$$

whence

$$
\|M f\|_{s} \leq C_{s}\|P f\|_{s}+C_{s, t}\|f\|_{t} .
$$

Thus the proof of the proposition is complete.

References

[1] L. Hörmander, Differential operators of principal type, Math. Ann., 140 (1960), 124-146.
[2] J. Peetre, Théorèmes de régularité pour quelques classes d'opérateurs différentiels, Medd. Lunds Univ. Mat. Sem., 16 (1959).
[3] L. Schwartz, Théorie des Distributions, t. I et II, Hermann, Paris, 1950-51.
[4] \qquad , Ecuaciones diferenciales parciales elipticas, Bogota, Colombia, 1956.

Department of Mathematics, Faculty of Science, Hiroshima University

