Function of Generalized Scalar Operators

By Fumi-Yuki Maeda
(Received Sept. 10, 1962)

Introduction. In the author's previous work [4], generalized scalar and spectral operators were defined and studied on a separated locally convex space E for which L(E) is quasi-complete. The present paper studies some sufficient conditions for a function, especially a polynomial, of two commuting generalized scalar or spectral operators to be again of the same type. In this respect, this paper is a kind of supplement to [4] and we shall use the definitions and results given in [4] without their detailed descriptions.

We shall be especially interested in the case where basic algebras are \(C^\omega \) or \(C^\omega \) (the case considered by Foias [1] on a Banach space) and the results for this case will be stated after corresponding theorems. As a special case, we shall see that sum and product of \(C^\omega \)-scalar operators are again \(C^\omega \)-scalar; sum and product of \(C^\omega \)-spectral operators with compact spectrum are \(C^\omega \)-spectral, under certain assumptions on commutativity.

Finally, one should remark that the theory can be easily extended to a function or a polynomial of a finite number of commuting generalized scalar or spectral operators.

§1. \(\Phi \)-proper functions.

Let \(X \) be a set and \(\Psi \) be an algebra of functions on \(X \) containing constants and having a locally convex topology. Given a basic algebra ([4], Def. 1.1) \(\Phi \), we consider the following notion:

Definition 1.1. A function \(f \) on \(X \) will be called \(\Phi \)-proper with respect to \(\Psi \) if it satisfies the following three conditions:

i) \(\phi \circ f \in \Psi \) for all \(\phi \in \Phi \),

ii) \(\phi \rightarrow \phi \circ f \) is continuous from \(\Phi \) into \(\Psi \), and

iii) \(1 \in \{ \phi \circ f ; \ \phi \in \Phi \} \).

We remark that if \(\Psi \) is \(\Phi \)-admissible ([4], Def. 1.4), then any bounded function \(f \in \Psi \) is \(\Phi \)-proper; if, in addition, \(\Phi \) contains constants, then any function \(f \in \Psi \) is \(\Phi \)-proper.

Proposition 1.1. Let \(X \) be a locally compact space (resp. a \(C^\omega \)-manifold), let \(\Psi = C^\omega(X) \) or \(C^\omega(X) \oplus C \) (resp. \(C^\omega(X) \) or \(C^\omega(X) \oplus C \)) and let \(\Phi = C^\omega \) or \(C^\omega \) (resp. \(C^\omega \) or \(C^\omega \)). Then, \(f \) is \(\Phi \)-proper w.r.t. \(\Psi \) if and only if \(f \in \Psi \).

Proof: “If” part is obvious from the above remark and [4], Example 1.1–1.4. We omit the proof of “only if” part here, since it is not essential in
Theorem 1.1 and Proposition 2.6 of [4] can be modified by our notion of \(\Phi\)-proper function as follows:

Proposition 1.2. Suppose there is a continuous homomorphism \(V\) of \(\Psi\) into \(L(E)\) such that \(V(I)=I\). If \(f\) is \(\Phi\)-proper w.r.t. \(\Psi\), then \(U_f\) defined by \(U_f(\phi) = V(\phi f)\) is a \(\Phi\)-spectral representation on \(E\). ([4], Def. 1.3.) If, in addition, \(f\) is \(\Phi\)-proper w.r.t. \(\Psi\), then \(V(f)\) is \(\Phi\)-scalar.

§2. Tensor product of two commuting representations.

Let \(\Phi_1\) and \(\Phi_2\) be two basic algebras contained in \(B(C)\). The complete inductive tensor product \(\Phi_1 \otimes \Phi_2\) (This notation is due to L. Schwartz [5]. Grothendieck [2] denoted it \(\Phi_1 \otimes \Phi_2\)). of these two algebras can be regarded as a subalgebra of \(B(C^2)\), the space of all locally bounded complex valued functions (Borel measurable) on \(C^2=R^4\), provided that the topologies of \(\Phi_1\) and \(\Phi_2\) are stronger than the induced topologies from \(B(C)\). Let \(\mathcal{I}(\Phi_1, \Phi_2)\) be the subalgebra of \(B(C^2)\) generated by \(\Phi_1 \otimes \Phi_2\) and \(C\) (the constant functions). Then, it is easy to see that

\[
\begin{align*}
(\text{i}) & \quad \mathcal{I}(\Phi_1, \Phi_2) = \Phi_1 \otimes \Phi_2 \quad \text{if} \quad 1 \in \Phi_1 \otimes \Phi_2, \\
(\text{ii}) & \quad \mathcal{I}(\Phi_1, \Phi_2) = (\Phi_1 \otimes \Phi_2) \oplus C \quad \text{if} \quad 1 \in \Phi_1 \otimes \Phi_2.
\end{align*}
\]

In the latter case, we introduce the topology of direct sum in \(\mathcal{I}(\Phi_1, \Phi_2)\).

We say that a \(\Phi_1\)-spectral representation \(U_1\) and a \(\Phi_2\)-spectral representation \(U_2\) are commuting if

\[
U_1(\phi_1)U_2(\phi_2) = U_2(\phi_2)U_1(\phi_1) \quad \text{for all} \quad \phi_1 \in \Phi_1 \quad \text{and} \quad \phi_2 \in \Phi_2.
\]

Proposition 2.1. If \(U_1\) and \(U_2\) are commuting \(\Phi_1\)- and \(\Phi_2\)-spectral representations respectively, then there is a continuous homomorphism \(V\) of \(\mathcal{I}(\Phi_1, \Phi_2)\) into \(L(E)\) such that

\[
\begin{align*}
1) & \quad V(\phi_1 \otimes \phi_2) = U_1(\phi_1)U_2(\phi_2) \quad \text{for} \quad \phi_1 \in \Phi_1, \phi_2 \in \Phi_2, \\
2) & \quad V(I) = I.
\end{align*}
\]

Proof: \(V = U_1 \otimes U_2\) on \(\Phi_1 \otimes \Phi_2\) is defined by the equation 1). It is a homomorphism on \(\Phi_1 \otimes \Phi_2\). Since the mapping \(\phi_1 \otimes \phi_2 \mapsto V(\phi_1 \otimes \phi_2)\) is separately continuous from \(\Phi_1 \times \Phi_2\) into \(L(E)\), the mapping \(\phi_1 \otimes \phi_2 \mapsto V(\phi_1 \otimes \phi_2)\) is continuous with respect to the inductive tensor product topology on \(\Phi_1 \otimes \Phi_2\). (See [2] or [5].) Hence, \(V\) can be extended continuously over \(\Phi_1 \otimes \Phi_2\). To prove 2), we consider the two cases:

(\text{i}) The case \(\mathcal{I}(\Phi_1, \Phi_2) = \Phi_1 \otimes \Phi_2\).

Choose \(\{\phi_a\} \subseteq \Phi_1\) and \(\{\psi_\beta\} \subseteq \Phi_2\) such that \(U_1(\phi_a) \to I\) and \(U_2(\psi_\beta) \to I\). For any \(x \in E\),

\[
V(1)x = V(1) \lim_\alpha U_1(\phi_a)x = V(1) \lim_\alpha U_1(\phi_a) \lim_\beta U_2(\psi_\beta)x
\]
\[= \lim_{\alpha} \lim_{\beta} V(1) U_1(\varphi_{\alpha}) U_2(\psi_{\beta}) x\]
\[= \lim_{\alpha} \lim_{\beta} V(1) V(\varphi_{\alpha} \otimes \psi_{\beta}) x\]
\[= \lim_{\alpha} \lim_{\beta} V(\varphi_{\alpha} \otimes \psi_{\beta}) x\]
\[= \lim_{\alpha} \lim_{\beta} U_1(\varphi_{\alpha}) U_2(\psi_{\beta}) x = x.\]

Hence, \(V(1) = I\).

(ii) The case \(\mathcal{V}(\Phi_1, \Phi_2) = (\Phi_1 \otimes \Phi_2) \oplus \mathbb{C}\).

We extend \(V\) over \(\mathcal{V}(\Phi_1, \Phi_2)\) by
\[V(\varphi + c) = V(\varphi) + cI \quad \text{for} \quad \varphi \in \Phi_1 \otimes \Phi_2.\]

Then, it is easy to see that \(V\) is a continuous homomorphism on \(\mathcal{V}(\Phi_1, \Phi_2)\) and \(V(1) = I\).

\textbf{Q. E. D.}

\textbf{THEOREM I.} Let \(U_1\) and \(U_2\) be commuting \(\Phi_1\)- and \(\Phi_2\)-spectral representations respectively. If \(f\) is \(\Phi\)-proper w.r.t. \(\mathcal{V}(\Phi_1, \Phi_2)\), then
\[W_f : W_f(\varphi) = V(\varphi \circ f)\]
is a \(\Phi\)-spectral representation, where \(V\) is the homomorphism defined in the previous proposition. If, in addition, \(f \in \mathcal{V}(\Phi_1, \Phi_2)\), then \(V(f)\) is \(\Phi\)-scalar.

\textbf{PROOF:} This is an immediate consequence of Proposition 1.2 and the previous proposition.

\textbf{Corollary.} If \(U_1\) and \(U_2\) are commuting \(C^*\)-spectral (resp. \(C^\infty_z\)-spectral) representations, then \(W_f\) defined above is a \(C^*\)-spectral representation for any \(f \in C^*(R^4)\) (resp. \(f \in C^\infty_z(R^4) \oplus \mathbb{C}\)) and \(V(f)\) is \(C^*\)-scalar for such a function \(f\).

\textbf{PROOF:} Grothendieck [2] (II, p. 84) and L. Schwartz [5] (I, p. 94, II, p. 17) showed that \(C^\infty_z \otimes C^* = C^*(R^4)\) and \(C^\infty_z \otimes C^\infty_z = C^\infty_z(R^4)\). Hence \(\mathcal{V}(C^\infty_z, C^*) = C^*(R^4)\) and \(\mathcal{V}(C^\infty_z, C^\infty_z) = C^\infty_z(R^4) \oplus \mathbb{C}\). We know by proposition 1.1. that any function \(f \in \mathcal{V}\) is \(C^*\)-proper in these cases. Therefore, the corollary follows from the theorem.

\textbf{Remark:} The above corollary does not hold for \(C^0\)-spectral or \(C^0_z\)-spectral representations. The example by Kakutani [3] gives an indication of this fact. The difficulty appears in the fact that the topology of \(C^0 \otimes C^0\) is strictly stronger than the topology of \(C^0(R^4)\).

\section*{§3 Polynomials of two commuting scalar operators.}

Let \(S_i, i = 1, 2\), be \(\Phi_i\)-scalar operators on \(E\) with commuting \(\Phi_i\)-spectral representations \(U_i\). Let \(P(z_1, z_2)\) be a polynomial in two variables. Then \(P(S_1, S_2)\) is formally given as an element of \(L(E)\). Is it scalar again? The answer is partially given by the following proposition.
PROPOSITION 3.1.

(i) If \(sp(S_i) \) are compact \((i = 1, 2)\), then \(P(S_1, S_2) \) is \(\Phi \)-scalar whenever \(\Psi(\Phi_1, \Phi_2) \) is \(\Phi \)-admissible.

(ii) Suppose both \(\Phi_1 \) and \(\Phi_2 \) contain polynomials, so that \(S_i = U_i(z) \) \((i = 1, 2)\), and suppose \(\Psi(\Phi_1, \Phi_2) \) is \(\Phi \)-admissible and \(\Phi \) contains constants. Then, \(P(S_1, S_2) \) is \(\Phi \)-scalar.

\[\text{PROOF:} \]

(i) We can choose \(\{\Phi_i\} \) \((i = 1, 2)\) such that \(\Phi_i = 1 \) on a neighborhood of \(sp(S_i) \). Let \(f(z_1, z_2) = P(z_1 \phi_1(z_1), z_2 \phi_2(z_2)) \). Then \(f \) is bounded and \(f \in \Phi_1 \otimes \Phi_2 \), so that \(f \) is \(\Phi \)-proper w.r.t. \(\Psi(\Phi_1, \Phi_2) \). Hence,
\[
V(f) = P(U_1(z_1 \phi_1(z_1)), U_2(z_2 \phi_2(z_2))) = P(S_1, S_2)
\]
is \(\Phi \)-scalar by Theorem I.

(ii) Under our assumptions, \(P \in \Phi_1 \otimes \Phi_2 \). Since \(\Phi \) contains constants, \(P \) is \(\Phi \)-proper w.r.t. \(\Psi(\Phi_1, \Phi_2) \) (see the remark after Def. 1.1). Hence, again by Theorem I, \(V(P) = P(U_1(z_1), U_2(z_2)) = P(S_1, S_2) \) is \(\Phi \)-scalar.

COROLLARY. (i) Let \(S_1 \) and \(S_2 \) be \(C^\ast \)-scalar operators with commuting \(C^\ast \)-spectral representations. Then, \(P(S_1, S_2) \) is \(C^\ast \)-scalar for any polynomial \(P \).

(ii) Let \(S_1 \) and \(S_2 \) be \(C^\ast \)-scalar operators with commuting \(C^\ast \)-spectral representations. If \(sp(S_i) \) are compact, then \(P(S_1, S_2) \) is \(C^\ast \)-scalar for any polynomial \(P \). (cf. Foias [1], Theorem 4)

REMARK. In the case \(sp(S_i) \) \((i = 1, 2)\) are compact, we can define (uniquely) \(f(S_1, S_2) \) for any function \(f(z_1, z_2) \) in two variables, holomorphic in a neighborhood of \(sp(S_1) \times sp(S_2) \). (Waelbroeck [6]) Here, we may assume that \(f \in \Psi(C^\ast, C^\ast) \), so that \(f(S_1, S_2) \) is \(C^\ast \)-scalar.

\[\text{§4 Polynomials of two commuting spectral operators.} \]

For generalized spectral operators, the following theorem is an easy consequence of the previous section.

\[\text{THEOREM II.} \]

Let \(T_i \) be \(\Phi_i \)-spectral operators with \(\Phi_i \)-spectral representations \(U_i \) \((i = 1, 2)\). Suppose that \(T_1, T_2, U_1(\phi_1) \) and \(U_2(\phi_2) \) belong to a same commutative subalgebra of \(L(E) \) and suppose \(\Psi(\Phi_1, \Phi_2) \) is \(\Phi \)-admissible.

If \(sp(T_i), i = 1, 2, \) are compact, then \(P(T_1, T_2) \) is \(\Phi \)-spectral for any polynomial \(P \).

\[\text{PROOF:} \]

Let \(i = 1 \) or \(2 \). If \(sp(T_i) \) is compact, then \(T_i = S_i + Q_i \), where \(S_i = U(z \phi_i) \) and \(Q_i \) is quasi-nilpotent on \(E \). Then, \(T_i, S_i, Q_i \) \((i = 1, 2)\) commute each other, so that
\[
P(T_1, T_2) = P(S_1, S_2) + R_1(S_1, S_2, Q_1, Q_2)Q_1 + R_2(S_1, S_2, Q_1, Q_2)Q_2,
\]
where \(R_1 \) and \(R_2 \) are polynomials.

By Proposition 3.1, \(P(S_1, S_2) \) is \(\Phi \)-scalar and its spectrum is compact. Since the quasi-nilpotent operators form an ideal in \(L_r(E) \) (the algebra of all ele-
ments of \(L(E) \) with compact spectrum), \(R_1Q_1 + R_2Q_2 \) is again quasi-nilpotent. Hence, by Th. 4.2 of [4], \(P(T_1, T_2) \) is a \(\Phi \)-spectral operator.

Remark. This proof can not be applied to the case where the \(sp(T_i) \) are not compact, due to the following fact: “Let \(Q \) be a quasi-nilpotent operator. If \(S \in L(E) \) has non-compact spectrum, then \(SQ \) is not necessarily quasi-nilpotent even if \(S \) and \(Q \) commute.” (cf. Appendix).

If, however, \(Q \) is nilpotent, then \(SQ \) is again nipotent whenever \(S \) and \(Q \) commute. Therefore, the following proposition is an immediate consequence of Proposition 3.1, (ii):

Proposition 4.1. Let \(T_i \) be as in the previous theorem except that \(sp(T_i) \) may not be compact. Suppose \(\Phi_i \) contains polynomials, \(\Phi \) contains constants and \(T_i = U_i(z) + Q_i \) with nilpotent operators \(Q_i (i = 1, 2) \), then \(P(T_1, T_2) \) is \(\Phi \)-spectral.

Corollary to Theorem I. Let \(T_i (i = 1, 2) \) be regular \(C^\infty \)-spectral operators with \(C^\infty \)-spectral representations \(U_i \) such that \(T_1, T_2, U_1(q_1), U_2(q_2); q_1, q_2 \in C^\infty \) belong to a same commutative subalgebra of \(L(E) \). Then \(P(T_1, T_2) \) is \(C^\infty \)-spectral for any polynomial \(P \).

Remark: The corresponding statement in \(C^\infty \) to Proposition 4.1 is a triviality, since, in this case, \(T_i \) are \(C^\infty \)-scalar. (See [1].)

Appendix. An example of a quasi-nilpotent operator \(Q \) and a non-regular operator \(S \) which are commutative but \(SQ \) is not quasi-nilpotent.

Let us consider the space
\[
E = \{ f(x, y) \in C^\infty([0,1] \times R); (\partial^k f/\partial x^k)(0, y) = 0, k = 0, 1, \ldots, f(., y) \in S_y(R) \}.
\]
Here, \(S_y(R) \) is the space of rapidly decreasing functions in \(y \). The space \(E \) is Fréchet with a countable number of norms \(p_{k,m,q}: (k, m, q = 0, 1, \ldots) \)
\[
 p_{k,m,q}(f) = \sup_{x \in [0,1], y \in R} |y^k(\partial^q f/\partial x^m \partial y^q)(x, y)|.
\]
Let
\[
Sf(x, y) = yf(x, y), \quad Qf(x, y) = \int_0^x f(t, y) dt.
\]
It is easy to see that \(S, Q \in L(E) \), \(Q \) is quasi-nilpotent and \(SQ = QS \). Now,
\[
(SQ)^n f(x, y) = y^n \int_0^x (x - t)^n f(t, y) dt.
\]
Taking the function \(f(x, y) = \exp \left(-\frac{\sqrt{1 + y^2}}{x} \right) \in E \), let us compute \(a_n = \left[p_{0,0,0} (SQ)^n f(x, y)]^{1/n} \). If \(SQ \) were quasi-nilpotent, then \(a_n \to 0 \) \((n \to \infty) \). We shall show this is not the case.
\[\alpha_n = \sup_y |y| \frac{1}{(n!)^{1/n}} \left(\int_0^1 (1 - t)^n f(t, y) \, dt \right)^{1/n} \]
\[\geq \alpha_n |\gamma| \frac{1}{(n!)^{1/n}} \left(\int_1^\infty \frac{(1 - t)^n}{t} \exp \left(- \frac{\sqrt{1 + y^2}}{t} \right) \, dt \right)^{1/n} \]
\[\geq K \sup_y |y| \frac{1}{(n!)^{1/n}} \exp \left(- 3 |y| \sqrt{n} \right) \]
\[\geq K \frac{n}{(n!)^{1/n}} \quad \text{(taking } y = n) \]
\[\rightarrow eK_1 \quad (n \to \infty). \]

Hence, \(SQ \) cannot be quasi-nilpotent.

References

