Function of Generalized Scalar Operators

By Fumi-Yuki MAEDA (Received Sept. 10, 1962)

Introduction. In the author's previous work [4], generalized scalar and spectral operators were defined and studied on a separated locally convex space E for which L(E) is quasi-complete. The present paper studies some sufficient conditions for a function, especially a polynomial, of two commuting generalized scalar or spectral operators to be again of the same type. In this respect, this paper is a kind of supplement to [4] and we shall use the definitions and results given in [4] without their detailed descriptions.

We shall be especially interested in the case where basic algebras are C^{∞} or C_c^{∞} (the case considered by Foias [1] on a Banach space) and the results for this case will be stated after corresponding theorems. As a special case, we shall see that sum and product of C^{∞} -scalar operators are again C^{∞} -scalar; sum and product of C^{∞} -spectral operators with compact spectrum are C^{∞} -spectral, under certain assumptions on commutativity.

Finally, one should remark that the theory can be easily extended to a function or a polynomial of a finite number of commuting generalized scalar or spectral operators.

Let X be a set and Ψ be an algebra of functions on X containing constants and having a locally convex topology. Given a basic algebra ([4], Def. 1.1) \emptyset , we consider the following notion:

DEFINITION 1.1. A function f on X will be called φ -proper with respect to (w.r.t.) Ψ if it satisfies the following three conditions:

- i) $\varphi \circ f \in \Psi$ for all $\varphi \in \Psi$,
- ii) $\varphi \rightarrow \varphi \circ f$ is continuous from φ into Ψ , and
- iii) $1 \in \overline{\{\varphi \circ f; \varphi \in \Psi\}}.$

We remark that if $\mathscr{\Psi}$ is \mathscr{P} -admissible ([4], Def. 1.4), then any bounded function $f \in \mathscr{\Psi}$ is \mathscr{P} -proper; if, in addition, \mathscr{P} contains constants, then any function $f \in \mathscr{\Psi}$ is \mathscr{P} -proper.

PROPOSITION 1.1. Let X be a locally compact space (resp. a C^{∞} -manifold), let $\Psi = C^{0}(X)$ or $C_{c}^{0}(X) \oplus C$ (resp. $C^{\infty}(X)$ or $C_{c}^{\infty}(X) \oplus C$) and let $\Psi = C^{0}$ or C_{c}^{0} (resp. C^{∞} or C_{c}^{∞}). Then, f is Ψ -proper w.r.t. Ψ if and only if $f \in \Psi$.

PROOF: "If" part is obvious from the above remark and [4], Example 1.1-1.4. We omit the proof of "only if" part here, since it is not essential in

this paper.

Theorem 1.1 and Proposition 2.6 of [4] can be modified by our notion of φ -proper function as follows:

PROPOSITION 1.2. Suppose there is a continuous homomorphism V of Ψ into L(E) such that V(1)=I. If f is φ -proper w.r.t. Ψ , then U_f defined by $U_f(\varphi)=V(\varphi \circ f)$ is a φ -spectral representation on E. ([4], Def. 1.3.) If, in addition, $f \in \Psi$, then V(f) is φ -scalar.

§2. Tensor product of two commuting representations.

Let ϕ_1 and ϕ_2 be two basic algebras contained in B(C). The complete inductive tensor product $\phi_1 \otimes_i \phi_2$ (This notation is due to *L*. Schwartz [5]. Grothendieck [2] denoted it $\phi_1 \otimes \phi_2$.) of these two algebras can be regarded as a subalgebra of $B(C^2)$, the space of all locally bounded complex valued functions (Borel measurable) on $C^2 = R^4$, provided that the topologies of ϕ_1 and ϕ_2 are stronger than the induced topologies from B(C). Let $\Psi(\phi_1, \phi_2)$ be the subalgebra of $B(C^2)$ generated by $\phi_1 \otimes_i \phi_2$ and *C* (the constant functions). Then, it is easy to see that

(i) $\Psi(\Phi_1, \Phi_2) = \Phi_1 \widehat{\otimes}_i \Phi_2$ if $1 \in \Phi_1 \widehat{\otimes}_i \Phi_2$,

(ii) $\Psi(\Phi_1, \Phi_2) = (\Phi_1 \otimes_i \Phi_2) \oplus C$ if $1 \in \Phi_1 \otimes_i \Phi_2$.

In the latter case, we introduce the topology of direct sum in $\Psi(\Phi_1, \Phi_2)$.

We say that a φ_1 -spectral representation U_1 and a φ_2 -spectral representation U_2 are commuting if

 $U_1(\varphi_1)U_2(\varphi_2) = U_2(\varphi_2)U_1(\varphi_1)$ for all $\varphi_1 \in \Phi_1$ and $\varphi_2 \in \Phi_2$.

PROPOSITION 2.1. If U_1 and U_2 are commuting φ_1 - and φ_2 -spectral representations respectively, then there is a continuous homomorphism V of $\Psi(\varphi_1, \varphi_2)$ into L(E) such that

1) $V(\varphi_1 \otimes \varphi_2) = U_1(\varphi_1) U_2(\varphi_2)$ for $\varphi_1 \in \Phi_1, \varphi_2 \in \Phi_2,$ 2) V(1) = I.

PROOF: $V = U_1 \otimes U_2$ on $\varphi_1 \otimes \varphi_2$ is defined by the equation 1). It is a homomorphism on $\varphi_1 \otimes \varphi_2$. Since the mapping $(\varphi_1, \varphi_2) \to V(\varphi_1 \otimes \varphi_2)$ is separately continuous from $\varphi_1 \times \varphi_2$ into L(E), the mapping $\varphi_1 \otimes \varphi_2 \to V(\varphi_1 \otimes \varphi_2)$ is continuous with respect to the inductive tensor product topology on $\varphi_1 \otimes \varphi_2$. (See [2] or [5].) Hence, V can be extended continuously over $\varphi_1 \otimes_i \varphi_2$. To prove 2), we consider the two cases:

(i) The case $\Psi(\Phi_1, \Phi_2) = \Phi_1 \widehat{\otimes}_i \Phi_2$.

Choose $\{\varphi_{\alpha}\} \subseteq \varphi_1$ and $\{\psi_{\beta}\} \subseteq \varphi_2$ such that $U_1(\varphi_{\alpha}) \to I$ and $U_2(\psi_{\beta}) \to I$. For any $x \in E$,

$$V(1)x = V(1) \lim_{\alpha} U_1(\varphi_{\alpha})x$$
$$= V(1) \lim_{\alpha} U_1(\varphi_{\alpha}) \lim_{\beta} U_2(\psi_{\beta})x$$

Function of Generalized Scalar Operators

$$= \lim_{\alpha} \lim_{\beta} V(1) U_1(\varphi_{\alpha}) U_2(\psi_{\beta}) x$$
$$= \lim_{\alpha} \lim_{\beta} V(1) V(\varphi_{\alpha} \otimes \psi_{\beta}) x$$
$$= \lim_{\alpha} \lim_{\beta} V(\varphi_{\alpha} \otimes \psi_{\beta}) x$$
$$= \lim_{\alpha} \lim_{\beta} U_1(\varphi_{\alpha}) U_2(\psi_{\beta}) x = x.$$

Hence, V(1) = I.

(ii) The case $\Psi(\Phi_1, \Phi_2) = (\Phi_1 \bigotimes_i \Phi_2) \bigoplus C$. We extend *V* over $\Psi(\Phi_1, \Phi_2)$ by

 $V(\psi + c) = V(\psi) + cI$ for $\psi \in \Phi_1 \widehat{\otimes}_i \Phi_2$.

Then, it is easy to see that V is a continuous homomorphism on $\Psi(\Phi_1, \Phi_2)$ and V(1) = I. Q. E. D.

THEOREM I. Let U_1 and U_2 be commuting Φ_1 - and Φ_2 -spectral representations respectively. If f is Φ -proper w.r.t. $\Psi(\Phi_1, \Phi_2)$, then

$$W_f: W_f(\varphi) = V(\varphi \circ f)$$

is a Φ -spectral representation, where V is the homomorphism defined in the previous proposition. If, in addition, $f \in \Psi(\Phi_1, \Phi_2)$, then V(f) is Φ -scalar.

PROOF: This is an immediate consequence of Proposition 1.2 and the previous proposition.

COROLLARY. If U_1 and U_2 are commuting C^{\sim} -spectral (resp. C_c^{\sim} -spectral) representations, then W_f defined above is a C^{\sim} -spectral representation for any $f \in C^{\sim}(R^4)$ (resp. $f \in C_c^{\sim}(R^4) \oplus C$) and V(f) is C^{\sim} -scalar for such a function f.

PROOF: Grothendieck [2] (II, p. 84) and L. Schwartz [5] (I, p. 94, II, p. 17) showed that $C^{\infty} \bigotimes_{i} C^{\infty} = C^{\infty}(R^{4})$ and $C^{\infty}_{c} \bigotimes_{i} C^{\infty}_{c} = C^{\infty}_{c}(R^{4})$. Hence $\mathscr{V}(C^{\infty}_{c}, C^{\infty}) = C^{\infty}(R^{4})$ and $\mathscr{V}(C^{\infty}_{c}, C^{\infty}_{c}) = C^{\infty}_{c}(R^{4}) \oplus C$. We know by proposition 1.1. that any function $f \in \mathscr{V}$ is C^{∞} -proper in these cases. Therefore, the corollary follows from the theorem.

REMARK: The above corollary does not hold for C^0 -spectral or C_c^0 -spectral representations. The example by Kakutani [3] gives an indication of this fact. The difficulty appears in the fact that the topology of $C^0 \bigotimes_i C^0$ is strictly stronger than the topology of $C^0(R^4)$.

§3 Polynomials of two commuting scalar operators.

Let S_i , i=1, 2, be φ_i -scalar operators on E with commuting φ_i -spectral representations U_i . Let $P(z_1, z_2)$ be a polynomial in two variables. Then $P(S_1, S_2)$ is formally given as an element of L(E). Is it scalar again? The answer is partially given by the following proposition.

PROPOSITION 3.1.

(i) If $sp(S_i)$ are compact (i = 1, 2), then $P(S_1, S_2)$ is φ -scalar whenever $\Psi(\varphi_1, \varphi_2)$ is φ -admissible.

(ii) Suppose both Φ_1 and Φ_2 contain polynomials, so that $S_i = U_i(z)$ (i = 1, 2), and suppose $\Psi(\Phi_1, \Phi_2)$ is Φ -admissible and Φ contains constants. Then, $P(S_1, S_2)$ is Φ -scalar.

PROOF: (i) We can choose $\varphi_i \in \varphi_i$ (i=1, 2) such that $\varphi_i=1$ on a neighborhood of $sp(S_i)$. Let $f(z_1, z_2) = P(z_1\varphi_1(z_1), z_2\varphi_2(z_2))$. Then f is bounded and $f \in \varphi_1 \otimes \varphi_2$, so that f is φ -proper w.r.t. $\Psi(\varphi_1, \varphi_2)$. Hence,

 $V(f) = P(U_i(z_1\varphi_1(z_1)), U_2(z_2\varphi_2(z_2))) = P(S_1, S_2)$

is Φ -scalar by Theorem I.

(ii) Under our assumptions, $P \in \Phi_1 \otimes \Phi_2$. Since Φ contains constants, P is Φ -proper w.r.t. $\Psi(\Phi_1, \Phi_2)$ (see the remark after Def. 1.1). Hence, again by Theorem I, $V(P) = P(U_1(z_1), U_2(z_2)) = P(S_1, S_2)$ is Φ -scalar.

COROLLARY. (i) Let S_1 and S_2 be C^{∞} -scalar operators with commuting C^{∞} -spectral representations. Then, $P(S_1, S_2)$ is C^{∞} -scalar for any polynomial P.

(ii) Let S_1 and S_2 be C_c° -scalar operators with commuting C_c° -spectral representations. If $sp(S_i)$ are compact, then $P(S_1, S_2)$ is C° -scalar for any polynomial P. (cf. Foias [1], Theorem 4)

REMARK. In the case $sp(S_i)$ (i = 1, 2) are compact, we can define (uniquely) $f(S_1, S_2)$ for any function $f(z_1, z_2)$ in two variables, holomorphic in a neighborhood of $sp(S_1) \times sp(S_2)$. (Waelbroeck [6]) Here, we may assume that $f \in \Psi(C_c^{\circ}, C_c^{\circ})$, so that $f(S_1, S_2)$ is C° -scalar.

§4 Polynomials of two commuting spectral operators.

For generalized spectral operators, the following theorem is an easy consequence of the previous section.

THEOREM II. Let T_i be φ_i -spectral operators with φ_i -spectral representations U_i (i=1, 2). Suppose that T_1 , T_2 , $U_1(\varphi_1)$ and $U_2(\varphi_2)$ belong to a same commutative subalgebra of L(E) and suppose $\Psi(\varphi_1, \varphi_2)$ is φ -admissible.

If $sp(T_i)$, i=1, 2, are compact, then $P(T_1, T_2)$ is \mathcal{P} -spectral for any polynomial P.

PROOF: Let i=1 or 2. If $sp(T_i)$ is compact, then $T_i=S_i+Q_i$, where $S_i=U(z\varphi_i)$ and Q_i is quasi-nilpotent on E. Then, T_i , S_i , Q_i (i=1, 2) commute each other, so that

 $P(T_1, T_2) = P(S_1, S_2) + R_1(S_1, S_2, Q_1, Q_2)Q_1 + R_2(S_1, S_2, Q_1, Q_2)Q_2,$ where R_1 and R_2 are polynomials.

By Proposition 3.1, $P(S_1, S_2)$ is \emptyset -scalar and its spectrum is compact. Since the quasi-nilpotent operators form an ideal in $L_r(E)$ (the algebra of all elements of L(E) with compact spectrum), $R_1Q_1 + R_2Q_2$ is again quasi-nilpotent. Hence, by Th. 4.2 of $\lceil 4 \rceil$, $P(T_1, T_2)$ is a \emptyset -spectral operator.

REMARK. This proof can not be applied to the case where the $sp(T_i)$ are not compact, due to the following fact: "Let Q be a quasi-nilpotent operator. If $S \in L(E)$ has non-compact spectrum, then SQ is not necessarily quasi-nilpotent even if S and Q commute." (cf. Appendix).

If, however, Q is nilpotent, then SQ is again nipotent whenever S and Q commute. Therefore, the following proposition is an immediate consequence of Proposition 3.1, (ii):

PROPOSITION 4.1. Let T_i be as in the previous theorem except that $sp(T_i)$ may not be compact. Suppose Φ_i contains polynomials, Φ contains constants and $T_i = U_i(z) + Q_i$ with nilpotent operators $Q_i(i=1, 2)$, then $P(T_1, T_2)$ is Φ -spectral.

COROLLARY TO THEOREM I. Let $T_i(i=1,2)$ be regular C^{∞} -spectral operators with C^{∞} -spectral representations U_i such that $T_1, T_2, U_1(\varphi_1), U_2(\varphi_2); \varphi_1, \varphi_2 \in C^{\infty}$ belong to a same commutative subalgebra of L(E). Then $P(T_1, T_2)$ is C^{∞} -spectral for any polynomial P.

REMARK: The corresponding statement in C_c^{∞} to Proposition 4.1 is a triviality, since, in this case, T_i are C_c^{∞} -scalar. (See [1].)

Appendix. An example of a quasi-nilpotent operator Q and a non-regular operator S which are commutative but SQ is not quasi-nilpotent.

Let us consider the space

$$E = \{ f(x, y) \in C^{\infty}([0,1] \times R); (\partial^k f / \partial x^k) (0, y) = 0, k = 0, 1, \dots, f(., y) \in S_y(R) \}.$$

Here, $S_y(R)$ is the space of rapidly decreasing functions in y. The space E is Frèchet with a countable number of norms $p_{k,m,q}$: (k, m, q = 0, 1, ...)

$$p_{k,m,q}(f) = \sup_{x \in [0,1], y \in \mathbb{R}} |y^k(\partial^{m+q} f / \partial x^m \partial y^q)(x, y)|.$$

Let

$$Sf(x, y) = yf(x, y), \quad Qf(x, y) = \int_0^x f(t, y) dt.$$

It is easy to see that S, $Q \in L(E)$, Q is quasi-nilpotent and SQ = QS. Now,

$$(SQ)^n f(x, y) = y^n \int_0^x \frac{(x-t)^n}{n!} f(t, y) dt.$$

Taking the function $f(x, y) = \exp\left(-\frac{\sqrt{1+y^2}}{x}\right) \epsilon E$, let us compute $a_n = [p_{0,0,0}] ((SQ)^n f(x, y))]^{1/n}$. If SQ were quasi-nilpotent, then $a_n \to 0 \ (n \to \infty)$. We shall show this is not the case.

$$a_{n} = \sup_{y} |y| \frac{1}{(n!)^{1/n}} \left(\int_{0}^{1} (1-t)^{n} f(t, y) dt \right)^{1/n}$$

$$\geq \sup_{y} |y| \frac{1}{(n!)^{1/n}} \left(\int_{1/3}^{2/3} (1-t)^{n} \exp\left(-\frac{\sqrt{1+y^{2}}}{t}\right) dt \right)^{1/n}$$

$$\geq K \sup_{y} \frac{1}{(n!)^{1/n}} |y| \exp(-3|y|/2n)$$

$$\geq K_{1} \frac{n}{(n!)^{1/n}} \quad (\text{taking } y = n)$$

$$\rightarrow eK_{1} (n \rightarrow \infty).$$

Hence, SQ cannot be quasi-nilpotent.

References

- [1] M. C. Foias, Une application des distributions vectorielles à la théorie spectrale, Bull. Sc. Math., 2^e série, 84 (1960), 373-392.
- [2] A. Grothendieck, Produits tensoriels topologiques et espaces nucléarires, A.M.S. Memoir, Vol. 16, 1955.
- [3] S. Kakutani, An example concerning uniform boundedness of spectral measures, Pacific J. Math. 4 (19-54), 363-372.
- [4] F-Y. Maeda, Generalized spectral operators on locally convex spaces, to appear in Pacific J. Math. (or Mimeograrhed Note)
- [5] L. Schwartz, *Théorie des distributions à valeurs vectorielles*, Ann. l'Institut Fourier (Univ. Grenoble), Tomes VII et VIII, (1959).
- [6] L. Waelbroeck, Le calcul symbolique dans les algèbres commutative, J. Math., a. et p., 9^e série, 33 (1954), 147-186.