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Function of Generalized Scalar Operators
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Introduction. In the author's previous work [4], generalized scalar and
spectral operators were defined and studied on a separated locally convex
space E for which L(E) is quasi-complete. The present paper studies some
sufficient conditions for a function, especially a polynomial, of two commut-
ing generalized scalar or spectral operators to be again of the same type. In
this respect, this paper is a kind of supplement to [4] and we shall use the
definitions and results given in [4] without their detailed descriptions.

We shall be especially interested in the case where basic algebras are C°
or C; (the case considered by Foias [1] on a Banach space) and the results
for this case will be stated after corresponding theorems. As a special case,
we shall see that sum and product of C-scalar operators are again C°°-scalar
sum and product of C'-spectral operators with compact spectrum are C°°-
spectral, under certain assumptions on commutativity.

Finally, one should remark that the theory can be easily extended to a
function or a polynomial of a finite number of commuting generalized scalar
or spectral operators.

§1. (̂ -proper functions.

Let X be a set and Ψ be an algebra of functions on X containing con-
stants and having a locally convex topology. Given a basic algebra ([4], Def.
1.1) Φ, we consider the following notion:

DEFINITION 1.1. A function/on X will be called Φ-proper with respect to
(w.r.t.) Ψ if it satisfies the following three conditions:

i) φofeψ for all φeΨ,
ii) φ->φofis continuous from Φ into Ψ, and

iϋ) 1 € {cpof; φ€Φ}
We remark that if Ψ is ^-admissible ([4], Def. 1.4), then any bounded func-
tion/6 Ψ is ^-proper; if, in addition, Φ contains constants, then any function
/e Ψ is ^-proper.

PROPOSITION 1.1. Let X be a locally compact space (resp. a C~-manifold),
let ¥ = C\X) or C%X)®C (resp. C~(X) or C;(X)®C) and let Φ=C° or C°c (resp.
C°° or C;). Then, f is Φ-proper w.r.t. Ψ if and only if fe ¥.

PROOF: "If" part is obvious from the above remark and [4], Example
1.1-1.4. We omit the proof of "only if" part here, since it is not essential in
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this paper.

Theorem 1.1 and Proposition 2.6 of [4] can be modified by our notion of
^-proper function as follows:

PROPOSITION 1.2. Suppose there is a continuous homomorphism V of Ψ in-
to L(E) such that V(l)=L If f is Φ-proper w.r.t. Ψ, then Uf defined by Uf(<p) =
V(φof) is a Φ-spectral representation on E. ([4], Def. 1.3.) //, in addition, fe
Ψ, then V(f) is Φ-scalar.

§2. Tensor product of two commuting representations.

Let Φx and Φ2 be two basic algebras contained in B(C). The complete in-
ductive tensor product Φx <gf Φ2 (This notation is due to L. Schwartz [5].
Grothendieck [2] denoted it Φx (g) Φ2.) of these two algebras can be regarded
as a subalgebra of #(C2), the space of all locally bounded complex valued func-
tions (Borel measurable) on C2=Ri, provided that the topologies of Φ± and Φ2

are stronger than the induced topologies from B(C). Let Ψ{Φ\, Φ2) be the sub-
algebra of B(C2) generated by Φλ ζg), Φ2 and C (the constant functions). Then,
it is easy to see that

(i) Ψ (Φl9 Φ2) = Φλ ®, Φ2 if leΦι ®,. Φ2,
(ii) Ψ(ΦuΦ2) = (Φι^iΦ2)®C if l < E 0 i ® f 02.

In the latter case, we introduce the topology of direct sum in Ψ(Φι, Φ2).
We say that a ^i-spectral representation Uι and a $2-spectral representa-

tion U2 are commuting if
Uι (cpi) U2 (<p2) = U2 (φ2) Ui (φι) for all φλ € Φx and φ2 6 Φ2.

PROPOSITION 2.1. // U\ and U2 are commuting Φy and Φ2spectral repre-
sentstions respectively, then there is a continuous homomorphism V of fF(Φu Φ2)
into L(E) such that

1) V{φι^ψ2) = Ux (ψι) U2 (φ2) for <pχ 6 Φu φ2 € Φ2,
2) V(1) = L

PROOF: V— Uχ<S)U2 on Φι<S)Φ2 is defined by the equation 1). It is a homo-
morphism on Φι(&Φ2. Since the mapping (φu φ2)->V{φι^φ2) is separately
continuous from Φτ x Φ2 into L(E), the mapping ψi0φ2-^V(φι(S)φ2) is continu-
ous with respect to the inductive tensor product topology on ΦιξZ)Φ2. (See [2]
or [5].) Hence, V can be extended continuously over Φχ(§iΦ2. To prove 2),
we consider the two cases:

(i) The case Ψ (Φu Φ2) = Φ{^iΦ2.
Choose {φa}^Φi and {ψβ}^Φ2 such that £/i(^)->/ and U2(ψβ)-+I. For

any x e E,

lim Uλ(Ψa) lim
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= lim lim
a β

= lim lim V(l) V(φa<g)y}rβ)x
a β

= lim lim
a β

= lim lim Uι(φa)U2(ψβ)χ = x.
a β

Hence, V(ΐ) = I.
(ii) The case Ψ (Φu Φ2) = (ΦMiΦ2) Θ C.
We extend V over Ψ(ΦU Φ2) by
V{Λ\P + c) = V(f) + cl for ψ e Φλ^iΦ2.

Then, it is easy to see that V is a continuous homomorphism on !F(ΦU Φ2) and
V(1)=L Q. E. D.

THEOREM I. Let Uι and U2 be commuting Φλ- and Φ2-spectral representa-
tions respectively. If f is Φ-proper w.r.t. Ψ(Φι, Φ2), then

IVf. IVf(φ)=V(φof)

is a Φ-spectral representation, where V is the homomorphism defined in the pre-
vious proposition. If, in addition, f e Ψ(Φι, Φ2), then V(f) is Φ-scalar.

PROOF: This is an immediate consequence of Proposition 1.2 and the
previous proposition.

COROLLARY. // Uλ and U2 are commuting C^-spectral (resp. C'-spectral)
representations, then Wf defined above is a C™-spectral representation for any
fe C™(RA) (resp. fe C^(RA)^C) and V(f) is C°°-scalar for such a function f.

PROOF: Grothendieck [2] (II, p. 84) and L. Schwartz [5] (I, p. 94, II, p.
17) showed that C^iC°° = C°°(R4) and C ^iC; = C;(RA). Hence Ψ (<T, C°°) = C°°
(RA) and (Γ(C;, C;) = C;(i?4)0C. We know by proposition 1.1. that any func-
tion fe ψ is C°°-proper in these cases. Therefore, the corollary follows from
the theorem.

REMARK: The above corollary does not hold for C°-spectral or CJ-spec-
tral representations. The example by Kakutani [3] gives an indication of
this fact. The difficulty appears in the fact that the topology of C°^iC° is
strictly stronger than the topology of C°(R4).

§3 Polynomials of two commuting scalar operators.

Let Si, 1 = 1, 2, be <#t-scalar operators on E with commuting ^/-spectral re-
presentations U{. Let P(zu z2) be a polynomial in two variables. Then P(SU

S2) is formally given as an element of L(E). Is it scalar again? The answer
is partially given by the following proposition.
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PROPOSITION 3.1.

(i) If sp(βi) are compact (ί = 1, 2), then P(SU S2) is Ψ-scalar whenever

Φ(Φu φtι) is Φ-admissible.
(ii) Suppose both Φλ and Φ2 contain polynomials, so that S, = Ui(z) (ί = 1,

2), and suppose Ψ(Φι, Φ2) is Φ-admissible and Φ contains constants. Then, P(SU

S2) is Φ-scalar.

PROOF: (i) We can choose <p{ e Φ{ ( ΐ = l , 2) such that φ, = l on a neighbor-
hood of sp(S{). Let f(zu z2) = P(zιφι(zι), z2φ2(z2)). Then / i s bounded and/6
Φι<ξ§Φ2, so that / is (^-proper w.r.t. Ψ(Φι, Φ2). Hence,

V(f) = P(ϋi (zlψl (Zl)\ U2 {z2ψ2 (z2))) =P(Sl9 S2)

is ^-scalar by Theorem I.
(ii) Under our assumptions, P e Φ\®Φ2. Since Φ contains constants, P is

^-proper w.r.t. Φ(Φ\, Φ2) (see the remark after Def. 1.1). Hence, again by
Theorem I, V(P) = P(UX(Zl), U2(z2)) = P(Su S2) is ^-scalar.

COROLLARY, (i) Let Sλ and S2 be C*'-scalar operators with commuting C°°-
spectral representations. Then, P(SU S2) is C°-scalar for any polynomial P.

(ii) Let Si and S2 be C^-scalar operators with commuting C™-spectral re-
presentations. If sp(βi) are compact, then P(βι, S2) is C°°-scalar for any polyno-
mial P. (cf. Foias [1], Theorem 4)

REMARK. In the case sp(Si) (£ = 1, 2) are compact, we can define (uniquely)
/(Si, S2) for any function f(zu z2) in two variables, holomorphic in a neighbor-
hood of sp(Sι)xsp(S2). (Waelbroeck [6]) Here, we may assume that fe ¥(£*,
C;), so that /(Si, S2) is C°°-scalar.

§4 Polynomials of two commuting spectral operators.

For generalized spectral operators, the following theorem is an easy con-
sequence of the previous section.

THEOREM II. Let Ti be Φrspectral operators with Φrspectral representa-
tions Ui (i = l, 2). Suppose that 7\, T2, ί/i(<pi) and U2(φ2) belong to a same com-
mutative subalgebra of L(E) and suppose Ψ(Φ\, Φ2) is Φ-admissible.

If sp(Ti), i = l, 2, are compact, then P(TU T2) is Φ-spectral for any polyno-
mial P.

PROOF: Let ί = l or 2. If sp(Ti) is compact, then Ti=Si

JrQi, where S, =
U(zψi) and Qi is quasi-nilpotent on E. Then, T{, S{, Qi Q = l, 2) commute each
other, so that

P(Γχ, T2) - P(Si, S2) + Rλ(βu S2, Qu Q2)Qι + R2(SU S2, Qu Q2)Q2,

where Rx and R2 are polynomials.
By Proposition 3.1, P(SU S2) is ^-scalar and its spectrum is compact. Since

the quasi-nilpotent operators form an ideal in Lr(E) (the algebra of all ele-
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ments of L(E) with compact spectrum), RiQi -f R2Q2 is again quasi-nilpotent.
Hence, by Th. 4.2 of [4], P(TU T2) is a ^-spectral operator.

REMARK. This proof can not be applied to the case where the sp(Tx) are not
compact, due to the following fact: "Let Q be a quasi-nilpotent operator. If
S 6 L(E) has non-compact spectrum, then SQ is not necessarily quasi-nilpotent
even if S and Q commute." (cf. Appendix).

If, however, Q is nilpotent, then SQ is again nipotent whenever 5 and Q
commute. Therefore, the following proposition is an immediate consequence
of Proposition 3.1, (ii):

PROPOSITION 4.1. Let T{ be as in the previous theorem except that sp(Ti)
may not be compact. Suppose Φ{ contains polynomials, Φ contains constants
and Ti = Ui(z) + Q{ with nilpotent operators Qt (£ = l, 2), then P(TU T2) is Φ-spec-
tral.

COROLLARY TO THEOREM I. Let Ti(i = l, 2) be regular C°°-spectral operators
with C°°-spectral representations U{ such that 7\, Γ2, tΛOpi), ^2(^2); ψu ψ2 e C°°
belong to a same commutative subalgebra of L(E). Then P(TU T2) is C°°-spectral
for any polynomial P.

REMARK: The corresponding statement in C~ to Proposition 4.1 is a triviali-
ty, since, in this case, T{ are C"-scalar. (See [1].)

Appendix. An example of a quasi-nilpotent operator Q and a non-regular
operator S which are commutative but SQ is not quasi-nilpotent.

Let us consider the space

E = {fix, y) e C~ ([0,1] x R) (3*//3**) (0, y) = 0, k = 0, 1, , /(., y) e Sy (ft)}.

Here, Sy(R) is the space of rapidly decreasing functions in y. The space E is

Frechet with a countable number of norms pk,m,q (h m> q = 0, 1, •)

pk,mΛf) = *Wχeιo.n.yeR \yk^m+J/dxm3f) (Λ, y) \.

Let

Sf(x, y) =yf(x, y\ Q/(Λ, y) = J*/(ί, y)dt.

It is easy to see that S, Q e L(E\ Q is quasi-nilpotent and SQ = QS. Now,

)Y(*, y) =f

Taking the function f(x, y) = expί — ^—] e E, let us compute an = [po,o,o
x

Jln((SQTf(x, y))Jln. If SQ were quasi-nilpotent, then an-^0 (n->oo). We shall
show this is not the case.
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an = s u p \y\

Vl 4- r 2

|)i/n- \γ\ e x p ( -

— ^ (zz!) 1^ y

- > e X i (TZ—•oo).

Hence, SQ cannot be quasi-nilpotent.
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