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A. Grothendieck developed in [1]* systematically the notion of fibre space
on a topological space X with structure sheaf @, where @ is any sheaf of
groups, and the notion of 1-cohomology set Hι(X, ©) of X with values in ©.
He showed the important relation between the elements of H1 (X, ©) and the
classes of fibre spaces on X with structure sheaf ©. And he obtained the
exact sequence of the cohomology sets (dim. 0 and 1) of X with values in
sheaves of groups on X.

A. Haefliger introduced in [2] the cohomology sets ff°(X, Sβ) and Hι(X,
Sβ) of X with values in a sheaf of groupoids β̂ on X. And under the assump-
tion that 3̂ is transitive, he proved that there exists a one-to-one correspon-
dence between Hι{X, Sβ) and Hι{X, W\ where &f is the sheaf of groups as-
sociated to an element / of Z\VL, Sβ).

In this paper, it is shown that we can obtain an exact sequence of the
cohomology sets (dim. 0 and 1) of X with values in sheaves of groupoids on
X. We deal with the inverse problem of the relation between Sβ and ffl which
was shown by A. Haefliger: When a sheaf of groups © on X is given, we
may introduce a sheaf of transitive groupoids $ on I and an element / of
Z\VL9 ψ) such that we have a one-to-one correspondence Hι{X, ^ ) - • ff1 (X, ®0
where the latter set can be identified with Hλ(X, ©). And when the sheaf of
transitive groupoids 3̂ has a unit section, it is shown that there exists a sheaf
of groups ©, which is simpler than ©/, such that Hι(X, Sβ) corresponds one-
one toff1 (X, ®).

In the first half part, we prepare ourselves for treating the above-men-
tioned problems. In §1, we prove that two systems of axioms in the defini-
tion of groupoid—-those in A. Haefliger's paper [2] and in P. Dedecker's [3]
—are equivalent, and in §§2-3 we introduce the concept of normal subgroupoid
and quotient groupoid. In §4, we refer to a representation of groupoid.

In the last half part, we solve the above-mentioned problems, applying
the results in §§1-4 and introducing the concept of groupoid extension of a
sheaf of groups.

§1. Axioms of groupoid.C2:li:3:] A groupoid is a set Π which has a com-
position law (Λ, y)~>χy, defined for some pairs of elements a, y (€ Π) and

The numbers in brackets refer to References at the end of this paper.
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satisfying some axioms we shall state below. At first we state a definition.

DEFINITION. An element e of Π is called a right unit (resp. left unit), if
xe—x (resp. ex—x) whenever xe (resp. ex) is defined. And an element e of ΊJ is
called a unit, if xe—x and ey—y whenever xe and ey are defined.

Our axioms are as follows:

(Gl) If for x, y, z ( e Π) one of (xy)z or x(γz) is defined, then the other is
defined and two are equal: (xy)z-x(yz).

(G2) For any x(e IT), there exist a right unit ex(e IT) and a left unit

xe{ € ΊΊ) such that xex—x and xex—x.
(G3) For any x( e 77), there exists an inverse element x~λ{ e IT) such that

x~1x—ex and xx~ι — xe.

PROPOSITION 1. The system of axioms (Gl), (G2) and (G3) in the definition
of groupoid is equivalent to that of axioms (Gl) and (G2') and (G3') which fol-
low:

(G2') For any x(e Π), there exist units ex(e Π) and xe{ e Π) such that xex

—x and xex—x.
(G3') For any x( e IT), there exists an inverse element ΛJ-1( e IT) such that

x~λx—ex.

PROOF of (Gl), (G2), (G3)=»(G1), (G2')> (G3') Suppose that e is a right
unit and that ey is defined. Then z—ey=^ez—(z~1e)y=^ez—z~ιy=$z—(zz~1)y=$z=

zey=$z~y. Therefore e is also a left unit, so that it is a unit. Similarly if e is
a left unit, then it is also a right unit, so that it is a unit.

PROOF of (Gl), (G2')> (G3>KG1), (G2), (G3). We must only prove xx~λ -

xe. For this, at first we prove the uniqueness of ex and xe by (Gl), (G2') and

Suppose xex=*xex—x, then x"1 can be multiplied from the left, and (x~~ιx)ex

z=(x~ιx)ex by (Gl). Hence exex—exex, so we have ex—ex. Next suppose xex—xex
—x, then x~ι can be multiplied from the left, and (x^^x =* (x^x^x by (Gl).
Hence x~ι

xe and x~~λ

xe are defined and both are equal to x~~ι, so we have xe—xe
—βχ-1 by the uniqueness of ex-i.

Now, we have x'xx^ex by (G30, so that (xx'ι)x^x by (Gl) and (G2r). Hence
we have xx~ι=*xe by the uniqueness of xe.

Groupoid has the following properties ((1)—(7ί):

(1) For any x( e IT), ex and xe are uniquely defined. Therefore, when B is
the subset of Π consisting of units of elements of IT, x-^ex and χ-^xe, two
mappings from IT onto B, are defined. We denote these mappings by a and b
respectively. That is, a(x)=*.ex and b(x)^xe.

(2) e e B=$a(e)—b(e)=-e. Hence .B=*a(Π)=>b(Π). a(xγ)=>a(y), b(xy) = b(x)
and a(x~ι)=b(x).

(3) xy is defined ΦΦ a (x) =» b (y).
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(4) xy and yz are defined =$(χy)z and χ(yz) are defined.
(5) yx=*zx (or xy=*xz)=$y ~z. By this, for any x( e 77) x~ι is uniquely de-

fined.
(6) (x'ιyι^x and

DEFINITION. If for e, e( e B) there exists x( £ 77) such that e'^xex'1, then
we say e and e are mutually transitive in 77. And if any two elements of B
are mutually transitive in 77, then 77 is called a transitive groupoid.

(7) Let Πef =ί {x 6 77: b(x)=*e, a(x)—f\ e, / € 5}, then 77ee is a group with e
as the unit. When 77 is transitive, there exist y, z(e 77) such that e' —yey"1

and f—zfz'1, and we have a one-to-one correspondence # 6 ΊJef->yxz~ι e 77e///.
In particuler, x e Πee-^>yxy~ι e IΓff is an isomorphism, and such an isomorphism
is determined modulo inner automorphisms of 77e,e/.

§2. Subgroupoid of Πm.

DEFINITION. When a subset 77' of 77 is itself a groupoid under the com-
position law induced from that of 77, it is called a subgroupoid of 77. When a
subset 77' of 77 contains all elements of 77 having the same unit as x if 777

contains x( e 77), it is a subgroupoid of 77 and is called a complete subgroupoid
of 77.

Any groupoid 77 is the union of disjoint complete transitive subgroupoids.
This fact can be shown as follows: When e, e' ( 6 B) are mutually transitive
in 77, we say that these are equivalent. This relation is an equivalence rela-
tion, and so B can be classified by this relation. Let B~\J 7?λ, where Bλ are

classes under this relation. Then Πλ~a~ι(B^) is a complete transitive sub-
groupoid of 77, and 77 = \J 77λ.

§3. Homomorphism. 2 J Normal subgroupoid and quotient grou-
poid.

DEFINITION. Suppose that 77 and Πf are two groupoids, and that B^a(
and Br~d(Πr), where a is the right unit mapping in 77'. Let Ψ be a mapping
from 77 into 77', and if x, γ( 6 77) are composable, then let <P(χ), Ψ{y) ( e 770 be
composable and let <P(xy)^=φ(x)φ(y). Then ψ is called a homomorphism from
77 into 77'. If ψ is one-to-one, then it is called an isomorphism.

It is clear that φ(a(x))^ά(φ(χ)), ψ(b{x))^bf^P{χ)), where V is the left unit
mapping in 77', and it is also clear that ^(ΛΓ1)—Ψ{oo)~λ.

Let 77o be a subgroupoid of 77. If for x, x( e 77) there exists xo( e 770) such
that x~xox, then we say x is equivalent to x with respect to 770. In order that
this relation be an equivalence relation, it is necessary and sufficient that B C
770. In this case we denote by 77/770 the quotient set of 77 relative to this
equivalence relation and by [#] the equivalence class containing x.

Let us consider the conditions on 770 in order that 77/770 be a groupoid
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under a natural composition law. The composition law we wish to define as
follows: [Λ] [y] is defined if and only if these cotain the composable elements
x and y respectively, and [#] [y] =* \_χy~\. Then let us consider the condition
on 770 in order that this definition be adequate. Now if x( e [#]) and y{ e [y])
are other composable elements, then %y must be equivalent to xy. For this, it
is liecessary and sufficient that zΠoz~1CHo for any *( e 77). That is, if zxoz~λ is
defined for xo( e 770) and z{ e 77), then zxoz"1 e 770 In this case we have [#] [_γ~\
— [#y]~[Xf]. Next, let us consider the conditions on 770 in order that 77/770

satisfy the axioms of groupoid (Gl), (G2) and (G3) under the above composi-
tion law.

(Gl) in 77/770 follows from (Gl) in 77.
Next we consider (G2). By the definition we have [x] MaOl — H , hence

it is necessary that [y] [«(#)] — [y] for any [y] ( e 77/770) such that [y] \_a(x)~\
is defined. Since xoa(x)=xo e [a(x)2(χo e 770), for any [y] such that a(y)—b(x0),
[y][αO*O] is defined and equal to [γχo]( 6

 H/ΠQ). Since it must be [ ^ ^ — [y],
it is necessary that there exists zo( 6 770) such that yxo~zoy. Hence we have
b(xo)~a(xo)=Ό>(y). Therefore it is necessary that b(xo)=sa(χo) for any χo( e 770).
This condition is clearly sufficient in order that there exist a right unit for
any element of 77/770. Similarly this condition is necessary and sufficient in
order that there exist a left unit for any element of 77/770.

(G3) is satisfied in 77/770, and M " 1 ^ ^ " 1 ] .
Now, when 770 satisfied the condition that b(χo)=>a(xo) for any #0.( 6 770),

the composition law of 77/770 becomes the following: If [V][y] is defined, then
any elements of |V] and [yj are composable, and MEyl^E^y] .

When 770 satisfies the conditions BCΠo, ZΠOZ~1CΠQ for any z(eΠ) and
for any xo( e 770), we have Π0^\JNe{NeCΠee), where Ne has the fol-

€B
lowing properties:

(1) Ne is a normal subgroup of Πee.
(2) When e, e'( 6 B) are mutually transitive in 77, Ne, is isomorphic to Ne.

In fact, in this case e'=zez~ι (z e 77), and x0 e Ne-+zxoz~ι e Ne, is an isomorphism
mentioned above. And such an isomorphism is defined uniquely modulo in-
ner automorphisms of 77^/.

So, we have the following proposition:

PROPOSITION 2. In order that 77/770 be a groupoid, it is necessary and suf-
ficient that there holds Π0 — \J(\J Ne), where Ne is a normal subgroup of Πee and

λ e€B\

for all e( e 7?λ) Ne are isomorphic to one another. In this case φ: x e Π-*[x] €
77/770 is a homomorphism from 77 onto Π/ΠQ, and if <P(x)<P(y) is defined, then
xy is also defined. And when B' is the subset consisting of units of 77/77o, the
restriction of φ to B, φ/B: B->B' is one-to-one.

DEFINITION. H0=*\J(\JNe) in the above Proposition is called a normal
λ e€Bλ

subgroupoid of 77.
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In connection with this we have the following proposition as in a group.

PROPOSITION 3. Suppose that φ is a homomorphism from IT onto TTr, and
that φ/B is one-to-one mapping from B onto B'. Let ΠΌ=^φ"1(B/), then IΓ0 is a
normal subgroupoid of IT, and IΓ/Π0 is isomorphic to ΊT!.

§4. Representation of groupoid.M Suppose that ZΓ is a transitive
groupoid and that jB=α(ZΓ). Let Ήef ==* {x e IT: b(x) — e, a(x) =*/; e,fe B}, then
Πee is a group with e as the unit, and all Πee are isomorphic to one another.
We put Ge=^Πee. And let us consider a product set BxGexB=> TT'. This be-
comes a transitive groupoid under the following composition law and is iso-
morphic to IT.

We define that (p, g, q), (r, g', s) ( e Π') are composable if and only if q=?r,
and that (p, g, q) (q, g , s)=(p, gg, s). Let a (resp. b') be the right (resp. left)
unit mapping in Π\ then α'(p, g, q)=(q, e, q), bf(p, g, q)=(p, e, p) and (p, g, q)~ι

={q, g~ι, p). Identifying (p, e, p) with p(e B), d(Πf) can be identified with B.
Πf is evidently transitive. Hence II' is a transitive groupoid with B as the
set of units.

For any /( e B), suppose that xef( e Πef) is fixed such that xee~e and that
Xfe~x~}. Then g(~xepχχqe) is an element of Ge for any x( e ΠPqCΠ), and so h:
x e ΠPqCJI~>(p, g, q) 6 Πr is an isomorphism from IT onto Πr. Hence Πr is a

representation of TT.
In general, when TI—\JTIX where Πλ is transitive, IT can be represented

by \JBλ xGexBκ where e is a fixed element of Bλ. When ΠQ(= \J(\J Ne)) is a

normal subgroupoid of IT, since the set consisting of units of 7Z/ZZ0 is one-to-

one onto B, Π/Πo is represented by \JBλ x Ge/Ne x Bλ.

§5. Cohomology with values in a sheaf of groupoids on a topologi-
cal

DEFINITION. Let P, Q and R be sets of elements, and let R have a subset
D whose elements are called neuter. Let us consider a sequence:

(5.1) P^Q-^>R,

where u and v are mappings. When v~1(D) = u(P), we say that the sequence
(5.1) is exact as usual. Further suppose that Q has neuter elements which
form a subset C of Q, and that v(C)CD and that a mapping p: Q-^C is defined
such that the restriction of p to C is identity. And suppose that P is a grou-
poid of operators on Q, and that B=?a(P) where a is the right unit mapping in
P, and that u(B) CC and pu^ua. The fact that P is a groupoid of operators on
Q means the following: x(e P) can operate on y( e Q) if and only if u(a(x)) =
p(y), and x-y e Q, satisfying the following properties:

(α) p(x-y)=u(b(x)), where b is the left unit mapping in P.



66 Shigeru IZUHO

(β) When χu x2 e P, γ e Q, and x&2 is defined, and xxx2 can operate on y9

there holds (xιx2) y=xι (x2 y).
(7) When e( € B) can operate on y( e Q), e-y=y.
When the sequence (5.1) satisfies the following conditions, we say that it

is strongly exact.
(i) For any x( e P), u(x)=x c or u^—x^ c where c—u(a(xj) ( £ C) or c—

u(b(x)) ( e C) respectively.
(ii) For yu y2( 6 Q),

v(yi) — v(y2)<=>there exists x( e P) such that y2^=x yι.
(iii) v/C: C^D is onto.

LEMMA 1. If the sequence (5.1) is strongly exact, then it is exact.

PROOF. For any x(e P), u(x)— x-c or u(x) ==? Λ;" 1 ^ by (i). Hence v(u(xj) =

Z (Λ C) or v(x'ι-c)=v(c) e D by (ii).

Conversely suppose y e υ"\D) and v(y)—d( 6 2)). By (iii) there exists c{ e C)

such t h a t v(c) = cί. Therefore, there exists x(€ P) such tha t y — Λ C = u(x) or
^(Λ;"1) by (ii) and (i).

LEMMA 2. // P, Q α^d i? are all groupoids, •C=a'(Q), p^a ' , D=^af{R) (where
a and d' are the right unit mappings in Q and R resp.), u and v are homomor-
phisms of groupoids, and if v/C: C-^D is one-to-one, then P can be a groupoid
of operators on Q and we have the following: If the sequence (5.1) is exact, then
it is strongly exact under the above operation.

PROOF. P can be a groupoid of operators on Q as follows: We say that
x( € P) can operate on y ( e Q) if and only if yu(x~ι) is defined, and in this case
we shall define x-y^=yu(x~1). Now yu(x~l) is defined if and only if af(γ)~V{μ
(x~1))=zu(b(x~ι))=u(a(x)), where V is the left unit mapping in Q. In this case
a\xy)^d(yuix'^^d(uix'^^uiaix'^^u^ixj), hence this operation satisfies
(a), and clearly it satisfies (β) and (7).

Now suppose the sequence (5.1) is exact, then we can prove its strong ex-
actness as follows:

Proof of (i). Let x be any element of P and let c=u(b(x)). Then x~ι-c=
cu (x) — u(b (xj) u (x) = V (u (xj) u(x) — u (x).

Proof of (ii). Let yu y2eQ and KyO^Oy^). Then v(ylλ) *= ̂ (y2)"1

5 hence
<jXv(yϊ1))=a"(v(y2)-1)=b''(v(y2)), hence ^ ' ( y Γ 1 ) ) - ^ ' ^ ) ) . Therefore, since
v/C: C-+D is one-to-one, a'ίyϊ1)—b;(y2). Hence yϊ1j2 is defined, and v(yl1y2)~
v(yϊ1)v(y2) = a"(v(y2)) e D. Hence from the exactness of the sequence (5.1)
there exists x~ι e P such that ylxy2 = uix"1). Hence y2 ^yiuix"1) == χ-yλ. Con-
versely let y2 = x yu then v(y2) = v(yιu(x~1)) = v(yι)v((u(x~1)) = v(yθ from the
exactness of the sequence (5.1).

(iii) is contained in our given assumption.
Suppose that X is a topological space, β̂ is a sheaf of groupoids on X, p

is the projection mapping from φ onto X, 95 is the subsheaf consisting of
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units of % 31 is a subsheaf of normal subgroupoids of Sβ, and that π(=φ/9ΐ) is
the restriction of p to 31. The fact that 31 is a subsheaf of normal subgrou-
poids of Sβ, means that 3lx(=n~\χ)) is a normal subgroupoid (we have defined
in §3) of φ , ( = p'\χ)) for any *( e X). Let § = sβ/SR, then this is a sheaf of
groupoids on X. And S->;iR--Mβ^->φ--*93 is exact. Hereafter, we shall denote
the unit mappings in 31, Sβ and § by the same notations a and b, and use the
following notations as usual.

C°(U, Sβ): set of 0-cochains in β̂ over an open covering U(= (?/,•)«•€/) of X.
ZXU, Sβ): set of 1-cocycles in β̂ over U, etc.
We have an analogous proposition as in a sheaf of groups.

PROPOSITION 4. (5.2) H°(X, <®)-^H°(X, 3Ϊ)-^H°(X, ^)-^H°(X, §)-*L>

ff^X, ?ί)-^>iί1(X5 φ^fΓXJC, ξ>) is exact, and is strongly exact till H\X, 5β).

PROOF. We define that the product pλp2 of pu p2(e H°(X, Sβ)) is defined if
and only if pι(x)p2(χ) is defined for any x(e X). Then iJ°(X, Sβ) is a groupoid.
Similarly #°(X, SB), #°(X, 5R) and H°(X, ξ>) are also groupoids, and i'O9 i0 and /0

are homomorphisms of groupoids. Let the neuter elements of H°(X, S3), H°(X9

31), H\X, ψ) and H\X, ξ)) be unit sections of SB, 31, *β and ξ) respectively, then
these satisfy the condition in Lemma 2, v/C: C~>D is one-to-one. Evidently
the sequence (5.2) is exact till H°(X, ξ>), hence by Lemma 2 this is strongly
exact till H°(X, £).

Definition of δ0. Let h be any element of H°(X, ξ>) and let U(= (t/f ), 6/) be
a sufficiently fine open covering of X. There exists pz ( e H°(Uiy $β)) such that
jo(pd—h/'Ui for any ί( 6 /). Then, there exists τzί7( 6 H°(JJih 31)) such that p, =»
7i,vpy on Uij(=*Uir\Uj). Since nij—pip]1, we have (rc, y) 6 Z^U, 5R). We define δo(A)
is the element of Hι (X, 31) which is represented by (72,7). Evidently this does
not depend on the choice of (pi).

Proof of the strong exactness at H°(X, &). Since H°(X, «β) and H°(X, ξ))
are groupoids, ίΓ0(X, β̂) can be a groupoid of operators on H°(X, ξ>) as stated
generally in the proof of Lemma 2. That is, p(e H°(X, Sβ)) can operate on
Λ( 6 H°(X, ξ))) if and only if hjoip"1) is defined, and we have defined that p / ^

)

Proof of (i). Let p be any of H°(X, «β), then p'^jo^p)) =*jo(b(p))jo(p) -

)
Proof of (ii). Let Ai, h2 e H°(X, §), and we assume h2=?p-hι where p 6

jff°(X, ^ ) . Let jo(pu)=*hι/Uh then jo(piίP'ι)^h2/Ui, therefore So(Ai)=»8o(A2).
Conversely we assume 80(hι)=^80(h2), and let jo(pu)=*hi/Ui and let jo(p2i)—h/Ui,
then pi/pΓ/ =*Tup^p ĵn]1 on J7/y where (τz, ) 6 C°(U, 5R). Therefore pi}nj1pii=*
p2}n]1pij on ?7ίy, hence (p2}nj1pii) defines an element of H°(X, Sβ), we shall put
this as p. Then we have nψ2ί=spiip~1 on C/z . Hence 70(72^2/)—joipidjoip'1) on Z7, ,
that is h2/Ui=>p'hι/Ui for any Z7,-, so that we have A2=

ίp Ai.
Proof of (iii). Let a neuter element e of Jff^X, 9ί) be represented by (zz/;)

( e Z ^ Π , 9 )̂), where 7ziy is a unit section over Z7ίy. Then nu^nij — Hjj on ί/̂  .
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Therefore (md defines a neuter element n of H°(X9 φ), and 8o(jo(n))=>e. Thus
δ0 maps the set of neuter elements of H°(X9 φ) onto the set of those of Hλ(X9

31).
Proof of the strong exactness at Hι(X, 31). H°(X9 ξ>) can be a groupoid

of operators on Hι(X9 31) as follows: Suppose that A e H°(X9 £), n e Hι(X, 31)
and that n is represented by (71,7) ( e Z^U, 31)). In this case αfa) is the neuter
element of H\X9 31) which is represented by (n;vH(*«)==<*//) ( 6 ^ ( u > 31)). If
and only if S0(a(h))^a(n), h can operate on n9 and we define A zz as follows. We
replace U by a finer open covering when necessary, and we denote it by the
same notation U. Let jo(pi)=*h/Ui9 where p, e H°(Ui9 Sβ), then ;o(a(p/))—a(jo(pi))
=*α(A)/E7, . Therefore S0(a(h)) is the element of Hι(X, 31), which is represented
by (a(pi)a(pj)'v)(e Zι(\X,3Vj). Therefore h can operate on n if and only if
a(pι)a(pj)~ι^nin

r

ijn~j

ι on Uij9 where (m) € C°(tt, 31). In this case a(pj)=*b(ni)=*
a(ni)^b(n>ij)^nn=^b(nij), hence piUjjp]1 can be defined, and (piΠijp]1)—((p/^ypΓ1)
(p/pj1)) 6 Z^tt, 9ί), thus we define that Λ TZ is the element of ff^X, 5R) which is
represented by (pimjp]1) ( 6 Z^U, 9ΐ)). It does not depend on the choice of (pi)
and representatives of n. And this operation satisfies the conditions of opera-
tion (α), (β) and (7).

Proof of (i). Let h e H°(X9 §) and let jo(pi)=*h/Ui. Then δo(A) is the ele-
ment of H\X, 31) which is represented by (pip]1) (e Z\U, 31)), and this is
equal to h (a(h)) by the definition.

Proof of (ii). We assume re2=Ά rai for nu n2( e ff^JC, 5R)) and A( e H°(X, ©)),
and suppose that (711,7), fey) (β ZX(U, 5R)) are representatives of zzi, n2 respec-
tively and that jo(pi)*=h/Ui. Then n2ij~nipiniijp'j

ιn''j
ι on Uiy where (m) e C°(U, 5ίi),

so that we have ii(ni)=*ii(n2). Conversely, we assume that ί\(nι)^ίι(n2).
Then, niij^pmujPΫ on Uij where (pi) e C°(U, 5β), hence n2ijpj^(pinlijp-'i

ι)pi on
Z/,7, so we have jo(pj)~jo(pd on C/Zy. Therefore, (;Ό(p/)) defines an element A of

In this case, it is clear that (iii) is satisfied.
Finally the exactness at H\X, ψ) is clear.

§6. Groupoid extension. Suppose that ^ is a sheaf of transitive grou-
poids on X, and that /=* (fi3) e Zι(U, *β). Let ©{ be a subsheaf of φ/Ui which
consists of elements g{ such that a(gi)=*b(gi) e/,-,•([//), and let Γ — w ©{. When

i f/

(£, g f) 6 @{ and ( , gy) 6 ©/, it is said that these are equivalent if and only if
gi=*fijgjfji on Uij. The quotient sheaf of Γ relative to the above equivalence
relation is a sheaf of groups on X, and denoted by ®J\ Then as shown by A.
Haefliger™ there exists a one-to-one correspondence Hι(X, $β)-*fl'1(X5 &f).

In this section we consider the inverse of the above relation. That is to
say, when at first a sheaf of groups © on X is given, we want to induce a
sheaf of transitive groupoids $ o n l and /( 6 Z(VL9 Sβ)) such that we have the
above one-to-one correspondence H1(X9 ^3)->-iJ1(X, ©0 where we can identify
H\X, ©0 with Ή\X, ©).
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When G is any group and B is any set, 77—7?xGxB becomes a transitive

groupoid as in §4, and B can be identified with the set of units of 77. We

shall call this 77 groupoid extension of G by B.

Suppose © is a given sheaf of groups on X, B is any topological space

with discrete topology, and also suppose S3—XxT?. Then S3 is a trivial sheaf

o n X

Let a: @->X and β: S3->X be projection mappings, and let $β=>(93, ©, S3)

be the set of triples z=(p, g, </), where p, q € S3 and g 6 © such that β(p)=*a(g)

— β(q), and let p: Sβ-> X" such that p(z)=>β(p), be the projection mapping from

Sβ onto X. And let ^ , Vg and JF̂  be the open sets containing p, g and q in S3,

© and S3 respectively which are homeomorphic to an open set U of X(p(z) e U).

We shall define the topology in 3̂ such that {(Wp, Vg, Wq)} is the fundamental

system of the open sets. Then φ is a sheaf on X. In each $£*(=*tr1^)) (χ e %)>

we introduce a composition law as mentioned in §4. In this way Sβ becomes a

sheaf of transitive groupoids on X. And S3 can be regarded as the subsheaf

of units of φ.

Let < 6 T^QΓ, *β)) be represented by (Al7)-((pl7, gl7, ?,7)) ( * ^(U, $)). Since

hii=*b(hij) and hjj^aQnj) on C/,7, there hold (pu,gu, qu)~Kpih gih ςrl7)=ί(pί7, e, p,7)

and (p iy, gv,-, qjj)=>a(pij, gih qij)^(qih e, grl7) on Z7,7, where e is the unit section

of ® over J7f7. Hence pij^pu—qu and qij—pjj^qjj on Ϊ7,7. We put pu^qu—ph

then λf7 becomes the form (p, , g l7 , py). So, from the relation hijhjk—hk on ϊ7ί7Λ

(=*UiΓ\UjΓ\Uk\ we have gijgjk^gik on Ϊ7,7Λ. Hence (g l 7 ) e Z^U, ®), by this the

element of H1 (X, @) is determined and it does not depend on representatives

of t. Conversely, when Z( e H\X, @)) is represented by (gij) (Zι(U, @)), let (p, )

be any element of C°(U, S3), then (Al7) =» ((pf , gl7, py)) 6 ZX(U, 5β). By this the

element of H\X, ψ) is determined and it does not depend on the choice of (p, )

and representatives of I So we have a one-to-one correspondence H\X, ^3)^^

Hι(X, &). This is no other than the following correspondence.

Let e be the neuter element of H\X, ©) represented by (e,7) ( 6 ̂ ( U , ©)),

where e,7- is the unit section of © over Ϊ7,7, and let (p, ) be any of C°(U, S3). Then

/^(//^^((p,-, e,7 , py)) 6 ZXU, 5β). Let Θ7 be the sheaf of groups on X associated

to / such that we have stated at first in this section, then (5K is isomorphic to

©. It results from the following: Since/// —(p/, et /, pi), @{ consists of elements

such as (ί, (p, , g f, p, )) where g{ e ©. And the equivalence relation is as follows:

(h (Ph gi> Pd) ί s equivalent to (/, (py, g i 3 py)), if and only if (p, , g , , pd=*(ph eih pj)

(Ph gh PJXPJ> eJh pd=>(Ph gh Pd o n ^ 7 > t h a t i s gi=*gj o n ^ i Therefore [(ί, (pf ,

g"/3 Pί))3 6 ®r (^e equivalence class containing (ί, (ph gh pd)-^gi 6 © is an iso-

morphism.

Therefore Tί^X, ©0 is one-to-one onto Tί^X, ®). Now, the one-to-one

correspondence Ψ: H\X, yp)-+H\X, ®f) stated at first in this section is as fol-

lows: Let (A/y)=»((p, , g l7 , py)) ( e Z\\X, ψj) be a representative of any s( e H\X,

5β)). Then φ(s) is the element of ^ ( X , ©0 which is represented by ([(ί, Al7/y, )])-

( 6 ̂ (11, ©0), where *,•//,•=*(p, 5 g ,7, py) (py, eyί, p.O^Cpί, gr, y5 pO
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Therefore H\X, ̂ )->H\X, ®) stated before is no other than the product
H\X9 ^)-^H\X, ®fy»H\X9 ©). Thus we have the following:

PROPOSITION 5. Suppose & is a sheaf of groups on X. Then there exists a
sheaf of transitive groupoids Sβ on X such that we have a one-to-one correspon-
dence H\X, ̂ - ^ ( X , ®). Let /=* ((p, , eih py)) e ZλQX9 φ) where eη is the unit
section of © over Uij9 then % is isomorphic to ®f and Hλ(X9 ®)-+H1(X, ©0 is
one-to-one. And the product Hι(X, ^)~^H\X9 &)~>H\X, &f) is no other than
the one-to-one correspondence H\X9 φ)->ίΓ1(X", ®f) stated at first in this section.

§7. Suppose φ is a sheaf of transitive groupoids on X, p is its projection
mapping, 33 is the subsheaf of $β that consists of units of φ and that 33 has a
section e over X. And let us consider the sheaf of groups © on X which is
the subsheaf of Sβ consisting of g{ e Sβ^ϊΓ 1 ^)) for any x( € X) such that a(g)

Next let φ(=>Q39 ®, S3)) be the set of triples (p, g9 q)9 where p, ? e 33* =-
p"\x)ί\^& and g 6 ®x=*\r\x)r\®. Then ψ is a sheaf of transitive groupoids
on X as in the last section.

Let us consider the one-to-one correspondences: ^(X, ψ)-^H\X9 ψ)^->
H\X, ®). Let 5 be any element of H\X, ψ), and let /M/iy) ( e Z\U, 5β)) be its
representative. We replace U by a finer open covering of X when necessary,
but here we denote it by the same notation U. Since β̂ is transitive, for any
ieI there exists a section zefii of φ over Z7, such that b(zefii(Ui)) = e(Ui) and
"bfiiΦd^MUi). We denote *",}„ by ^. / e, then /Jy - (fih zefiifijZfjje, fj3) is a
section of ^3' over Όih and fafik^fa o n ϋ/y*- Hence (/ y) represents an ele-
ment s'( e i/^X, ξβ')). Since s' does not depend on representatives of s and the
choice of zefii, we define that φ(s)~s.

Put gij^ZefiJijZfjje, thengvy is a section of © over Uih and gijgjk^gik on

ί7l7Λ. Hence (g /y) 6 Z\VL9 ®). The element of ^ ( X , ®) represented by (g y) is
denoted by t. Since t does not depend on representatives of /, we define that
<Pf(s)^t. It is clear that φ and φ' are both one-to-one. The neuter element of
HX(X, Sβ) is mapped by φ on the neuter element of Hι (X, ψ) and it is mapped
by φf on the neuter element of H\X, ®).

Thus we have the following:

PROPOSITION 6. Suppose that ?β is a sheaf of transitive groupoids on a to-
pological space X, 53 is the subsheaf of ?β consisting of units of 3̂ and that S3
has a section e over X. And suppose & is the sheaf of groups on X, which con-
sists ofg( 6 φ) such that a(g)^b(g)^e, and let ^ = (93, ®, 33).

Then there exist one-to-one correspondences: Hι(X, y$)~¥-+Hλ(X, ψ)-^!!1

(X, ®), in which the neuter element ofH1(X, β̂) corresponds to the neuter elements
of H\X9 ψ) and H\X, ®).

We consider a geometrical meaning of this Proposition. Let (Έ, p) be a
fibre space on S3, where p is its projection mapping. And suppose β̂ is a sheaf
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of transitive groupoids on X which operates on (E9 p). That is, z(eψ) can
operate on y ( e (£, p)) if and only if αθz)=p(y), and z y e (E, p), satisfying the
following:

(a) p(z-y)^b(z).
(β) When zι, z2 € Sβ, y e (2?, p), ^iz2 is defined and zχz2 can operate on y,

then (z1z2)'γ=1z1'(z2'y).
(7) When e( e 35) can operate on y( e (£, p)), e y=*y.

Suppose 5 e JΪ^Z, *β) and that /=* (//y) ( e ZX(U, Sβ)) is its representative.
Let Et^p-^faiUΪ)) and let an element of E{ be denoted by (ί9 yi). In Σ < = ^ £ ί ,

it I

when Λ e Uih (i, yf) 6 #/, (/, yy) e -££ p(yd^fa(x) and p(yj)=*fjj(χ\ we shall say
that (t, y, ) is equivalent to (/, yj) if yi=*fij(χ)'yj- Ef is the quotient space of Σ
relative to the above equivalence relation. The element of Ef represented by
(£, JOJ is denoted by [(i, j z )]. Let p / : Ef~^X such that p/([(ί, yί)])^3 P(p(yO) be
the projection mapping from Ef onto X. Then (ϋ/, pθ is a fibre space on X,
which is locally homeomorphic to (E, p). When //=i(//y) ( 6 ̂ (11, Sβ)) is another
representative of s, (Ef\ pf') is isomorphic to (Ef, pf). Thus, as shown in [2],
we have a one-to-one corespondence between the elements of Hl(X, Sβ) and
the classes of fibre spaces (Ef, pf) which are isomorphic to one another.

Suppose that t^φιψ{s) ( 6 H\X, ©)), g^(gij) ( 6 Z\VL, ®)) is its representa-
tive, and that ^ ^ p ' ^ e C X ) ) (C-E). Then Ee is a fibre space on e(X) and we
define pe—pp. Thus (î ,, pe) is a fibre space on X with projection mapping pe.
Further ® becomes a sheaf of groups of operators on (Ee, pe) as follows: A( 6 ©)
can operate on ye( e Ee) if and only if p(h)^pe(ye). In fact, in this case if we
put p(h)~pe(ye) — x( e X), then a(h)=>e(x) ~p(ye), hence h can operate on ye by
means of operation of 3̂ on (£, p). And since p(h.ye) ^b(h)=? e(x\ h-y e Ee and
Pe(h'ye)=^x. Thus, as shown in [1] we can define (£f, pf) which is fibre space
on X. That is, let Eg

ei^Ee/Ui and Σ * =* uSf,-, then Eg

e is the quotient space of

Σe relative to the equivalence relation such that yei(eE*i) is equivalent to
yej( e Eg

ei) if yei^gij-yej- And as shown in [1], we have a one-to-one correspon-
dence between the elements of Hλ(X, ©) and the classes of fibre spaces (Eg,pξ)
which are isomorphic to one another.

In connection with this we have the following:

PROPOSITION 7. (Ef, pf) is isomorphic to {Eg, pf).

PROOF. We shall denote by [yBϊ] the element of Eg which is represented
by yei. Let [(i, yt )] be any element of Ef, and if ( , yj) is another representa-
tive of [(£, y, )] 5 then y, ^fij yj. Then, yef => ^ . . - ^ 6 £fz , ye, - ^ / y ; j y 6 JEΓfy and
yei^Zβfii'yi^zefii'(fijyj)^(zefiJijZfjjey{zefj Thus, clearly A: [(ί, y, )]
^ J^—>[ye»] £ Ef is a homeomorphic mapping and pgh=>pf, hence h is an iso-

morphism from Ef onto Ef.

Thus we have the following commutative diagram:
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1 : 1 1 : 1

Ψ
(classes of Ef) -^γ> (classes of Eξ).

This is a geometrical meaning of φ'φ.
In conclusion, I wish to express my thanks to Prof. K. Morinaga for his

encouragement and kind guidance.
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