Groupoid and Cohomology with Values in a Sheaf of Groupoids

Shigeru Izuno

(Received March 5, 1963)

A. Grothendieck developed in $[1]^*$ systematically the notion of fibre space on a topological space X with structure sheaf \mathfrak{G} , where \mathfrak{G} is any sheaf of groups, and the notion of 1-cohomology set $H^1(X, \mathfrak{G})$ of X with values in \mathfrak{G} . He showed the important relation between the elements of $H^1(X, \mathfrak{G})$ and the classes of fibre spaces on X with structure sheaf \mathfrak{G} . And he obtained the exact sequence of the cohomology sets (dim. 0 and 1) of X with values in sheaves of groups on X.

A. Haefliger introduced in [2] the cohomology sets $H^0(X, \mathfrak{P})$ and $H^1(X, \mathfrak{P})$ of X with values in a sheaf of groupoids \mathfrak{P} on X. And under the assumption that \mathfrak{P} is transitive, he proved that there exists a one-to-one correspondence between $H^1(X, \mathfrak{P})$ and $H^1(X, \mathfrak{G}^f)$, where \mathfrak{G}^f is the sheaf of groups associated to an element f of $Z^1(\mathfrak{U}, \mathfrak{P})$.

In this paper, it is shown that we can obtain an exact sequence of the cohomology sets (dim. 0 and 1) of X with values in sheaves of groupoids on X. We deal with the inverse problem of the relation between \mathfrak{P} and \mathfrak{G}^f which was shown by A. Haefliger: When a sheaf of groups \mathfrak{G} on X is given, we may introduce a sheaf of transitive groupoids \mathfrak{P} on X and an element f of $Z^1(\mathfrak{U},\mathfrak{P})$ such that we have a one-to-one correspondence $H^1(X,\mathfrak{P}) \to H^1(X,\mathfrak{G}^f)$ where the latter set can be identified with $H^1(X,\mathfrak{G})$. And when the sheaf of transitive groupoids \mathfrak{P} has a unit section, it is shown that there exists a sheaf of groups \mathfrak{G} , which is simpler than \mathfrak{G}^f , such that $H^1(X,\mathfrak{P})$ corresponds one-one to $H^1(X,\mathfrak{G})$.

In the first half part, we prepare ourselves for treating the above-mentioned problems. In §1, we prove that two systems of axioms in the definition of groupoid—those in A. Haefliger's paper [2] and in P. Dedecker's [3] —are equivalent, and in §§2–3 we introduce the concept of normal subgroupoid and quotient groupoid. In §4, we refer to a representation of groupoid.

In the last half part, we solve the above-mentioned problems, applying the results in §§1-4 and introducing the concept of groupoid extension of a sheaf of groups.

§1. Axioms of groupoid.^{[2][3]} A groupoid is a set Π which has a composition law $(x, y) \rightarrow xy$, defined for some pairs of elements x, y ($\epsilon \Pi$) and

^{*} The numbers in brackets refer to References at the end of this paper.

satisfying some axioms we shall state below. At first we state a definition.

DEFINITION. An element e of Π is called a *right unit* (resp. *left unit*), if xe = x (resp. ex = x) whenever xe (resp. ex) is defined. And an element e of Π is called a *unit*, if xe = x and ey = y whenever xe and ey are defined.

Our axioms are as follows:

(G1) If for x, y, z ($\in \Pi$) one of (xy)z or $x(\gamma z)$ is defined, then the other is defined and two are equal: $(xy)z = x(\gamma z)$.

(G2) For any $x(\epsilon \Pi)$, there exist a right unit $e_x(\epsilon \Pi)$ and a left unit $_{xe}(\epsilon \Pi)$ such that $xe_x = x$ and $_{xex} = x$.

(G3) For any $x(\in \Pi)$, there exists an inverse element $x^{-1}(\in \Pi)$ such that $x^{-1}x = e_x$ and $xx^{-1} = e_x$.

PROPOSITION 1. The system of axioms (G1), (G2) and (G3) in the definition of groupoid is equivalent to that of axioms (G1) and (G2') and (G3') which follow:

(G2') For any $x(\in \Pi)$, there exist units $e_x(\in \Pi)$ and $xe(\in \Pi)$ such that $xe_x = x$ and xex = x.

(G3') For any $x(\in \Pi)$, there exists an inverse element $x^{-1}(\in \Pi)$ such that $x^{-1}x = e_x$.

PROOF of (G1), (G2), (G3) \Rightarrow (G1), (G2'), (G3'). Suppose that *e* is a right unit and that *ey* is defined. Then $z=ey\Rightarrow e_z=(z^{-1}e)y\Rightarrow e_z=z^{-1}y\Rightarrow z=(zz^{-1})y\Rightarrow z=$ $_{z}ey\Rightarrow z=y$. Therefore *e* is also a left unit, so that it is a unit. Similarly if *e* is a left unit, then it is also a right unit, so that it is a unit.

PROOF of (G1), (G2'), (G3') \Rightarrow (G1), (G2), (G3). We must only prove $xx^{-1} = xe$. For this, at first we prove the uniqueness of e_x and xe by (G1), (G2') and (G3').

Suppose $xe_x = x\bar{e}_x = x$, then x^{-1} can be multiplied from the left, and $(x^{-1}x)e_x = (x^{-1}x)\bar{e}_x$ by (G1). Hence $e_xe_x = e_x\bar{e}_x$, so we have $e_x = \bar{e}_x$. Next suppose $xex = x\bar{e}x$ =x, then x^{-1} can be multiplied from the left, and $(x^{-1}xe)x = (x^{-1}x\bar{e})x$ by (G1). Hence $x^{-1}xe$ and $x^{-1}x\bar{e}$ are defined and both are equal to x^{-1} , so we have $xe = x\bar{e}$ = $e_{x^{-1}}$ by the uniqueness of $e_{x^{-1}}$.

Now, we have $x^{-1}x = e_x$ by (G3'), so that $(xx^{-1})x = x$ by (G1) and (G2'). Hence we have $xx^{-1} = e_x$ by the uniqueness of xe.

Groupoid has the following properties ((1)-(7)):

(1) For any $x(\epsilon \Pi)$, e_x and xe are uniquely defined. Therefore, when B is the subset of Π consisting of units of elements of Π , $x \rightarrow e_x$ and $x \rightarrow xe$, two mappings from Π onto B, are defined. We denote these mappings by a and b respectively. That is, $a(x) = e_x$ and b(x) = xe.

(2) $e \in B \Rightarrow a(e) = b(e) = e$. Hence $B = a(\Pi) = b(\Pi)$. a(xy) = a(y), b(xy) = b(x)and $a(x^{-1}) = b(x)$.

(3) xy is defined $\Leftrightarrow a(x) = b(y)$.

(4) xy and yz are defined \Rightarrow (xy)z and x(yz) are defined.

(5) yx = zx (or xy = xz) $\Rightarrow y = z$. By this, for any $x(\epsilon \Pi) x^{-1}$ is uniquely defined.

(6)
$$(x^{-1})^{-1} = x$$
 and $(xy)^{-1} = y^{-1}x^{-1}$

DEFINITION. If for $e, e'(\epsilon B)$ there exists $x(\epsilon \Pi)$ such that $e' = xex^{-1}$, then we say e and e' are *mutually transitive* in Π . And if any two elements of Bare mutually transitive in Π , then Π is called a *transitive groupoid*.

(7) Let $\Pi_{ef} = \{x \in \Pi : b(x) = e, a(x) = f; e, f \in B\}$, then Π_{ee} is a group with e as the unit. When Π is transitive, there exist $y, z(\in \Pi)$ such that $e' = yey^{-1}$ and $f' = zfz^{-1}$, and we have a one-to-one correspondence $x \in \Pi_{ef} \rightarrow yxz^{-1} \in \Pi_{e'f'}$. In particuler, $x \in \Pi_{ee} \rightarrow yxy^{-1} \in \Pi_{ff}$ is an isomorphism, and such an isomorphism is determined modulo inner automorphisms of $\Pi_{e'e'}$.

§2. Subgroupoid of $\Pi^{[2]}$.

DEFINITION. When a subset Π' of Π is itself a groupoid under the composition law induced from that of Π , it is called a *subgroupoid* of Π . When a subset Π' of Π contains all elements of Π having the same unit as x if Π' contains $x(\in \Pi)$, it is a subgroupoid of Π and is called a *complete subgroupoid* of Π .

Any groupoid Π is the union of disjoint complete transitive subgroupoids. This fact can be shown as follows: When $e, e'(\epsilon B)$ are mutually transitive in Π , we say that these are equivalent. This relation is an equivalence relation, and so B can be classified by this relation. Let $B = \bigcup_{\lambda} B_{\lambda}$, where B_{λ} are classes under this relation. Then $\Pi_{\lambda} = a^{-1}(B_{\lambda})$ is a complete transitive subgroupoid of Π , and $\Pi = \bigcup \Pi_{\lambda}$.

§3. Homomorphism.^[2] Normal subgroupoid and quotient groupoid.

DEFINITION. Suppose that Π and Π' are two groupoids, and that $B=a(\Pi)$ and $B'=a'(\Pi')$, where a' is the right unit mapping in Π' . Let φ be a mapping from Π into Π' , and if $x, y (\epsilon \Pi)$ are composable, then let $\varphi(x), \varphi(y) (\epsilon \Pi')$ be composable and let $\varphi(xy)=\varphi(x)\varphi(y)$. Then φ is called a *homomorphism* from Π into Π' . If φ is one-to-one, then it is called an *isomorphism*.

It is clear that $\varphi(a(x)) = a'(\varphi(x)), \varphi(b(x)) = b'(\varphi(x))$, where b' is the left unit mapping in Π' , and it is also clear that $\varphi(x^{-1}) = \varphi(x)^{-1}$.

Let Π_0 be a subgroupoid of Π . If for $x, \bar{x}(\epsilon \Pi)$ there exists $x_0(\epsilon \Pi_0)$ such that $\bar{x} = x_0 x$, then we say \bar{x} is *equivalent* to x with respect to Π_0 . In order that this relation be an equivalence relation, it is necessary and sufficient that $B \subset \Pi_0$. In this case we denote by Π/Π_0 the quotient set of Π relative to this equivalence relation and by $\lceil x \rceil$ the equivalence class containing x.

Let us consider the conditions on Π_0 in order that Π/Π_0 be a groupoid

under a natural composition law. The composition law we wish to define as follows: [x][y] is defined if and only if these cotain the composable elements \bar{x} and \bar{y} respectively, and $[x][y] = [\bar{x}\bar{y}]$. Then let us consider the condition on Π_0 in order that this definition be adequate. Now if $\bar{x}(\epsilon [x])$ and $\bar{y}(\epsilon [y])$ are other composable elements, then $\bar{x}\bar{y}$ must be equivalent to $\bar{x}\bar{y}$. For this, it is necessary and sufficient that $z\Pi_0z^{-1} \subset \Pi_0$ for any $z(\epsilon \Pi)$. That is, if zx_0z^{-1} is defined for $x_0(\epsilon \Pi_0)$ and $z(\epsilon \Pi)$, then $zx_0z^{-1} \epsilon \Pi_0$. In this case we have [x][y] $= [\bar{x}\bar{y}] = [\bar{x}\bar{y}]$. Next, let us consider the conditions on Π_0 in order that Π/Π_0 satisfy the axioms of groupoid (G1), (G2) and (G3) under the above composition law.

(G1) in Π/Π_0 follows from (G1) in Π .

Next we consider (G2). By the definition we have [x][a(x)]=[x], hence it is necessary that [y][a(x)]=[y] for any $[y](\epsilon \Pi/\Pi_0)$ such that [y][a(x)]is defined. Since $x_0a(x)=x_0 \epsilon [a(x)](x_0 \epsilon \Pi_0)$, for any [y] such that $a(y)=b(x_0)$, [y][a(x)] is defined and equal to $[yx_0](\epsilon \Pi/\Pi_0)$. Since it must be $[yx_0]=[y]$, it is necessary that there exists $z_0(\epsilon \Pi_0)$ such that $yx_0=z_0y$. Hence we have $b(x_0)=a(x_0)=a(y)$. Therefore it is necessary that $b(x_0)=a(x_0)$ for any $x_0(\epsilon \Pi_0)$. This condition is clearly sufficient in order that there exist a right unit for any element of Π/Π_0 . Similarly this condition is necessary and sufficient in order that there exist a left unit for any element of Π/Π_0 .

(G3) is satisfied in Π/Π_0 , and $[x]^{-1}=[x^{-1}]$.

Now, when Π_0 satisfied the condition that $b(x_0) = a(x_0)$ for any $x_0 (\in \Pi_0)$, the composition law of Π/Π_0 becomes the following: If [x][y] is defined, then any elements of [x] and [y] are composable, and [x][y] = [xy].

When Π_0 satisfies the conditions $B \subset \Pi_0$, $z\Pi_0 z^{-1} \subset \Pi_0$ for any $z (\epsilon \Pi)$ and $b(x_0) = a(x_0)$ for any $x_0(\epsilon \Pi_0)$, we have $\Pi_0 = \bigcup_{e \in B} N_e(N_e \subset \Pi_{ee})$, where N_e has the following properties:

(1) N_e is a normal subgroup of Π_{ee} .

(2) When $e, e'(\epsilon B)$ are mutually transitive in $\Pi, N_{e'}$ is isomorphic to N_e . In fact, in this case $e' = zez^{-1}$ ($z \in \Pi$), and $x_0 \in N_e \rightarrow zx_0z^{-1} \in N_{e'}$ is an isomorphism mentioned above. And such an isomorphism is defined uniquely modulo inner automorphisms of $\Pi_{e'e'}$.

So, we have the following proposition:

PROPOSITION 2. In order that Π/Π_0 be a groupoid, it is necessary and sufficient that there holds $\Pi_0 = \bigcup_{\lambda \in B_\lambda} (\bigcup N_e)$, where N_e is a normal subgroup of Π_{ee} and for all $e(\epsilon B_\lambda) N_e$ are isomorphic to one another. In this case $\varphi: x \in \Pi \rightarrow [x] \in \Pi/\Pi_0$ is a homomorphism from Π onto Π/Π_0 , and if $\varphi(x)\varphi(y)$ is defined, then xy is also defined. And when B' is the subset consisting of units of Π/Π_0 , the restriction of φ to $B, \varphi/B: B \rightarrow B'$ is one-to-one.

DEFINITION. $\Pi_0 = \bigcup_{\lambda} (\bigcup_{e \in B_{\lambda}} N_e)$ in the above Proposition is called a normal subgroupoid of Π .

In connection with this we have the following proposition as in a group.

PROPOSITION 3. Suppose that φ is a homomorphism from Π onto Π' , and that φ/B is one-to-one mapping from B onto B'. Let $\Pi_0 = \varphi^{-1}(B')$, then Π_0 is a normal subgroupoid of Π , and Π/Π_0 is isomorphic to Π' .

§4. Representation of groupoid.^[4] Suppose that Π is a transitive groupoid and that $B = a(\Pi)$. Let $\Pi_{ef} = \{x \in \Pi : b(x) = e, a(x) = f; e, f \in B\}$, then Π_{ee} is a group with e as the unit, and all Π_{ee} are isomorphic to one another. We put $G_e = \Pi_{ee}$. And let us consider a product set $B \times G_e \times B = \Pi'$. This becomes a transitive groupoid under the following composition law and is isomorphic to Π .

We define that $(p, g, q), (r, g', s) \in \Pi'$ are composable if and only if q=r, and that (p, g, q) (q, g', s)=(p, gg', s). Let a' (resp. b') be the right (resp. left) unit mapping in Π' , then a'(p, g, q)=(q, e, q), b'(p, g, q)=(p, e, p) and $(p, g, q)^{-1}$ $=(q, g^{-1}, p)$. Identifying (p, e, p) with $p(\epsilon B), a'(\Pi')$ can be identified with B. Π' is evidently transitive. Hence Π' is a transitive groupoid with B as the set of units.

For any $f(\epsilon B)$, suppose that $x_{ef}(\epsilon \Pi_{ef})$ is fixed such that $x_{ee} = e$ and that $x_{fe} = x_{ef}^{-1}$. Then $g(=x_{ep}xx_{qe})$ is an element of G_e for any $x(\epsilon \Pi_{pq} \subset \Pi)$, and so $h: x \in \Pi_{pq} \subset \Pi \rightarrow (p, g, q) \in \Pi'$ is an isomorphism from Π onto Π' . Hence Π' is a representation of Π .

In general, when $\Pi = \bigcup_{\lambda} \Pi_{\lambda}$ where Π_{λ} is transitive, Π can be represented by $\bigcup_{\lambda} B_{\lambda} \times G_{e} \times B_{\lambda}$ where e is a fixed element of B_{λ} . When $\Pi_{0} \left(= \bigcup_{\lambda} (\bigcup_{e \in B_{\lambda}} N_{e}) \right)$ is a normal subgroupoid of Π , since the set consisting of units of Π/Π_{0} is one-toone onto B, Π/Π_{0} is represented by $\bigcup_{\lambda} B_{\lambda} \times G_{e}/N_{e} \times B_{\lambda}$.

§5. Cohomology with values in a sheaf of groupoids on a topological space.^{[1][2]}

DEFINITION. Let P, Q and R be sets of elements, and let R have a subset D whose elements are called neuter. Let us consider a sequence:

$$(5.1) P \xrightarrow{u} Q \xrightarrow{v} R,$$

where u and v are mappings. When $v^{-1}(D) = u(P)$, we say that the sequence (5.1) is *exact* as usual. Further suppose that Q has neuter elements which form a subset C of Q, and that $v(C) \subset D$ and that a mapping $p: Q \to C$ is defined such that the restriction of p to C is identity. And suppose that P is a groupoid of operators on Q, and that B = a(P) where a is the right unit mapping in P, and that $u(B) \subset C$ and pu = ua. The fact that P is a groupoid of operators on Q means the following: $x(\in P)$ can operate on $y(\in Q)$ if and only if u(a(x)) =p(y), and $x \cdot y \in Q$, satisfying the following properties:

 $(\alpha) p(x \cdot y) = u(b(x))$, where b is the left unit mapping in P.

Shigeru Izuнo

(β) When $x_1, x_2 \in P, y \in Q$, and x_1x_2 is defined, and x_1x_2 can operate on y, there holds $(x_1x_2)\cdot y = x_1\cdot(x_2\cdot y)$.

(7) When $e(\epsilon B)$ can operate on $y(\epsilon Q)$, $e \cdot y = y$.

When the sequence (5.1) satisfies the following conditions, we say that it is *strongly exact*.

(i) For any $x(\epsilon P)$, $u(x) = x \cdot c$ or $u(x) = x^{-1} \cdot c$ where $c = u(a(x)) (\epsilon C)$ or $c = u(b(x)) (\epsilon C)$ respectively.

(ii) For y_1 , y_2 (ϵQ),

 $v(y_1) = v(y_2) \Leftrightarrow \text{there exists } x(\in P) \text{ such that } y_2 = x \cdot y_1.$ (iii) $v/C: C \rightarrow D \text{ is onto.}$

LEMMA 1. If the sequence (5.1) is strongly exact, then it is exact.

PROOF. For any $x(\epsilon P)$, $u(x) = x \cdot c$ or $u(x) = x^{-1} \cdot c$ by (i). Hence $v(u(x)) = v(x \cdot c)$ or $v(x^{-1} \cdot c) = v(c) \epsilon D$ by (ii).

Conversely suppose $y \in v^{-1}(D)$ and $v(y) = d(\in D)$. By (iii) there exists $c(\in C)$ such that v(c) = d. Therefore, there exists $x(\in P)$ such that $y = x \cdot c = u(x)$ or $u(x^{-1})$ by (ii) and (i).

LEMMA 2. If P, Q and R are all groupoids, C=a'(Q), p=a', D=a''(R) (where a' and a'' are the right unit mappings in Q and R resp.), u and v are homomorphisms of groupoids, and if $v/C: C \rightarrow D$ is one-to-one, then P can be a groupoid of operators on Q and we have the following: If the sequence (5.1) is exact, then it is strongly exact under the above operation.

PROOF. P can be a groupoid of operators on Q as follows: We say that $x(\epsilon P)$ can operate on $y(\epsilon Q)$ if and only if $yu(x^{-1})$ is defined, and in this case we shall define $x \cdot y = yu(x^{-1})$. Now $yu(x^{-1})$ is defined if and only if $a'(y) = b'(u(x^{-1})) = u(b(x^{-1})) = u(a(x))$, where b' is the left unit mapping in Q. In this case $a'(x \cdot y) = a'(yu(x^{-1})) = a'(u(x^{-1})) = u(a(x^{-1})) = u(b(x))$, hence this operation satisfies (α) , and clearly it satisfies (β) and (γ) .

Now suppose the sequence (5.1) is exact, then we can prove its strong exactness as follows:

Proof of (i). Let x be any element of P and let c=u(b(x)). Then $x^{-1} \cdot c = cu(x)=u(b(x))u(x)=b'(u(x))u(x)=u(x)$.

Proof of (ii). Let $y_1, y_2 \in Q$ and $v(y_1) = v(y_2)$. Then $v(y_1^{-1}) = v(y_2)^{-1}$, hence $a''(v(y_1^{-1})) = a''(v(y_2)^{-1}) = b''(v(y_2))$, hence $v(a'(y_1^{-1})) = v(b'(y_2))$. Therefore, since $v/C: C \rightarrow D$ is one-to-one, $a'(y_1^{-1}) = b'(y_2)$. Hence $y_1^{-1}y_2$ is defined, and $v(y_1^{-1}y_2) = v(y_1^{-1})v(y_2) = a''(v(y_2)) \in D$. Hence from the exactness of the sequence (5.1) there exists $x^{-1} \in P$ such that $y_1^{-1}y_2 = u(x^{-1})$. Hence $y_2 = y_1u(x^{-1}) = x \cdot y_1$. Conversely let $y_2 = x \cdot y_1$, then $v(y_2) = v(y_1u(x^{-1})) = v(y_1)v((u(x^{-1})) = v(y_1)$ from the exactness of the sequence (5.1).

(iii) is contained in our given assumption.

Suppose that X is a topological space, \mathfrak{P} is a sheaf of groupoids on X, \mathfrak{p} is the projection mapping from \mathfrak{P} onto X, \mathfrak{B} is the subsheaf consisting of

66

units of \mathfrak{P} , \mathfrak{N} is a subsheaf of normal subgroupoids of \mathfrak{P} , and that $\mathfrak{n}(=\mathfrak{p}/\mathfrak{N})$ is the restriction of \mathfrak{p} to \mathfrak{N} . The fact that \mathfrak{N} is a subsheaf of normal subgroupoids of \mathfrak{P} , means that $\mathfrak{N}_x(=\mathfrak{n}^{-1}(x))$ is a normal subgroupoid (we have defined in §3) of $\mathfrak{P}_x(=\mathfrak{p}^{-1}(x))$ for any $x(\in X)$. Let $\mathfrak{P}=\mathfrak{P}/\mathfrak{N}$, then this is a sheaf of groupoids on X. And $\mathfrak{B}\to\mathfrak{N}\xrightarrow{i}\mathfrak{P}\xrightarrow{j}\mathfrak{P}\to\mathfrak{P}$ is exact. Hereafter, we shall denote the unit mappings in \mathfrak{N} , \mathfrak{P} and \mathfrak{P} by the same notations a and b, and use the following notations as usual.

 $C^{0}(\mathfrak{U}, \mathfrak{P})$: set of 0-cochains in \mathfrak{P} over an open covering $\mathfrak{U}(=(U_{i})_{i \in I})$ of X. $Z^{1}(\mathfrak{U}, \mathfrak{P})$: set of 1-cocycles in \mathfrak{P} over \mathfrak{U} , etc.

We have an analogous proposition as in a sheaf of groups.

PROPOSITION 4. (5.2) $H^0(X, \mathfrak{B}) \xrightarrow{i \ell} H^0(X, \mathfrak{R}) \xrightarrow{i 0} H^0(X, \mathfrak{B}) \xrightarrow{j 0} H^0(X, \mathfrak{H}) \xrightarrow{j 0} H^0(X, \mathfrak{H})$

PROOF. We define that the product p_1p_2 of $p_1, p_2(\epsilon H^0(X, \mathfrak{P}))$ is defined if and only if $p_1(x)p_2(x)$ is defined for any $x(\epsilon X)$. Then $H^0(X, \mathfrak{P})$ is a groupoid. Similarly $H^0(X, \mathfrak{P}), H^0(X, \mathfrak{P})$ and $H^0(X, \mathfrak{P})$ are also groupoids, and i'_0, i_0 and j_0 are homomorphisms of groupoids. Let the neuter elements of $H^0(X, \mathfrak{P}), H^0(X, \mathfrak{P})$, $H^0(X, \mathfrak{P})$ and $H^0(X, \mathfrak{P})$ be unit sections of $\mathfrak{P}, \mathfrak{P}, \mathfrak{P}$ and \mathfrak{P} respectively, then these satisfy the condition in Lemma 2, $v/C: C \to D$ is one-to-one. Evidently the sequence (5.2) is exact till $H^0(X, \mathfrak{P})$, hence by Lemma 2 this is strongly exact till $H^0(X, \mathfrak{P})$.

Definition of δ_0 . Let *h* be any element of $H^0(X, \mathfrak{H})$ and let $\mathfrak{U}(=(U_i)_{i\in I})$ be a sufficiently fine open covering of *X*. There exists $p_i(\epsilon H^0(U_i, \mathfrak{H}))$ such that $j_0(p_i)=h/U_i$ for any $i(\epsilon I)$. Then, there exists $n_{ij}(\epsilon H^0(U_{ij}, \mathfrak{H}))$ such that $p_i=$ $n_{ij}p_j$ on $U_{ij}(=U_i \cap U_j)$. Since $n_{ij}=p_ip_j^{-1}$, we have $(n_{ij}) \epsilon Z^1(\mathfrak{U}, \mathfrak{H})$. We define $\delta_0(h)$ is the element of $H^1(X, \mathfrak{H})$ which is represented by (n_{ij}) . Evidently this does not depend on the choice of (p_i) .

Proof of the strong exactness at $H^0(X, \mathfrak{H})$. Since $H^0(X, \mathfrak{H})$ and $H^0(X, \mathfrak{H})$ are groupoids, $H^0(X, \mathfrak{H})$ can be a groupoid of operators on $H^0(X, \mathfrak{H})$ as stated generally in the proof of Lemma 2. That is, $p(\epsilon H^0(X, \mathfrak{H}))$ can operate on $h(\epsilon H^0(X, \mathfrak{H}))$ if and only if $hj_0(p^{-1})$ is defined, and we have defined that $p \cdot h =$ $hj_0(p^{-1})$.

Proof of (i). Let p be any of $H^0(X, \mathfrak{P})$, then $p^{-1} \cdot j_0(b(p)) = j_0(b(p)) j_0(p) = b(j_0(p)) j_0(p) = j_0(p)$.

Proof of (ii). Let $h_1, h_2 \in H^0(X, \mathfrak{H})$, and we assume $h_2 = p \cdot h_1$ where $p \in H^0(X, \mathfrak{P})$. Let $j_0(p_{1i}) = h_1/U_i$, then $j_0(p_{1i}p^{-1}) = h_2/U_i$, therefore $\delta_0(h_1) = \delta_0(h_2)$. Conversely we assume $\delta_0(h_1) = \delta_0(h_2)$, and let $j_0(p_{1i}) = h_1/U_i$ and let $j_0(p_{2i}) = h_2/U_i$, then $p_{1i}p_{1i}^{-1} = n_ip_{2i}p_{2i}^{-1}n_i^{-1}$ on U_{ij} where $(n_i) \in C^0(\mathfrak{U}, \mathfrak{P})$. Therefore $p_{2i}^{-1}n_i^{-1}p_{1i} = p_{2i}^{-1}n_i^{-1}p_{1i}$ on U_{ij} , hence $(p_{2i}^{-1}n_i^{-1}p_{1i})$ defines an element of $H^0(X, \mathfrak{P})$, we shall put this as p. Then we have $n_ip_{2i} = p_{1i}p^{-1}$ on U_i . Hence $j_0(n_ip_{2i}) = j_0(p_{1i})j_0(p^{-1})$ on U_i , that is $h_2/U_i = p \cdot h_1/U_i$ for any U_i , so that we have $h_2 = p \cdot h_1$.

Proof of (iii). Let a neuter element e of $H^1(X, \mathfrak{N})$ be represented by (n_{ij}) ($\epsilon Z^1(\mathfrak{U}, \mathfrak{N})$), where n_{ij} is a unit section over U_{ij} . Then $n_{ii} = n_{ij} = n_{jj}$ on U_{ij} .

Therefore (n_{ii}) defines a neuter element *n* of $H^0(X, \mathfrak{P})$, and $\delta_0(j_0(n)) = e$. Thus δ_0 maps the set of neuter elements of $H^0(X, \mathfrak{P})$ onto the set of those of $H^1(X, \mathfrak{P})$.

Proof of the strong exactness at $H^1(X, \mathfrak{N})$. $H^0(X, \mathfrak{H})$ can be a groupoid of operators on $H^1(X, \mathfrak{N})$ as follows: Suppose that $h \in H^0(X, \mathfrak{H})$, $n \in H^1(X, \mathfrak{N})$ and that n is represented by $(n_{ij}) (\in Z^1(\mathfrak{U}, \mathfrak{N}))$. In this case a(n) is the neuter element of $H^1(X, \mathfrak{N})$ which is represented by $(n'_{ij}) = (n_{ii}) = (n_{ji}) (\in Z^1(\mathfrak{U}, \mathfrak{N}))$. If and only if $\delta_0(a(h)) = a(n)$, h can operate on n, and we define $h \cdot n$ as follows. We replace \mathfrak{U} by a finer open covering when necessary, and we denote it by the same notation \mathfrak{U} . Let $j_0(p_i) = h/U_i$, where $p_i \in H^0(U_i, \mathfrak{H})$, then $j_0(a(p_i)) = a(j_0(p_i))$ $= a(h)/U_i$. Therefore $\delta_0(a(h))$ is the element of $H^1(X, \mathfrak{N})$, which is represented by $(a(p_i)a(p_j)^{-1}) (\in Z^1(\mathfrak{U}, \mathfrak{N}))$. Therefore h can operate on n if and only if $a(p_i)a(p_j)^{-1} = n_i n'_i j n_j^{-1}$ on U_{ij} , where $(n_i) \in C^0(\mathfrak{U}, \mathfrak{N})$. In this case $a(p_j) = b(n_i) =$ $a(n_i) = b(n'_{ij}) = n_{ii} = b(n_{ij})$, hence $p_i n_{ij} p_j^{-1}$ can be defined, and $(p_i n_{ij} p_j^{-1}) = ((p_i n_{ij} p_i^{-1}))$ $(p_i p_j^{-1})) \in Z^1(\mathfrak{U}, \mathfrak{N})$, thus we define that $h \cdot n$ is the element of $H^1(X, \mathfrak{N})$ which is represented by $(p_i n_{ij} p_j^{-1}) (\in Z^1(\mathfrak{U}, \mathfrak{N}))$. It does not depend on the choice of (p_i) and representatives of n. And this operation satisfies the conditions of operation $(\alpha), (\beta)$ and (γ) .

Proof of (i). Let $h \in H^0(X, \mathfrak{Y})$ and let $j_0(p_i) = h/U_i$. Then $\delta_0(h)$ is the element of $H^1(X, \mathfrak{N})$ which is represented by $(p_i p_j^{-1})$ ($\in Z^1(\mathfrak{U}, \mathfrak{N})$), and this is equal to $h \cdot (a(h))$ by the definition.

Proof of (ii). We assume $n_2 = h \cdot n_1$ for $n_1, n_2(\epsilon H^1(X, \mathfrak{N}))$ and $h(\epsilon H^0(X, \mathfrak{D}))$, and suppose that $(n_{1ij}), (n_{2ij}) (\epsilon Z^1(\mathfrak{U}, \mathfrak{N}))$ are representatives of n_1, n_2 respectively and that $j_0(p_i) = h/U_i$. Then $n_{2ij} = n_i p_i n_{1ij} p_j^{-1} n_j^{-1}$ on U_{ij} where $(n_i) \epsilon C^0(\mathfrak{U}, \mathfrak{N})$, so that we have $i_1(n_1) = i_1(n_2)$. Conversely, we assume that $i_1(n_1) = i_1(n_2)$. Then, $n_{2ij} = p_i n_{1ij} p_j^{-1}$ on U_{ij} where $(p_i) \epsilon C^0(\mathfrak{U}, \mathfrak{P})$, hence $n_{2ij} p_j = (p_i n_{1ij} p_i^{-1}) p_i$ on U_{ij} , so we have $j_0(p_j) = j_0(p_i)$ on U_{ij} . Therefore, $(j_0(p_i))$ defines an element h of $H^0(X, \mathfrak{D})$, and $n_2 = h \cdot n_1$.

In this case, it is clear that (iii) is satisfied. Finally the exactness at $H^1(X, \mathfrak{P})$ is clear.

§6. Groupoid extension. Suppose that \mathfrak{P} is a sheaf of transitive groupoids on X, and that $f = (f_{ij}) \in Z^1(\mathfrak{U}, \mathfrak{P})$. Let \mathfrak{G}_i^f be a subsheaf of \mathfrak{P}/U_i which consists of elements g_i such that $a(g_i) = b(g_i) \in f_{ii}(U_i)$, and let $\Gamma = \bigcup \mathfrak{G}_i^f$. When $(i, g_i) \in \mathfrak{G}_i^f$ and $(j, g_j) \in \mathfrak{G}_j^f$, it is said that these are equivalent if and only if $g_i = f_{ij}g_jf_{ji}$ on U_{ij} . The quotient sheaf of Γ relative to the above equivalence relation is a sheaf of groups on X, and denoted by \mathfrak{G}^f . Then as shown by A. Haefliger^[2] there exists a one-to-one correspondence $H^1(X, \mathfrak{P}) \rightarrow H^1(X, \mathfrak{G}^f)$.

In this section we consider the inverse of the above relation. That is to say, when at first a sheaf of groups \mathfrak{G} on X is given, we want to induce a sheaf of transitive groupoids \mathfrak{P} on X and $f(\epsilon Z(\mathfrak{U}, \mathfrak{P}))$ such that we have the above one-to-one correspondence $H^1(X, \mathfrak{P}) \to H^1(X, \mathfrak{G}^f)$ where we can identify $H^1(X, \mathfrak{G}^f)$ with $H^1(X, \mathfrak{G})$. When G is any group and B is any set, $\Pi = B \times G \times B$ becomes a transitive groupoid as in §4, and B can be identified with the set of units of Π . We shall call this Π groupoid extension of G by B.

Suppose \mathfrak{G} is a given sheaf of groups on X, B is any topological space with discrete topology, and also suppose $\mathfrak{B}=X\times B$. Then \mathfrak{B} is a trivial sheaf on X.

Let $\alpha: \mathfrak{G} \to X$ and $\beta: \mathfrak{B} \to X$ be projection mappings, and let $\mathfrak{P} = (\mathfrak{B}, \mathfrak{G}, \mathfrak{B})$ be the set of triples z=(p, g, q), where $p, q \in \mathfrak{B}$ and $g \in \mathfrak{G}$ such that $\beta(p)=\alpha(g)$ $=\beta(q)$, and let $\mathfrak{p}: \mathfrak{P} \to X$ such that $\mathfrak{p}(z)=\beta(p)$, be the projection mapping from \mathfrak{P} onto X. And let W_p, V_g and W_q be the open sets containing p, g and q in \mathfrak{B} , \mathfrak{G} and \mathfrak{B} respectively which are homeomorphic to an open set U of $X(\mathfrak{p}(z) \in U)$. We shall define the topology in \mathfrak{P} such that $\{(W_p, V_g, W_q)\}$ is the fundamental system of the open sets. Then \mathfrak{P} is a sheaf on X. In each $\mathfrak{P}_x(=\mathfrak{p}^{-1}(x)) (x \in X)$, we introduce a composition law as mentioned in §4. In this way \mathfrak{P} becomes a sheaf of transitive groupoids on X. And \mathfrak{B} can be regarded as the subsheaf of units of \mathfrak{P} .

Let $t(\epsilon H^1(X, \mathfrak{P}))$ be represented by $(h_{ij}) = ((p_{ij}, g_{ij}, q_{ij})) (\epsilon Z^1(\mathfrak{U}, \mathfrak{P}))$. Since $h_{ii} = b(h_{ij})$ and $h_{jj} = a(h_{ij})$ on U_{ij} , there hold $(p_{ii}, g_{ii}, q_{ii}) = b(p_{ij}, g_{ij}, q_{ij}) = (p_{ij}, e, p_{ij})$ and $(p_{jj}, g_{jj}, q_{jj}) = a(p_{ij}, g_{ij}, q_{ij}) = (q_{ij}, e, q_{ij})$ on U_{ij} , where e is the unit section of \mathfrak{G} over U_{ij} . Hence $p_{ij} = p_{ii} = q_{ii}$ and $q_{ij} = p_{jj} = q_{jj}$ on U_{ij} . We put $p_{ii} = q_{ii} = p_i$, then h_{ij} becomes the form (p_i, g_{ij}, p_j) . So, from the relation $h_{ij}h_{jk} = h_{ik}$ on U_{ijk} $(=U_i \cap U_j \cap U_k)$, we have $g_{ij}g_{jk} = g_{ik}$ on U_{ijk} . Hence $(g_{ij}) \epsilon Z^1(\mathfrak{U}, \mathfrak{G})$, by this the element of $H^1(X, \mathfrak{G})$ is determined and it does not depend on representatives of t. Conversely, when $l(\epsilon H^1(X, \mathfrak{G}))$ is represented by $(g_{ij})(Z^1(\mathfrak{U}, \mathfrak{G}))$, let (p_i) be any element of $C^0(\mathfrak{U}, \mathfrak{B})$, then $(h_{ij}) = ((p_i, g_{ij}, p_j)) \epsilon Z^1(\mathfrak{U}, \mathfrak{P})$. By this the element of $H^1(X, \mathfrak{P})$ is determined and it does not depend on the choice of (p_i) and representatives of l. So we have a one-to-one correspondence $H^1(X, \mathfrak{P}) \rightarrow H^1(X, \mathfrak{G})$. This is no other than the following correspondence.

Let e be the neuter element of $H^1(X, \mathfrak{G})$ represented by $(e_{ij}) (\epsilon Z^1(\mathfrak{U}, \mathfrak{G}))$, where e_{ij} is the unit section of \mathfrak{G} over U_{ij} , and let (p_i) be any of $C^0(\mathfrak{U}, \mathfrak{B})$. Then $f=(f_{ij})=((p_i, e_{ij}, p_j)) \epsilon Z^1(\mathfrak{U}, \mathfrak{P})$. Let \mathfrak{G}^f be the sheaf of groups on X associated to f such that we have stated at first in this section, then \mathfrak{G}^f is isomorphic to \mathfrak{G} . It results from the following: Since $f_{ii}=(p_i, e_{ii}, p_i), \mathfrak{G}^f_i$ consists of elements such as $(i, (p_i, g_i, p_i))$ where $g_i \epsilon \mathfrak{G}$. And the equivalence relation is as follows: $(i, (p_i, g_i, p_i))$ is equivalent to $(j, (p_j, g_j, p_j))$, if and only if $(p_i, g_i, p_i)=(p_i, e_{ij}, p_j)$ $(p_j, g_j, p_j)(p_j, e_{ji}, p_i)=(p_i, g_j, p_i)$ on U_{ij} , that is $g_i=g_j$ on U_{ij} . Therefore $[(i, (p_i, g_i, p_i))] \epsilon \mathfrak{G}^f$ (the equivalence class containing $(i, (p_i, g_i, p_i)) \rightarrow g_i \epsilon \mathfrak{G}$ is an isomorphism.

Therefore $H^1(X, \mathfrak{G}^f)$ is one-to-one onto $H^1(X, \mathfrak{G})$. Now, the one-to-one correspondence $\varphi: H^1(X, \mathfrak{P}) \rightarrow H^1(X, \mathfrak{G}^f)$ stated at first in this section is as follows: Let $(h_{ij}) = ((p_i, g_{ij}, p_j)) (\epsilon Z^1(\mathfrak{U}, \mathfrak{P}))$ be a representative of any $s(\epsilon H^1(X, \mathfrak{P}))$. Then $\varphi(s)$ is the element of $H^1(X, \mathfrak{G}^f)$ which is represented by $([(i, h_{ij}f_{ji})])$ $(\epsilon Z^1(\mathfrak{U}, \mathfrak{G}^f))$, where $h_{ij}f_{ji} = (p_i, g_{ij}, p_j) (p_j, e_{ji}, p_i) = (p_i, g_{ij}, p_i)$.

Therefore $H^1(X, \mathfrak{P}) \rightarrow H^1(X, \mathfrak{G})$ stated before is no other than the product $H^1(X, \mathfrak{P}) \rightarrow H^1(X, \mathfrak{G}') \rightarrow H^1(X, \mathfrak{G})$. Thus we have the following:

PROPOSITION 5. Suppose \mathfrak{G} is a sheaf of groups on X. Then there exists a sheaf of transitive groupoids \mathfrak{P} on X such that we have a one-to-one correspondence $H^1(X, \mathfrak{P}) \to H^1(X, \mathfrak{G})$. Let $f = ((p_i, e_{ij}, p_j)) \in Z^1(\mathfrak{U}, \mathfrak{P})$ where e_{ij} is the unit section of \mathfrak{G} over U_{ij} , then \mathfrak{G} is isomorphic to \mathfrak{G}^f and $H^1(X, \mathfrak{G}) \to H^1(X, \mathfrak{G}^f)$ is one-to-one. And the product $H^1(X, \mathfrak{P}) \to H^1(X, \mathfrak{G}) \to H^1(X, \mathfrak{G}^f)$ is no other than the one-to-one correspondence $H^1(X, \mathfrak{P}) \to H^1(X, \mathfrak{G}^f)$ stated at first in this section.

§7. Suppose \mathfrak{P} is a sheaf of transitive groupoids on X, \mathfrak{p} is its projection mapping, \mathfrak{B} is the subsheaf of \mathfrak{P} that consists of units of \mathfrak{P} and that \mathfrak{B} has a section e over X. And let us consider the sheaf of groups \mathfrak{G} on X which is the subsheaf of \mathfrak{P} consisting of $g(\epsilon \mathfrak{P}_x = \mathfrak{p}^{-1}(x))$ for any $x(\epsilon X)$ such that a(g) = b(g) = e(x).

Next let $\mathfrak{B}'(=(\mathfrak{B}, \mathfrak{G}, \mathfrak{B}))$ be the set of triples (p, g, q), where $p, q \in \mathfrak{B}_x = \mathfrak{p}^{-1}(x) \cap \mathfrak{B}$ and $g \in \mathfrak{G}_x = \mathfrak{p}^{-1}(x) \cap \mathfrak{G}$. Then \mathfrak{P}' is a sheaf of transitive groupoids on X as in the last section.

Let us consider the one-to-one correspondences: $H^{1}(X, \mathfrak{P}) \xrightarrow{\varphi} H^{1}(X, \mathfrak{P}') \xrightarrow{\varphi'} H^{1}(X, \mathfrak{G})$. Let s be any element of $H^{1}(X, \mathfrak{P})$, and let $f=(f_{ij})$ ($\epsilon Z^{1}(\mathfrak{U}, \mathfrak{P})$) be its representative. We replace \mathfrak{U} by a finer open covering of X when necessary, but here we denote it by the same notation \mathfrak{U} . Since \mathfrak{P} is transitive, for any $i \epsilon I$ there exists a section $z_{ef_{ii}}$ of \mathfrak{P} over U_i such that $b(z_{ef_{ii}}(U_i)) = e(U_i)$ and $a(z_{ef_{ii}}(U_i)) = f_{ii}(U_i)$. We denote $z_{ef_{ii}}^{-1}$ by $z_{f_{ii}e}$, then $f'_{ij} = (f_{ii}, z_{ef_{ii}}f_{ij}z_{jj}e, f_{jj})$ is a section of \mathfrak{P}' over U_{ij} , and $f'_{ij}f'_{jk} = f'_{ij}$ on U_{ijk} . Hence (f'_{ij}) represents an element $s'(\epsilon H^{1}(X, \mathfrak{P}'))$. Since s' does not depend on representatives of s and the choice of $z_{ef_{ii}}$, we define that $\varphi(s) = s'$.

Put $g_{ij} = z_{ef_{ii}} f_{ij} z_{f_{jj}e}$, then g_{ij} is a section of \mathfrak{G} over U_{ij} , and $g_{ij} g_{jk} = g_{ik}$ on U_{ijk} . Hence $(g_{ij}) \in Z^1(\mathfrak{U}, \mathfrak{G})$. The element of $H^1(X, \mathfrak{G})$ represented by (g_{ij}) is denoted by t. Since t does not depend on representatives of s', we define that $\mathcal{P}'(s') = t$. It is clear that \mathcal{P} and \mathcal{P}' are both one-to-one. The neuter element of $H^1(X, \mathfrak{F})$ is mapped by \mathcal{P} on the neuter element of $H^1(X, \mathfrak{F}')$ and it is mapped by \mathcal{P}' on the neuter element of $H^1(X, \mathfrak{F})$.

Thus we have the following:

PROPOSITION 6. Suppose that \mathfrak{P} is a sheaf of transitive groupoids on a topological space X, \mathfrak{B} is the subsheaf of \mathfrak{P} consisting of units of \mathfrak{P} and that \mathfrak{B} has a section e over X. And suppose \mathfrak{G} is the sheaf of groups on X, which consists of $g(\epsilon \mathfrak{P})$ such that a(g)=b(g)=e, and let $\mathfrak{P}'=(\mathfrak{B},\mathfrak{G},\mathfrak{B})$.

Then there exist one-to-one correspondences: $H^1(X, \mathfrak{P}) \xrightarrow{\varphi} H^1(X, \mathfrak{P}') \xrightarrow{\varphi'} H^1(X, \mathfrak{P}') \xrightarrow{\varphi'} H^1(X, \mathfrak{P}')$ (X, \mathfrak{G}), in which the neuter element of $H^1(X, \mathfrak{P})$ corresponds to the neuter elements of $H^1(X, \mathfrak{P}')$ and $H^1(X, \mathfrak{G})$.

We consider a geometrical meaning of this Proposition. Let (E, p) be a fibre space on \mathfrak{B} , where p is its projection mapping. And suppose \mathfrak{P} is a sheaf

of transitive groupoids on X which operates on (E, p). That is, $z(\epsilon \mathfrak{P})$ can operate on $\gamma(\epsilon(E, p))$ if and only if $a(z)=p(\gamma)$, and $z \cdot \gamma \epsilon(E, p)$, satisfying the following:

(α) $p(z \cdot y) = b(z)$.

(β) When $z_1, z_2 \in \mathfrak{P}$, $y \in (E, p)$, z_1z_2 is defined and z_1z_2 can operate on y, then $(z_1z_2)\cdot y = z_1 \cdot (z_2 \cdot y)$.

(γ) When $e(\epsilon \mathfrak{B})$ can operate on $y(\epsilon(E, p)), e \cdot y = y$.

Suppose $s \in H^1(X, \mathfrak{P})$ and that $f = (f_{ij}) (\in Z^1(\mathfrak{U}, \mathfrak{P}))$ is its representative. Let $E_i^f = p^{-1}(f_{ii}(U_i))$ and let an element of E_i^f be denoted by (i, y_i) . In $\sum = \bigcup E_i^f$, when $x \in U_{ij}, (i, y_i) \in E_i^f, (j, y_j) \in E_j^f, p(y_i) = f_{ii}(x)$ and $p(y_j) = f_{jj}(x)$, we shall say that (i, y_i) is equivalent to (j, y_j) if $y_i = f_{ij}(x) \cdot y_j$. E^f is the quotient space of \sum relative to the above equivalence relation. The element of E^f represented by (i, y_i) , is denoted by $[(i, y_i)]$. Let $p^f : E^f \to X$ such that $p^f([(i, y_i)]) = \mathfrak{p}(p(y_i))$ be the projection mapping from E^f onto X. Then (E^f, p^f) is a fibre space on X, which is locally homeomorphic to (E, p). When $f' = (f'_{ij}) (\in Z^1(\mathfrak{U}, \mathfrak{P}))$ is another representative of s, $(E^{f'}, p^{f'})$ is isomorphic to (E^f, p^f) . Thus, as shown in [2], we have a one-to-one correspondence between the elements of $H^1(X, \mathfrak{P})$ and the classes of fibre spaces (E^f, p^f) which are isomorphic to one another.

Suppose that $t=\varphi'\varphi(s)$ ($\epsilon H^1(X, \mathfrak{G})$), $g=(g_{ij})$ ($\epsilon Z^1(\mathfrak{U}, \mathfrak{G})$) is its representative, and that $E_e = p^{-1}(e(X))$ ($\subset E$). Then E_e is a fibre space on e(X) and we define $p_e = \mathfrak{p}p$. Thus (E_e, p_e) is a fibre space on X with projection mapping p_e . Further \mathfrak{G} becomes a sheaf of groups of operators on (E_e, p_e) as follows: $h(\epsilon \mathfrak{G})$ can operate on $y_e(\epsilon E_e)$ if and only if $\mathfrak{p}(h) = p_e(y_e)$. In fact, in this case if we put $\mathfrak{p}(h) = p_e(y_e) = x(\epsilon X)$, then $a(h) = e(x) = p(y_e)$, hence h can operate on y_e by means of operation of \mathfrak{P} on (E, p). And since $p(h.y_e) = b(h) = e(x)$, $h \cdot y \epsilon E_e$ and $p_e(h \cdot y_e) = x$. Thus, as shown in [1] we can define (E_e^g, p_e^g) which is fibre space on X. That is, let $E_{ei}^g = E_e/U_i$ and $\sum_e = \bigcup_{i \in I} E_{ei}^g$, then E_e^g is the quotient space of \sum_e relative to the equivalence relation such that $y_{ei}(\epsilon E_{ei}^g)$ is equivalent to $y_{ej}(\epsilon E_{ei}^g)$ if $y_{ei} = g_{ij} \cdot y_{ej}$. And as shown in [1], we have a one-to-one correspondence between the elements of $H^1(X, \mathfrak{G})$ and the classes of fibre spaces (E_e^g, p_e^g) which are isomorphic to one another.

In connection with this we have the following:

PROPOSITION 7. (E^f, p^f) is isomorphic to (E^g_e, p^g_e) .

PROOF. We shall denote by $[y_{ei}]$ the element of E_e^g which is represented by y_{ei} . Let $[(i, y_i)]$ be any element of E^f , and if (j, y_j) is another representative of $[(i, y_i)]$, then $y_i = f_{ij} \cdot y_j$. Then, $y_{ei} = z_{ef_{ii}} \cdot y_i \in E_{ei}^g$, $y_{ej} = z_{ef_{jj}} \cdot y_j \in E_{ej}^g$ and $y_{ei} = z_{ef_{ii}} \cdot y_i = z_{ef_{ii}} \cdot (f_{ij} \cdot y_j) = (z_{ef_{ii}} f_{ij} z_{f_{jj}} e) \cdot (z_{ef_{jj}} \cdot y_j) = g_{ij} \cdot y_{ej}$. Thus, clearly $h: [(i, y_i)]$ $\in E^f \to [y_{ei}] \in E_e^g$ is a homeomorphic mapping and $p_e^g h = p^f$, hence h is an isomorphism from E^f onto E_e^g .

Thus we have the following commutative diagram:

Shigeru Izuno

$$\begin{array}{cccc} H^1(X,\mathfrak{P}) & & \xrightarrow{\varphi'\varphi} & & H^1(X,\mathfrak{G}) \\ & & & \downarrow^{1:1} & & & \downarrow^{1:1} \\ (\text{classes of } E^f) & & \xrightarrow{1:1} & (\text{classes of } E^g_e). \end{array}$$

This is a geometrical meaning of $\varphi'\varphi$.

In conclusion, I wish to express my thanks to Prof. K. Morinaga for his encouragement and kind guidance.

References

- [1] A. Grothendieck, A general theory of fibre spaces with structure sheaf, University of Kansas, Report no. 4 (1955).
- [2] A. Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv., 32 (1957-58), 248-329.
- [3] P. Dedecker, Sur la cohomologie non abelienne I (dimension deux), Canadian J. of Math. vol. 2, no. 2 (1960), 231-251.
- [4] R. H. Bruch, A suvey of binary systems, Berlin, (1958).

Faculty of General Education, Hiroshima University