Groupoid and Cohomology with Values in a Sheaf of Groupoids

Shigeru Izuно

(Received March 5, 1963)
A. Grothendieck developed in [1]* systematically the notion of fibre space on a topological space X with structure sheaf \mathfrak{G}, where \mathfrak{G} is any sheaf of groups, and the notion of 1-cohomology set $H^{1}\left(X, 5_{5}\right)$ of X with values in (5). He showed the important relation between the elements of $H^{1}(X, 5)$ and the classes of fibre spaces on X with structure sheaf $\mathbb{E S F}^{\text {. }}$. And he obtained the exact sequence of the cohomology sets (dim. 0 and 1) of X with values in sheaves of groups on X.
A. Haefliger introduced in [2] the cohomology sets $H^{0}(X, \mathfrak{F})$ and $H^{1}(X$, \mathfrak{S}) of X with values in a sheaf of groupoids \mathfrak{F} on X. And under the assumption that \mathfrak{P} is transitive, he proved th•at there exists a one-to-one correspondence between $H^{1}(X, \mathfrak{P})$ and $H^{1}\left(X, \mathscr{S b}^{f}\right)$, where $\mathscr{S S}^{f}$ is the sheaf of groups associated to an element f of $Z^{1}(\mathfrak{U}, \mathfrak{B})$.

In this paper, it is shown that we can obtain an exact sequence of the cohomology sets (dim. 0 and 1) of X with values in sheaves of groupoids on X. We deal with the inverse problem of the relation between \mathfrak{F} and $\mathscr{S b}^{f}$ which was shown by A. Haefliger: When a sheaf of groups ${ }^{5} 5$ on X is given, we may introduce a sheaf of transitive groupoids \mathfrak{P} on X and an element f of $Z^{1}(\mathfrak{U}, \mathfrak{F})$ such that we have a one-to-one correspondence $H^{1}(X, \mathfrak{P}) \rightarrow H^{1}\left(X, \mathscr{S}^{f}\right)$ where the latter set can be identified with $H^{1}(X, 55)$. And when the sheaf of transitive groupoids \mathfrak{P} has a unit section, it is shown that there exists a sheaf of groups $\mathscr{G}^{\mathfrak{G}}$, which is simpler than \mathscr{F}^{f}, such that $H^{1}(X, \mathfrak{F})$ corresponds oneone to $H^{1}(X,(5)$.

In the first half part, we prepare ourselves for treating the above-mentioned problems. In §1, we prove that two systems of axioms in the definition of groupoid-those in A. Haefliger's paper [2] and in P. Dedecker's [3] -are equivalent, and in §§2-3 we introduce the concept of normal subgroupoid and quotient groupoid. In $\S 4$, we refer to a representation of groupoid.

In the last half part, we solve the above-mentioned problems, applying the results in §§1-4 and introducing the concept of groupoid extension of a sheaf of groups.
§1. Axioms of groupoid. ${ }^{[2][3]}$ A groupoid is a set $I I$ which has a composition law $(x, y) \rightarrow x y$, defined for some pairs of elements $x, y(\epsilon I)$ and

[^0]satisfying some axioms we shall state below. At first we state a definition.
Definition. An element e of Π is called a right unit (resp. left unit), if $x e=x($ resp. $e x=x)$ whenever $x e$ (resp. $e x$) is defined. And an element e of Π is called a unit, if $x e=x$ and $e y=y$ whenever $x e$ and ey are defined.

Our axioms are as follows:
(G1) If for $x, y, z(\epsilon I I)$ one of $(x y) z$ or $x(y z)$ is defined, then the other is defined and two are equal: $(x y) z=x(y z)$.
(G2) For any $x(\epsilon \Pi)$, there exist a right unit $e_{x}(\epsilon \Pi)$ and a left unit ${ }_{x} e(\epsilon I I)$ such that $x e_{x}=x$ and ${ }_{x} e x=x$.
(G3) For any $x(\epsilon \Pi)$, there exists an inverse element $x^{-1}(\epsilon I)$ such that $x^{-1} x=e_{x}$ and $x x^{-1}={ }_{x} e$.

Proposition 1. The system of axioms (G1), (G2) and (G3) in the definition of groupoid is equivalent to that of axioms (G1) and (G2') and (G3') which follow:
(G2') For any $x(\epsilon \Pi)$, there exist units $e_{x}(\epsilon \Pi)$ and ${ }_{x} e(\epsilon \Pi)$ such that $x e_{x}$ $=x$ and $_{x} e x=x$.
(G3') For any $x(\epsilon \Pi)$, there exists an inverse element $x^{-1}(\epsilon \Pi)$ such that $x^{-1} x=e_{x}$.

Proof of (G1), (G2), (G3) $\Rightarrow(\mathrm{G} 1),\left(\mathrm{G} 2^{\prime}\right),\left(\mathrm{G} 3^{\prime}\right)$. Suppose that e is a right unit and that ey is defined. Then $z=e y \Rightarrow e_{z}=\left(z^{-1} e\right) y \Rightarrow e_{z}=z^{-1} y \Rightarrow z=\left(z z^{-1}\right) y \Rightarrow z=$ ${ }_{z} e y \Rightarrow z=y$. Therefore e is also a left unit, so that it is a unit. Similarly if e is a left unit, then it is also a right unit, so that it is a unit.

Proof of (G1), (G2'), (G3') \Rightarrow (G1), (G2), (G3). We must only prove $x x^{-1}=$ ${ }_{x} e$. For this, at first we prove the uniqueness of e_{x} and ${ }_{x} e$ by (G1), (G2') and (G3').

Suppose $x e_{x}=x \bar{e}_{x}=x$, then x^{-1} can be multiplied from the left, and $\left(x^{-1} x\right) e_{x}$ $=\left(x^{-1} x\right) \bar{e}_{x}$ by (G1). Hence $e_{x} e_{x}=e_{x} \bar{e}_{x}$, so we have $e_{x}=\bar{e}_{x}$. Next suppose ${ }_{x} e x={ }_{x} \bar{e} x$ $=x$, then x^{-1} can be multiplied from the left, and $\left(x^{-1}{ }_{x} e\right) x=\left(x^{-1}{ }_{x} \bar{e}\right) x$ by (G1). Hence $x^{-1}{ }_{x} e$ and $x^{-1}{ }_{x} \bar{e}$ are defined and both are equal to x^{-1}, so we have $x_{x} e=_{x} \bar{e}$ $=e_{x^{-1}}$ by the uniqueness of $e_{x^{-1}}$.

Now, we have $x^{-1} x=e_{x}$ by (G3'), so that $\left(x x^{-1}\right) x=x$ by (G1) and (G2'). Hence we have $x x^{-1} \int_{x} e$ by the uniqueness of ${ }_{x} e$.

Groupoid has the following properties ((1)—(7)):
(1) For any $x(\epsilon I)$), e_{x} and ${ }_{x} e$ are uniquely defined. Therefore, when B is the subset of Π consisting of units of elements of $\Pi, x \rightarrow e_{x}$ and $x \rightarrow_{x} e$, two mappings from Π onto B, are defined. We denote these mappings by a and b respectively. That is, $a(x)=e_{x}$ and $b(x)={ }_{x} e$.
(2) $e \in B \Rightarrow a(e)=b(e)=e$. Hence $B=a(\Pi)=b(\Pi) . \quad a(x y)=a(y), b(x y)=b(x)$ and $a\left(x^{-1}\right)=b(x)$.
(3) $\quad x y$ is defined $\Leftrightarrow a(x)=b(y)$.
(4) $x y$ and $y z$ are defined $\Rightarrow(x y) z$ and $x(y z)$ are defined.
(5) $y x=z x$ (or $x y=x z) \Rightarrow y=z$. By this, for any $x(\epsilon \Pi) x^{-1}$ is uniquely defined.
(6) $\left(x^{-1}\right)^{-1}=x$ and $(x y)^{-1}=y^{-1} x^{-1}$.

Definition. If for $e, e^{\prime}(\epsilon B)$ there exists $x(\epsilon \Pi)$ such that $e^{\prime}=x e x^{-1}$, then we say e and e^{\prime} are mutually transitive in Π. And if any two elements of B are mutually transitive in Π, then Π is called a transitive groupoid.
(7) Let $\Pi_{e f}=\{x \in \Pi: b(x)=e, a(x)=f ; e, f \in B\}$, then $\Pi_{e e}$ is a group with e as the unit. When Π is transitive, there exist $y, z(\epsilon \Pi)$ such that $e^{\prime}=y^{-1}$ and $f^{\prime}=z f z^{-1}$, and we have a one-to-one correspondence $x \in \Pi_{e f} \rightarrow y x z^{-1} \in \Pi_{e^{\prime} f}$ 。 In particuler, $x \in \Pi_{e e} \rightarrow y x y^{-1} \in \Pi_{f f}$ is an isomorphism, and such an isomorphism is determined modulo inner automorphisms of $\Pi_{e^{\prime} e^{\prime}}$.

§2. Subgroupoid of $\Pi^{[2]}$.

Definition. When a subset Π^{\prime} of Π is itself a groupoid under the composition law induced from that of Π, it is called a subgroupoid of Π. When a subset Π^{\prime} of Π contains all elements of Π having the same unit as x if Π^{\prime} contains $x(\in \Pi)$, it is a subgroupoid of Π and is called a complete subgroupoid of $I I$.

Any groupoid Π is the union of disjoint complete transitive subgroupoids. This fact can be shown as follows: When $e, e^{\prime}(\epsilon B)$ are mutually transitive in Π, we say that these are equivalent. This relation is an equivalence relation, and so B can be classified by this relation. Let $B=\bigcup_{\lambda} B_{\lambda}$, where B_{λ} are classes under this relation. Then $\Pi_{\lambda}=a^{-1}\left(B_{\lambda}\right)$ is a complete transitive subgroupoid of Π, and $\Pi=\cup_{\lambda} \Pi_{\lambda}$.

§3. Homomorphism. ${ }^{[2]}$ Normal subgroupoid and quotient groupoid.

Definition. Suppose that Π and Π^{\prime} are two groupoids, and that $B=a(\Pi)$ and $B^{\prime}=a^{\prime}\left(\Pi^{\prime}\right)$, where a^{\prime} is the right unit mapping in Π^{\prime}. Let φ be a mapping from Π into Π^{\prime}, and if $x, y(\epsilon \Pi)$ are composable, then let $\varphi(x), \varphi(y)\left(\epsilon \Pi^{\prime}\right)$ be composable and let $\varphi(x y)=\varphi(x) \varphi(y)$. Then φ is called a homomorphism from Π into Π^{\prime}. If φ is one-to-one, then it is called an isomorphism.

It is clear that $\varphi(a(x))=a^{\prime}(\varphi(x)) ; \varphi(b(x))=b^{\prime}(\varphi(x))$, where b^{\prime} is the left unit mapping in Π^{\prime}, and it is also clear that $\varphi\left(x^{-1}\right)=\varphi(x)^{-1}$.

Let Π_{0} be a subgroupoid of Π. If for $x, \bar{x}(\epsilon \Pi)$ there exists $x_{0}\left(\epsilon \Pi_{0}\right)$ such that $\bar{x}=x_{0} x$, then we say \bar{x} is equivalent to x with respect to Π_{0}. In order that this relation be an equivalence relation, it is necessary and sufficient that $B \subset$ Π_{0}. In this case we denote by Π / Π_{0} the quotient set of Π relative to this equivalence relation and by $[x]$ the equivalence class containing x.

Let us consider the conditions on Π_{0} in order that Π / Π_{0} be a groupoid
under a natural composition law. The composition law we wish to define as follows: $[x][y]$ is defined if and only if these cotain the composable elements \bar{x} and \bar{y} respectively, and $[x][y]=[\bar{x} \bar{y}]$. Then let us consider the condition on Π_{0} in order that this definition be adequate. Now if $\bar{x}(\epsilon[x])$ and $\bar{y}(\epsilon[y])$ are other composable elements, then $\bar{x} \bar{y}$ must be equivalent to $\bar{x} \bar{y}$. For this, it is necessary and sufficient that $z \Pi \Pi_{0} z^{-1} \subset \Pi_{0}$ for any $z(\epsilon \Pi)$. That is, if $z x_{0} z^{-1}$ is defined for $x_{0}\left(\epsilon \Pi_{0}\right)$ and $z(\epsilon \Pi)$, then $z x_{0} z^{-1} \epsilon \Pi_{0}$. In this case we have $[x][y]$ $=[\bar{x} \bar{y}]=[\bar{x} \bar{y}]$. Next, let us consider the conditions on Π_{0} in order that Π / Π_{0} satisfy the axioms of groupoid (G1), (G2) and (G3) under the above composition law.
(G1) in Π / Π_{0} follows from (G1) in Π.
Next we consider (G2). By the definition we have $[x][a(x)]=[x]$, hence it is necessary that $[y][a(x)]=[y]$ for any $[y]\left(\epsilon \Pi / \Pi_{0}\right)$ such that $[y][a(x)]$ is defined. Since $x_{0} a(x)=x_{0} \in[a(x)]\left(x_{0} \in \Pi_{0}\right)$, for any $[y]$ such that $a(y)=b\left(x_{0}\right)$, $[y][a(x)]$ is defined and equal to $\left[y x_{0}\right]\left(\epsilon \Pi / \Pi_{0}\right)$. Since it must be $\left[y x_{0}\right]=[y]$, it is necessary that there exists $z_{0}\left(\epsilon \Pi_{0}\right)$ such that $y x_{0}=z_{0} y$. Hence we have $b\left(x_{0}\right)=a\left(x_{0}\right)=a(y)$. Therefore it is necessary that $b\left(x_{0}\right)=a\left(x_{0}\right)$ for any $x_{0}\left(\epsilon \Pi_{0}\right)$. This condition is clearly sufficient in order that there exist a right unit for any element of Π / Π_{0}. Similarly this condition is necessary and sufficient in order that there exist a left unit for any element of Π / Π_{0}.
(G3) is satisfied in Π / Π_{0}, and $[x]^{-1}=\left[x^{-1}\right]$.
Now, when Π_{0} satisfied the condition that $b\left(x_{0}\right)=a\left(x_{0}\right)$ for any $x_{0}\left(\epsilon \Pi_{0}\right)$, the composition law of Π / Π_{0} becomes the following: If $[x][y]$ is defined, then any elements of $[x]$ and $[y]$ are composable, and $[x][y]=[x y]$.

When Π_{0} satisfies the conditions $B \subset \Pi_{0}, z \Pi_{0} z^{-1} \subset \Pi_{0}$ for any $z(\epsilon \Pi)$ and $b\left(x_{0}\right)=a\left(x_{0}\right)$ for any $x_{0}\left(\epsilon \Pi_{0}\right)$, we have $\Pi_{0}=\cup_{e \in B} N_{e}\left(N_{e} \subset \Pi_{e e}\right)$, where N_{e} has the following properties:
(1) N_{e} is a normal subgroup of $\Pi_{e e}$.
(2) When $e, e^{\prime}(\epsilon B)$ are mutually transitive in $\Pi, N_{e^{\prime}}$ is isomorphic to N_{e}. In fact, in this case $e^{\prime}=z e z^{-1}(z \in \Pi)$, and $x_{0} \in N_{e} \rightarrow z x_{0} z^{-1} \in N_{e^{\prime}}$ is an isomorphism mentioned above. And such an isomorphism is defined uniquely modulo inner automorphisms of $\Pi_{e^{\prime} e^{\prime}}$.

So, we have the following proposition:
Proposition 2. In order that Π / Π_{0} be a groupoid, it is necessary and sufficient that there holds $\Pi_{0}=\underset{\lambda}{\cup}\left(\cup \cup_{e \in \lambda} N_{e}\right)$, where N_{e} is a normal subgroup of $\Pi_{e e}$ and for all $e\left(\epsilon B_{\lambda}\right) N_{e}$ are isomorphic to one another. In this case $\varphi: x \in \Pi \rightarrow[x] \epsilon$ Π / Π_{0} is a homomorphism from Π onto Π / Π_{0}, and if $\varphi(x) \varphi(y)$ is defined, then $x y$ is also defined. And when B^{\prime} is the subset consisting of units of Π / Π_{0}, the restriction of $\mathcal{\varphi}$ to $B, \Phi / B: B \rightarrow B^{\prime}$ is one-to-one.

Definition. $\quad \Pi_{0}=\underset{\lambda}{\cup}\left(\underset{e \in B \lambda}{\cup} N_{e}\right)$ in the above Proposition is called a normal subgroupoid of I.

In connection with this we have the following proposition as in a group.
Proposition 3. Suppose that φ is a homomorphism from Π onto Π^{\prime}, and that φ / B is one-to-one mapping from B onto B^{\prime}. Let $\Pi_{0}=\varphi^{-1}\left(B^{\prime}\right)$, then Π_{0} is a normal subgroupoid of Π, and Π / Π_{0} is isomorphic to Π^{\prime}.
§4. Representation of groupoid. ${ }^{[4]}$ Suppose that $I I$ is a transitive groupoid and that $B=a(\Pi)$. Let $\Pi_{e f}=\{x \in \Pi: b(x)=e, a(x)=f ; e, f \in B\}$, then $\Pi_{e e}$ is a group with e as the unit, and all $\Pi_{e e}$ are isomorphic to one another. We put $G_{e}=\Pi_{e e}$. And let us consider a product set $B \times G_{e} \times B=\Pi^{\prime}$. This becomes a transitive groupoid under the following composition law and is isomorphic to Π.

We define that $(p, g, q),\left(r, g^{\prime}, s\right)\left(\epsilon \Pi^{\prime}\right)$ are composable if and only if $q=r$, and that $(p, g, q)\left(q, g^{\prime}, s\right)=\left(p, g g^{\prime}, s\right)$. Let a^{\prime} (resp. $\left.b^{\prime}\right)$ be the right (resp. left) unit mapping in Π^{\prime}, then $a^{\prime}(p, g, q)=(q, e, q), b^{\prime}(p, g, q)=(p, e, p)$ and $(p, g, q)^{-1}$ $=\left(q, g^{-1}, p\right)$. Identifying (p, e, p) with $p(\epsilon B), a^{\prime}\left(\Pi^{\prime}\right)$ can be identified with B. Π^{\prime} is evidently transitive. Hence Π^{\prime} is a transitive groupoid with B as the set of units.

For any $f(\epsilon B)$, suppose that $x_{e f}\left(\epsilon \Pi_{e f}\right)$ is fixed such that $x_{e e}=e$ and that $x_{f e}=x_{e f}^{-1}$. Then $g\left(=x_{e p} x x_{q e}\right)$ is an element of G_{e} for any $x\left(\epsilon \Pi_{p q} \subset \Pi\right)$, and so h : $x \in \Pi_{p q} \subset \Pi \rightarrow(p, g, q) \in \Pi^{\prime}$ is an isomorphism from Π onto Π^{\prime}. Hence Π^{\prime} is a representation of Π.

In general, when $\Pi=\cup_{\lambda} \Pi_{\lambda}$ where Π_{λ} is transitive, Π can be represented by $\underset{\lambda}{\cup} B_{\lambda} \times G_{e} \times B_{\lambda}$ where e is a fixed element of B_{λ}. When $\Pi_{0}\left(=\underset{\lambda}{\cup}\left(\cup_{e \in B \lambda} N_{e}\right)\right)$ is a normal subgroupoid of Π, since the set consisting of units of Π / Π_{0} is one-toone onto $B, \Pi / \Pi_{0}$ is represented by $\underset{\lambda}{\cup} B_{\lambda} \times G_{e} / N_{e} \times B_{\lambda}$.

§5. Cohomology with values in a sheaf of groupoids on a topological space. ${ }^{[1][2]}$

Definition. Let P, Q and R be sets of elements, and let R have a subset D whose elements are called neuter. Let us consider a sequence:

$$
\begin{equation*}
P \xrightarrow{u} Q \xrightarrow{v} R, \tag{5.1}
\end{equation*}
$$

where u and v are mappings. When $v^{-1}(D)=u(P)$, we say that the sequence (5.1) is exact as usual. Further suppose that Q has neuter elements which form a subset C of Q, and that $v(C) \subset D$ and that a mapping $p: Q \rightarrow C$ is defined such that the restriction of p to C is identity. And suppose that P is a groupoid of operators on Q, and that $B=a(P)$ where a is the right unit mapping in P, and that $u(B) \subset C$ and $p u=u a$. The fact that P is a groupoid of operators on Q means the following: $x(\epsilon P)$ can operate on $y(\epsilon Q)$ if and only if $u(a(x))=$ $p(y)$, and $x \cdot y \in Q$, satisfying the following properties:
$(\alpha) p(x \cdot y)=u(b(x))$, where b is the left unit mapping in P.
(β) When $x_{1}, x_{2} \in P, y \in Q$, and $x_{1} x_{2}$ is defined, and $x_{1} x_{2}$ can operate on y, there holds $\left(x_{1} x_{2}\right) \cdot y=x_{1} \cdot\left(x_{2} \cdot y\right)$.
(γ) When $e(\epsilon B)$ can operate on $y(\epsilon Q), e \cdot y=y$.
When the sequence (5.1) satisfies the following conditions, we say that it is strongly exact.
(i) For any $x(\epsilon P), u(x)=x \cdot c$ or $u(x)=x^{-1} \cdot c$ where $c=u(a(x))(\epsilon C)$ or $c=$ $u(b(x))(\epsilon C)$ respectively.
(ii) $\operatorname{For} y_{1}, y_{2}(\epsilon Q)$, $v\left(y_{1}\right)=v\left(y_{2}\right) \Leftrightarrow$ there exists $x(\in P)$ such that $y_{2}=x \cdot y_{1}$.
(iii) $v / C: C \rightarrow D$ is onto.

Lemma 1. If the sequence (5.1) is strongly exact, then it is exact.
Proof. For any $x(\epsilon P), u(x)=x \cdot c$ or $u(x)=x^{-1} \cdot c$ by (i). Hence $v(u(x))=$ $v(x \cdot c)$ or $v\left(x^{-1} \cdot c\right)=v(c) \epsilon D$ by (ii).

Conversely suppose $y \epsilon v^{-1}(D)$ and $v(y)=d(\epsilon D)$. By (iii) there exists $c(\epsilon C)$ such that $v(c)=d$. Therefore, there exists $x(\epsilon P)$ such that $y=x \cdot c=u(x)$ or $u\left(x^{-1}\right)$ by (ii) and (i).

Lemma 2. If P, Q and R are all groupoids, $C=a^{\prime}(Q), p=a^{\prime}, D=a^{\prime \prime}(R)$ (where a^{\prime} and $a^{\prime \prime}$ are the right unit mappings in Q and R resp.), u and v are homomorphisms of groupoids, and if $v / C: C \rightarrow D$ is one-to-one, then P can be a groupoid of operators on Q and we have the following: If the sequence (5.1) is exact, then it is strongly exact under the above operation.

Proof. P can be a groupoid of operators on Q as follows: We say that $x(\epsilon P)$ can operate on $y(\epsilon Q)$ if and only if $y u\left(x^{-1}\right)$ is defined, and in this case we shall define $x \cdot y=y u\left(x^{-1}\right)$. Now $y u\left(x^{-1}\right)$ is defined if and only if $a^{\prime}(y)=b^{\prime}(u$ $\left.\left(x^{-1}\right)\right)=u\left(b\left(x^{-1}\right)\right)=u(a(x))$, where b^{\prime} is the left unit mapping in Q. In this case $a^{\prime}(x \cdot y)=a^{\prime}\left(y u\left(x^{-1}\right)\right)=a^{\prime}\left(u\left(x^{-1}\right)\right)=u\left(a\left(x^{-1}\right)\right)=u(b(x))$, hence this operation satisfies (α), and clearly it satisfies (β) and (γ).

Now suppose the sequence (5.1) is exact, then we can prove its strong exactness as follows:

Proof of (i). Let x be any element of P and let $c=u(b(x))$. Then $x^{-1} \cdot c=$ $c u(x)=u(b(x)) u(x)=b^{\prime}(u(x)) u(x)=u(x)$.

Proof of (ii). Let $y_{1}, y_{2} \in Q$ and $v\left(y_{1}\right)=v\left(y_{2}\right)$. Then $v\left(y_{1}^{-1}\right)=v\left(y_{2}\right)^{-1}$, hence $a^{\prime \prime}\left(v\left(y_{1}^{-1}\right)\right)=a^{\prime \prime}\left(v\left(y_{2}\right)^{-1}\right)=b^{\prime \prime}\left(v\left(y_{2}\right)\right)$, hence $v\left(a^{\prime}\left(y_{1}^{-1}\right)\right)=v\left(b^{\prime}\left(y_{2}\right)\right)$. Therefore, since $v / C: C \rightarrow D$ is one-to-one, $a^{\prime}\left(y_{1}^{-1}\right)=b^{\prime}\left(y_{2}\right)$. Hence $y_{1}^{-1} y_{2}$ is defined, and $v\left(y_{1}^{-1} y_{2}\right)=$ $v\left(y_{1}^{-1}\right) v\left(y_{2}\right)=a^{\prime \prime}\left(v\left(y_{2}\right)\right) \in D$. Hence from the exactness of the sequence (5.1) there exists $x^{-1} \in P$ such that $y_{1}^{-1} y_{2}=u\left(x^{-1}\right)$. Hence $y_{2}=y_{1} u\left(x^{-1}\right)=x \cdot y_{1}$. Conversely let $y_{2}=x \cdot y_{1}$, then $v\left(y_{2}\right)=v\left(y_{1} u\left(x^{-1}\right)\right)=v\left(y_{1}\right) v\left(\left(u\left(x^{-1}\right)\right)=v\left(y_{1}\right)\right.$ from the exactness of the sequence (5.1).
(iii) is contained in our given assumption.

Suppose that X is a topological space, \mathfrak{P} is a sheaf of groupoids on X, \mathfrak{p} is the projection mapping from \mathfrak{F} onto X, \mathfrak{B} is the subsheaf consisting of
units of $\mathfrak{P}, \mathfrak{R}$ is a subsheaf of normal subgroupoids of \mathfrak{P}, and that $\mathfrak{n}(=\mathfrak{p} / \mathfrak{R})$ is the restriction of \mathfrak{p} to \mathfrak{R}. The fact that \mathfrak{R} is a subsheaf of normal subgroupoids of \mathfrak{F}, means that $\mathfrak{R}_{x}\left(=\mathfrak{n}^{-1}(x)\right.$) is a normal subgroupoid (we have defined in $\S 3$) of $\mathfrak{P}_{x}\left(=\mathfrak{p}^{-1}(x)\right.$) for any $x(\epsilon X)$. Let $\mathfrak{S}=\mathfrak{F} / \mathfrak{R}$, then this is a sheaf of groupoids on X. And $\mathfrak{B} \rightarrow \mathfrak{N} \xrightarrow{i} \mathfrak{P}{ }^{j} \rightarrow \mathfrak{C} \rightarrow \mathfrak{B}$ is exact. Hereafter, we shall denote the unit mappings in $\mathfrak{P}, \mathfrak{F}$ and \mathfrak{F} by the same notations a and b, and use the following notations as usual.
$C^{0}(\mathfrak{U}, \mathfrak{P})$: set of 0 -cochains in \mathfrak{P} over an open covering $\mathfrak{U}\left(=\left(U_{i}\right)_{i \in I}\right)$ of X.
$Z^{1}(\mathfrak{U}, \mathfrak{P})$: set of 1-cocycles in \mathfrak{F} over \mathfrak{U}, etc.
We have an analogous proposition as in a sheaf of groups.
Proposition 4. (5.2) $H^{0}(X, \mathfrak{F}) \xrightarrow{i{ }^{i 6}} H^{0}(X, \mathfrak{R}) \xrightarrow{i_{0}} H^{0}(X, \mathfrak{P}) \xrightarrow{j_{0}} H^{0}(X, \mathfrak{K}) \xrightarrow{\delta_{0}}$ $H^{1}(X, \mathfrak{R}) \xrightarrow{i_{1}} H^{1}(X, \mathfrak{P}) \xrightarrow{j_{1}} H^{1}(X, \mathfrak{K})$ is exact, and is strongly exact till $H^{1}(X, \mathfrak{P})$.

Proof. We define that the product $p_{1} p_{2}$ of $p_{1}, p_{2}\left(\epsilon H^{0}(X, \mathfrak{P})\right)$ is defined if and only if $p_{1}(x) p_{2}(x)$ is defined for any $x(\epsilon X)$. Then $H^{0}(X, \mathfrak{F})$ is a groupoid. Similarly $H^{0}(X, \mathfrak{B}), H^{0}(X, \mathfrak{R})$ and $H^{0}(X, \mathfrak{S})$ are also groupoids, and i_{0}^{\prime}, i_{0} and j_{0} are homomorphisms of groupoids. Let the neuter elements of $H^{0}(X, \mathfrak{B}), H^{0}(X$, $\mathfrak{\Re}), H^{0}(X, \mathfrak{F})$ and $H^{0}(X, \mathfrak{S})$ be unit sections of $\mathfrak{B}, \mathfrak{R}, \mathfrak{F}$ and \mathfrak{S} respectively, then these satisfy the condition in Lemma $2, v / C: C \rightarrow D$ is one-to-one. Evidently the sequence (5.2) is exact till $H^{0}(X, \mathfrak{S})$, hence by Lemma 2 this is strongly exact till $H^{0}(X, \mathfrak{S})$.

Definition of δ_{0}. Let h be any element of $H^{0}(X, \mathfrak{S})$ and let $\mathfrak{U}\left(=\left(U_{i}\right)_{i \epsilon I}\right)$ be a sufficiently fine open covering of X. There exists $p_{i}\left(\epsilon H^{0}\left(U_{i}, \mathfrak{F}\right)\right)$ such that $j_{0}\left(p_{i}\right)=h / U_{i}$ for any $i(\epsilon I)$. Then, there exists $n_{i j}\left(\epsilon H^{0}\left(U_{i j}, \mathfrak{R}\right)\right)$ such that $p_{i}=$ $n_{i j} p_{j}$ on $U_{i j}\left(=U_{i} \cap U_{j}\right)$. Since $n_{i j}=p_{i} p_{j}^{-1}$, we have $\left(n_{i j}\right) \in Z^{1}(\mathfrak{U}, \mathfrak{R})$. We define $\delta_{0}(h)$ is the element of $H^{1}(X, \mathfrak{R})$ which is represented by $\left(n_{i j}\right)$. Evidently this does not depend on the choice of $\left(p_{i}\right)$.

Proof of the strong exactness at $H^{0}(X, \mathfrak{k})$. Since $H^{0}(X, \mathfrak{S})$ and $H^{0}(X, \mathfrak{S})$ are groupoids, $H^{0}(X, \mathfrak{P})$ can be a groupoid of operators on $H^{0}(X, \mathfrak{S})$ as stated generally in the proof of Lemma 2. That is, $p\left(\epsilon H^{0}(X, \mathfrak{F})\right)$ can operate on $h\left(\epsilon H^{0}(X, \mathfrak{S})\right)$ if and only if $h j_{0}\left(p^{-1}\right)$ is defined, and we have defined that $p \cdot h=$ $h j_{0}\left(p^{-1}\right)$.

Proof of (i). Let p be any of $H^{0}(X, \mathfrak{P})$, then $p^{-1} \cdot j_{0}(b(p))=j_{0}(b(p)) j_{0}(p)=$ $b\left(j_{0}(p)\right) j_{0}(p)=j_{0}(p)$.

Proof of (ii). Let $h_{1}, h_{2} \in H^{0}(X, \mathfrak{S})$, and we assume $h_{2}=p \cdot h_{1}$ where $p \epsilon$ $H^{0}(X, \mathfrak{P})$. Let $j_{0}\left(p_{1 i}\right)=h_{1} / U_{i}$, then $j_{0}\left(p_{1 i} p^{-1}\right)=h_{2} / U_{i}$, therefore $\delta_{0}\left(h_{1}\right)=\delta_{0}\left(h_{2}\right)$. Conversely we assume $\delta_{0}\left(h_{1}\right)=\delta_{0}\left(h_{2}\right)$, and let $j_{0}\left(p_{1 i}\right)=h_{1} / U_{i}$ and let $j_{0}\left(p_{2 i}\right)=h_{2} / U_{i}$, then $p_{1 i} p_{1 j}^{-1}=n_{i} p_{2 i} p_{2 j}^{-1} n_{j}^{-1}$ on $U_{i j}$ where $\left(n_{i}\right) \in C^{0}(\mathfrak{U}, \mathfrak{M})$. Therefore $p_{2 i}^{-1} n_{i}^{-1} p_{1 i}=$ $p_{2 j}^{-1} n_{j}^{-1} p_{1 j}$ on $U_{i j}$, hence ($p_{2 i}^{-1} n_{i}^{-1} p_{1 i}$) defines an element of $H^{0}(X, \mathfrak{F})$, we shall put this as p. Then we have $n_{i} p_{2 i}=p_{1 i} p^{-1}$ on U_{i}. Hence $j_{0}\left(n_{i} p_{2 i}\right)=j_{0}\left(p_{1 i}\right) j_{0}\left(p^{-1}\right)$ on U_{i}, that is $h_{2} / U_{i}=p \cdot h_{1} / U_{i}$ for any U_{i}, so that we have $h_{2}=p \cdot h_{1}$.

Proof of (iii). Let a neuter element e of $H^{1}(X, \mathfrak{R})$ be represented by ($n_{i j}$) $\left(\epsilon Z^{1}(\mathfrak{U}, \mathfrak{R})\right.$), where $n_{i j}$ is a unit section over $U_{i j}$. Then $n_{i i}=n_{i j}=n_{j j}$ on $U_{i j}$.

Therefore $\left(n_{i i}\right)$ defines a neuter element n of $H^{0}(X, \mathfrak{P})$, and $\delta_{0}\left(j_{0}(n)\right)=e$. Thus δ_{0} maps the set of neuter elements of $H^{0}(X, \mathfrak{S})$ onto the set of those of $H^{1}(X$, $\mathfrak{R})$.

Proof of the strong exactness at $H^{1}(X, \mathfrak{R}) . \quad H^{0}(X, \mathfrak{K})$ can be a groupoid of operators on $H^{1}(X, \mathfrak{N})$ as follows: Suppose that $h \in H^{0}(X, \mathfrak{F}), n \in H^{1}(X, \mathfrak{R})$ and that n is represented by $\left(n_{i j}\right)\left(\epsilon Z^{1}(\mathfrak{U}, \mathfrak{M})\right)$. In this case $a(n)$ is the neuter element of $H^{1}(X, \mathfrak{R})$ which is represented by $\left(n_{i j}^{\prime}\right)=\left(n_{i i}\right)=\left(n_{j j}\right)\left(\epsilon Z^{1}(\mathfrak{U}, \mathfrak{R})\right.$). If and only if $\delta_{0}(a(h))=a(n), h$ can operate on n, and we define $h \cdot n$ as follows. We replace \mathfrak{U} by a finer open covering when necessary, and we denote it by the same notation \mathfrak{U}. Let $j_{0}\left(p_{i}\right)=h / U_{i}$, where $p_{i} \in H^{0}\left(U_{i}, \mathfrak{P}\right)$, then $j_{0}\left(a\left(p_{i}\right)\right)=a\left(j_{0}\left(p_{i}\right)\right)$ $=a(h) / U_{i}$. Therefore $\delta_{0}(a(h))$ is the element of $H^{1}(X, \mathfrak{R})$, which is represented by $\left(a\left(p_{i}\right) \alpha\left(p_{j}\right)^{-1}\right)\left(\epsilon Z^{1}(\mathfrak{U}, \mathfrak{R})\right)$. Therefore h can operate on n if and only if $a\left(p_{i}\right) a\left(p_{j}\right)^{-1}=n_{i} n_{i j}^{\prime} n_{j}^{-1}$ on $U_{i j}$, where $\left(n_{i}\right) \in C^{0}(\mathfrak{U}, \mathfrak{R})$. In this case $a\left(p_{j}\right)=b\left(n_{i}\right)=$ $a\left(n_{i}\right)=b\left(n_{i j}^{\prime}\right)=n_{i i}=b\left(n_{i j}\right)$, hence $p_{i} n_{i j} p_{j}^{-1}$ can be defined, and $\left(p_{i} n_{i j} p_{j}^{-1}\right)=\left(\left(p_{i} n_{i j} p_{i}^{-1}\right)\right.$ $\left.\left(p_{i} p_{j}^{-1}\right)\right) \in Z^{1}(\mathfrak{U}, \mathfrak{R})$, thus we define that $h \cdot n$ is the element of $H^{1}(X, \mathfrak{R})$ which is represented by $\left(p_{i} n_{i j} p_{j}^{-1}\right)\left(\epsilon Z^{1}(\mathfrak{U}, \mathfrak{R})\right.$). It does not depend on the choice of (p_{i}) and representatives of n. And this operation satisfies the conditions of opera$\operatorname{tion}(\alpha),(\beta)$ and (γ).

Proof of (i). Let $h \in H^{0}(X, \mathfrak{S})$ and let $j_{0}\left(p_{i}\right)=h / U_{i}$. Then $\delta_{0}(h)$ is the element of $H^{1}(X, \mathfrak{R})$ which is represented by $\left(p_{i} p_{j}^{-1}\right)\left(\epsilon Z^{1}(\mathfrak{U}, \mathfrak{R})\right)$, and this is equal to $h \cdot(a(h))$ by the definition.

Proof of (ii). We assume $n_{2}=h \cdot n_{1}$ for $n_{1}, n_{2}\left(\epsilon H^{1}(X, \mathfrak{P})\right)$ and $h\left(\epsilon H^{0}(X, \mathfrak{F})\right)$, and suppose that $\left(n_{1 i j}\right),\left(n_{2 i j}\right)\left(\epsilon Z^{1}(\mathfrak{U}, \mathfrak{R})\right)$ are representatives of n_{1}, n_{2} respectively and that $j_{0}\left(p_{i}\right)=h / U_{i}$. Then $n_{2 i j}=n_{i} p_{i} n_{1 i j} p_{j}^{-1} n_{j}^{-1}$ on $U_{i j}$ where $\left(n_{i}\right) \in C^{0}(\mathfrak{U}, \mathfrak{M})$, so that we have $i_{1}\left(n_{1}\right)=i_{1}\left(n_{2}\right)$. Conversely, we assume that $i_{1}\left(n_{1}\right)=i_{1}\left(n_{2}\right)$. Then, $n_{2 i j}=p_{i} n_{1 i j} p_{j}^{-1}$ on $U_{i j}$ where $\left(p_{i}\right) \in C^{0}(\mathfrak{U}, \mathfrak{P})$, hence $n_{2 i j} p_{j}=\left(p_{i} n_{1 i j} p_{i}^{-1}\right) p_{i}$ on $U_{i j}$, so we have $j_{0}\left(p_{j}\right)=j_{0}\left(p_{i}\right)$ on $U_{i j}$. Therefore, $\left(j_{0}\left(p_{i}\right)\right)$ defines an element h of $H^{0}(X, \mathfrak{S})$, and $n_{2}=h \cdot n_{1}$.

In this case, it is clear that (iii) is satisfied.
Finally the exactness at $H^{1}(X, \mathfrak{S})$ is clear.
§6. Groupoid extension. Suppose that \mathfrak{B} is a sheaf of transitive groupoids on X, and that $f=\left(f_{i j}\right) \in Z^{1}(\mathfrak{U}, \mathfrak{B})$. Let $\mathscr{S f}_{i}^{f}$ be a subsheaf of \mathfrak{P} / U_{i} which consists of elements g_{i} such that $a\left(g_{i}\right)=b\left(g_{i}\right) \in f_{i i}\left(U_{i}\right)$, and let $\Gamma=\cup \cup_{i \in I} \not \mathscr{H}_{i}$. When (i, $\left.g_{i}\right) \in \mathscr{F}_{i} f$ and $\left(j, g_{j}\right) \in \mathscr{S H}_{j}$, it is said that these are equivalent if and only if $g_{i}=f_{i j} g_{j} f_{j i}$ on $U_{i j}$. The quotient sheaf of Γ relative to the above equivalence relation is a sheaf of groups on X, and denoted by lS^{f}. Then as shown by A. Haefliger ${ }^{[2]}$ there exists a one-to-one correspondence $H^{1}(X, \mathfrak{S}) \rightarrow H^{1}\left(X, \mathscr{S}^{f f}\right)$.

In this section we consider the inverse of the above relation. That is to say, when at first a sheaf of groups $(\mathfrak{5}$ on X is given, we want to induce a sheaf of transitive groupoids \mathfrak{F} on X and $f(\epsilon Z(\mathfrak{U}, \mathfrak{P}))$ such that we have the above one-to-one correspondence $H^{1}(X, \mathfrak{F}) \rightarrow H^{1}\left(X, \mathscr{S}^{f}\right)$ where we can identify $\left.H^{1}\left(X,{ }^{\prime \prime}\right)^{f}\right)$ with $H^{1}(X,(5)$.

When G is any group and B is any set, $\Pi=B \times G \times B$ becomes a transitive groupoid as in $\S 4$, and B can be identified with the set of units of $I I$. We shall call this $I I$ groupoid extension of G by B.

Suppose ${ }^{5}$ is a given sheaf of groups on X, B is any topological space with discrete topology, and also suppose $\mathfrak{B}=X \times B$. Then \mathfrak{B} is a trivial sheaf on X.

Let $\alpha: \mathfrak{G} \rightarrow X$ and $\beta: \mathfrak{B} \rightarrow X$ be projection mappings, and let $\mathfrak{B}=(\mathfrak{B}, \mathfrak{G}, \mathfrak{B})$ be the set of triples $z=(p, g, q)$, where $p, q \in \mathfrak{B}$ and $g \in(5)$ such that $\beta(p)=\alpha(g)$ $=\beta(q)$, and let $\mathfrak{p}: \mathfrak{F} \rightarrow X$ such that $\mathfrak{p}(z)=\beta(p)$, be the projection mapping from \mathfrak{F} onto X. And let W_{p}, V_{g} and W_{q} be the open sets containing p, g and q in \mathfrak{B}, ${ }^{(55}$ and \mathfrak{B} respectively which are homeomorphic to an open set U of $X(p(z) \in U)$. We shall define the topology in \mathfrak{F} such that $\left\{\left(W_{p}, V_{g}, W_{q}\right)\right\}$ is the fundamental system of the open sets. Then \mathfrak{F} is a sheaf on X. In each $\mathfrak{P}_{x}\left(=\mathfrak{p}^{-1}(x)\right)(x \in X)$, we introduce a composition law as mentioned in §4. In this way \mathfrak{F} becomes a sheaf of transitive groupoids on X. And \mathfrak{B} can be regarded as the subsheaf of units of \mathfrak{P}.

Let $t\left(\epsilon H^{1}(X, \mathfrak{P})\right)$ be represented by $\left(h_{i j}\right)=\left(\left(p_{i j}, g_{i j}, q_{i j}\right)\right)\left(\epsilon Z^{1}(\mathfrak{U}, \mathfrak{F})\right)$. Since $h_{i i}=b\left(h_{i j}\right)$ and $h_{j j}=a\left(h_{i j}\right)$ on $U_{i j}$, there hold $\left(p_{i i}, g_{i i}, q_{i i}\right)=b\left(p_{i j}, g_{i j}, q_{i j}\right)=\left(p_{i j}, e, p_{i j}\right)$ and $\left(p_{j j}, g_{j j}, q_{j j}\right)=a\left(p_{i j}, g_{i j}, q_{i j}\right)=\left(q_{i j}, e, q_{i j}\right)$ on $U_{i j}$, where e is the unit section of $\mathscr{C H}$ over $U_{i j}$. Hence $p_{i j}=p_{i i}=q_{i i}$ and $q_{i j}=p_{j j}=q_{j j}$ on $U_{i j}$. We put $p_{i i}=q_{i i}=p_{i}$, then $h_{i j}$ becomes the form ($p_{i}, g_{i j}, p_{j}$). So, from the relation $h_{i j} h_{j k}=h_{i k}$ on $U_{i j k}$ $\left(\Rightarrow U_{i} \cap U_{j} \cap U_{k}\right.$), we have $g_{i j} g_{j k}=g_{i k}$ on $U_{i j k k}$. Hence $\left(g_{i j}\right) \in Z^{1}(\mathfrak{U}$, (5) $)$, by this the element of $H^{1}(X,(5)$ is determined and it does not depend on representatives of t. Conversely, when $l\left(\in H^{1}(X,(\mathfrak{G}))\right.$ is represented by $\left(g_{i j}\right)\left(Z^{1}(\mathfrak{U}, \mathfrak{G})\right)$, let $\left(p_{i}\right)$ be any element of $C^{0}(\mathfrak{U}, \mathfrak{B})$, then $\left(h_{i j}\right)=\left(\left(p_{i}, g_{i j}, p_{j}\right)\right) \in Z^{1}(\mathfrak{U}, \mathfrak{F})$. By this the element of $H^{1}(X, \mathfrak{P})$ is determined and it does not depend on the choice of (p_{i}) and representatives of l. So we have a one-to-one correspondence $H^{1}(X, \mathfrak{P}) \rightarrow$ $H^{1}(X,(5)$. This is no other than the following correspondence.

Let c be the neuter element of $H^{1}\left(X,{ }^{(5)}\right)$ represented by $\left(e_{i j}\right)\left(\epsilon Z^{1}(\mathfrak{U}, \mathfrak{5 j})\right)$, where $e_{i j}$ is the unit section of $\mathfrak{G b}$ over $U_{i j}$, and let $\left(p_{i}\right)$ be any of $C^{0}(\mathfrak{U}, \mathfrak{B})$. Then $f=\left(f_{i j}\right)=\left(\left(p_{i}, e_{i j}, p_{j}\right)\right) \in Z^{1}(\, \mathfrak{P})$. Let $\mathscr{S 5}^{f}$ be the sheaf of groups on X associated to f such that we have stated at first in this section, then $\mathscr{G F}^{f}$ is isomorphic to (S. It results from the following: Since $f_{i i}=\left(p_{i}, e_{i i}, p_{i}\right), \mathscr{S}_{i}^{f}$ consists of elements such as $\left(i,\left(p_{i}, g_{i}, p_{i}\right)\right)$ where $g_{i} \in \mathbb{G}$. And the equivalence relation is as follows: $\left(i,\left(p_{i}, g_{i}, p_{i}\right)\right)$ is equivalent to $\left(j,\left(p_{j}, g_{j}, p_{j}\right)\right)$, if and only if ($\left.p_{i}, g_{i}, p_{i}\right)=\left(p_{i}, e_{i j}, p_{j}\right)$ $\left(p_{j}, g_{j}, p_{j}\right)\left(p_{j}, e_{j i}, p_{i}\right)=\left(p_{i}, g_{j}, p_{i}\right)$ on $U_{i j}$, that is $g_{i}=g_{j}$ on $U_{i j}$. Therefore [$\left(i,\left(p_{i}\right.\right.$, $\left.\left.\left.g_{i}, p_{i}\right)\right)\right] \epsilon \mathscr{S 5}^{f}\left(\right.$ the equivalence class containing $\left(i,\left(p_{i}, g_{i}, p_{i}\right)\right) \rightarrow g_{i} \in \mathscr{E}$ is an isomorphism.

Therefore $H^{1}\left(X, \mathscr{F}^{f}\right)$ is one-to-one onto $H^{1}(X, \mathfrak{F})$. Now, the one-to-one correspondence $\varphi: H^{1}(X, \mathfrak{P}) \rightarrow H^{1}\left(X,\left(5_{5}^{f}\right)\right.$ stated at first in this section is as follows: Let $\left(h_{i j}\right)=\left(\left(p_{i}, g_{i j}, p_{j}\right)\right)\left(\epsilon Z^{1}(\mathbb{U}, \mathfrak{P})\right)$ be a representative of any $s\left(\epsilon H^{1}(X\right.$, $\mathfrak{F})$). Then $\mathscr{P}(s)$ is the element of $H^{1}\left(X, \mathscr{S H}^{f}\right)$ which is represented by ($\left[\left(i, h_{i j} f_{j i}\right)\right]$) $\left(\in Z^{1}\left(!, \mathscr{S H}^{f}\right)\right)$, where $h_{i j} f_{j i}=\left(p_{i}, g_{i j}, p_{j}\right)\left(p_{j}, e_{j i}, p_{i}\right)=\left(p_{i}, g_{i j}, p_{i}\right)$.

Therefore $H^{1}(X, \mathfrak{B}) \rightarrow H^{1}(X,(5)$ stated before is no other than the product $H^{1}(X, \mathfrak{F}) \rightarrow H^{1}\left(X, 5^{f}\right) \rightarrow H^{1}(X$, (5) $)$. Thus we have the following:

Proposition 5. Suppose $\mathbb{E S}^{\text {5 }}$ is a sheaf of groups on X. Then there exists a sheaf of transitive groupoids \mathfrak{F} on X such that we have a one-to-one correspondence $H^{1}(X, \mathfrak{F}) \rightarrow H^{1}(X, \mathfrak{G})$. Let $f=\left(\left(p_{i}, e_{i j}, p_{j}\right)\right) \in Z^{1}(\mathfrak{U}, \mathfrak{F})$ where $e_{i j}$ is the unit
 one-to-one. And the product $H^{1}(X, \mathfrak{P}) \rightarrow H^{1}(X, \mathfrak{B}) \rightarrow H^{1}\left(X, \mathscr{S H}^{f}\right)$ is no other than the one-to-one correspondence $H^{1}(X, \mathfrak{P}) \rightarrow H^{1}\left(X, \mathscr{F}^{f}\right)$ stated at first in this section.
§7. Suppose \mathfrak{F} is a sheaf of transitive groupoids on X, \mathfrak{p} is its projection mapping, \mathfrak{B} is the subsheaf of \mathfrak{F} that consists of units of \mathfrak{F} and that \mathfrak{B} has a section e over X. And let us consider the sheaf of groups $\sqrt{5}$ on X which is the subsheaf of \mathfrak{P} consisting of $g\left(\epsilon \mathfrak{P}_{x}=\mathfrak{p}^{-1}(x)\right)$ for any $x(\epsilon X)$ such that $a(g)$ $=b(g)=e(x)$.

Next let $\mathfrak{F}^{\prime}(=(\mathfrak{B}, \mathfrak{E}, \mathfrak{B}))$ be the set of triples (p, g, q), where $p, q \in \mathfrak{B}_{x}=$ $\mathfrak{p}^{-1}(x) \cap \mathfrak{B}$ and $g \in \mathfrak{B}_{x}=\mathfrak{p}^{-1}(x) \cap \mathfrak{S}$. Then \mathfrak{S}^{\prime} is a sheaf of transitive groupoids on X as in the last section.

Let us consider the one-to-one correspondences: $H^{1}(X, \mathfrak{P}) \xrightarrow{\varphi} H^{1}\left(X, \mathfrak{S}^{\prime}\right) \xrightarrow{\varphi^{\prime}}$ $H^{1}(X, \mathfrak{F})$. Let s be any element of $H^{1}(X, \mathfrak{F})$, and let $f=\left(f_{i j}\right)\left(\epsilon Z^{1}(\mathfrak{U}, \mathfrak{F})\right)$ be its representative. We replace \mathfrak{U} by a finer open covering of X when necessary, but here we denote it by the same notation \mathfrak{U}. Since \mathfrak{P} is transitive, for any $i \in I$ there exists a section $z_{e f_{i i}}$ of \mathfrak{F} over U_{i} such that $b\left(z_{e f_{i i}}\left(U_{i}\right)\right)=e\left(U_{i}\right)$ and $a\left(z_{e f_{i i}}\left(U_{i}\right)\right)=f_{i i}\left(U_{i}\right)$. We denote $z_{e f_{i i}}^{-1}$ by $z_{f_{i i} e}$, then $f_{i j}^{\prime}=\left(f_{i i}, z_{e f_{i i}} f_{i j} z_{f_{j j}} e, f_{j j}\right)$ is a section of \mathfrak{F}^{\prime} over $U_{i j}$, and $f_{i j}^{\prime} f_{j k}^{\prime}=f_{i j}^{\prime}$ on $U_{i j k}$. Hence ($f_{i j}^{\prime}$) represents an element $s^{\prime}\left(\epsilon H^{1}\left(X, \mathfrak{F}^{\prime}\right)\right)$. Since s^{\prime} does not depend on representatives of s and the choice of $z_{e f_{i i}}$, we define that $\varphi(s)=s^{\prime}$.

Put $g_{i j}=z_{e f_{i i}} f_{i j} z_{f_{j} e}$, then $g_{i j}$ is a section of (5) over $U_{i j}$, and $g_{i j} g_{j k}=g_{i k}$ on $U_{i j k}$. Hence $\left(g_{i j}\right) \in Z^{1}(\mathfrak{U}, \mathfrak{G})$. The element of $H^{1}(X, \mathfrak{G})$ represented by $\left(g_{i j}\right)$ is denoted by t. Since t does not depend on representatives of s^{\prime}, we define that $\varphi^{\prime}\left(s^{\prime}\right)=t$. It is clear that φ and φ^{\prime} are both one-to-one. The neuter element of $H^{1}(X, \mathfrak{P})$ is mapped by φ on the neuter element of $H^{1}\left(X, \mathfrak{P}^{\prime}\right)$ and it is mapped by φ^{\prime} on the neuter element of $H^{1}(X,(5)$.

Thus we have the following:
Proposition 6. Suppose that \mathfrak{F} is a sheaf of transitive groupoids on a topological space X, \mathfrak{B} is the subsheaf of \mathfrak{P} consisting of units of \mathfrak{P} and that \mathfrak{B} has a section e over X. And suppose \mathfrak{G} is the sheaf of groups on X, which consists of $g(\epsilon \mathfrak{B})$ such that $a(g)=b(g)=e$, and let $\mathfrak{F}^{\prime}=(\mathfrak{B}, \mathfrak{F}, \mathfrak{B})$.

Then there exist one-to-one correspondences: $H^{1}(X, \mathfrak{P}) \xrightarrow{\varphi} H^{1}\left(X, \mathfrak{P}^{\prime}\right) \xrightarrow{\varphi^{\prime}} H^{1}$ (X, \mathfrak{F}), in which the neuter element of $H^{1}(X, \mathfrak{F})$ corresponds to the neuter elements of $H^{1}\left(X, \mathfrak{P}^{\prime}\right)$ and $H^{1}(X, \mathfrak{G})$.

We consider a geometrical meaning of this Proposition. Let (E, p) be a fibre space on \mathfrak{B}, where p is its projection mapping. And suppose \mathfrak{F} is a sheaf
of transitive groupoids on X which operates on (E, p). That is, $z(\epsilon \mathfrak{P})$ can operate on $y(\epsilon(E, p))$ if and only if $a(z)=p(y)$, and $z \cdot y \epsilon(E, p)$, satisfying the following:
(α) $p(z \cdot y)=b(z)$.
(β) When $z_{1}, z_{2} \in \mathfrak{P}, y \in(E, p), z_{1} z_{2}$ is defined and $z_{1} z_{2}$ can operate on y, then $\left(z_{1} z_{2}\right) \cdot y=z_{1} \cdot\left(z_{2} \cdot y\right)$.
(γ) When $e(\epsilon \mathfrak{B})$ can operate on $y(\epsilon(E, p)), e \cdot y=y$.
Suppose $s \in H^{1}(X, \mathfrak{P})$ and that $f=\left(f_{i j}\right)\left(\epsilon Z^{1}(\mathfrak{U}, \mathfrak{P})\right)$ is its representative. Let $E_{i}^{f}=p^{-1}\left(f_{i i}\left(U_{i}\right)\right)$ and let an element of E_{i}^{f} be denoted by $\left(i, y_{i}\right)$. In $\sum=\cup E_{i \in I}^{f}$, when $x \in U_{i j},\left(i, y_{i}\right) \in E_{i}^{f},\left(j, y_{j}\right) \in E_{j}^{f}, p\left(y_{i}\right)=f_{i j}(x)$ and $p\left(y_{j}\right)=f_{j j}(x)$, we shall say that $\left(i, y_{i}\right)$ is equivalent to $\left(j, y_{j}\right)$ if $y_{i}=f_{i j}(x) \cdot y_{j}$. E^{f} is the quotient space of \sum relative to the above equivalence relation. The element of E^{f} represented by $\left(i, y_{i}\right)$, is denoted by $\left[\left(i, y_{i}\right)\right]$. Let $p^{f}: E^{f} \rightarrow X$ such that $p^{f}\left(\left[\left(i, y_{i}\right)\right]\right)=\mathfrak{p}\left(p\left(y_{i}\right)\right)$ be the projection mapping from E^{f} onto X. Then (E^{f}, p^{f}) is a fibre space on X, which is locally homeomorphic to (E, p). When $f^{\prime}=\left(f_{i j}^{\prime}\right)\left(\epsilon Z^{1}(\mathfrak{U}, \mathfrak{F})\right)$ is another representative of $s,\left(E^{f^{\prime}}, p^{f^{\prime}}\right)$ is isomorphic to ($\left.E^{f}, p^{f}\right)$. Thus, as shown in [2], we have a one-to-one corespondence between the elements of $H^{1}(X, \mathfrak{P})$ and the classes of fibre spaces (E^{f}, p^{f}) which are isomorphic to one another.

Suppose that $t=\phi^{\prime} \varphi(s)\left(\epsilon H^{1}(X, \mathfrak{G})\right), g=\left(g_{i j}\right)\left(\epsilon Z^{1}(\mathfrak{U}, \mathfrak{G})\right)$ is its representative, and that $E_{e}=p^{-1}(e(X))(\subset E)$. Then E_{e} is a fibre space on $e(X)$ and we define $p_{e}=\mathfrak{p p}$. Thus (E_{e}, p_{e}) is a fibre space on X with projection mapping p_{e}. Further ${ }^{(55}$ becomes a sheaf of groups of operators on (E_{e}, p_{e}) as follows: $h(\epsilon$ (5) $)$ can operate on $y_{e}\left(\epsilon E_{e}\right)$ if and only if $\mathfrak{p}(h)=p_{e}\left(y_{e}\right)$. In fact, in this case if we put $\mathfrak{p}(h)=p_{e}\left(y_{e}\right)=x(\epsilon X)$, then $a(h)=e(x)=p\left(y_{e}\right)$, hence h can operate on y_{e} by means of operation of \mathfrak{F} on (E, p). And since $p\left(h . y_{e}\right)=b(h)=e(x), h \cdot y \in E_{e}$ and $p_{e}\left(h \cdot y_{e}\right)=x$. Thus, as shown in [1] we can define (E_{e}^{g}, p_{e}^{g}) which is fibre space on X. That is, let $E_{e i}^{g}=E_{e} / U_{i}$ and $\sum_{e}=\cup_{i \epsilon_{I}} E_{e i}^{g}$, then E_{e}^{g} is the quotient space of \sum_{e} relative to the equivalence relation such that $y_{e i}\left(\epsilon E_{e i}^{g}\right)$ is equivalent to $y_{e j}\left(\epsilon E_{e i}^{g}\right)$ if $y_{e i}=g_{i j} \cdot y_{e j}$. And as shown in [1], we have a one-to-one correspondence between the elements of $H^{1}\left(X, \mathbb{S H}^{\prime}\right)$ and the classes of fibre spaces (E_{e}^{g}, p_{e}^{g}) which are isomorphic to one another.

In connection with this we have the following:
Proposition 7. (E^{f}, p^{f}) is isomorphic to (E_{e}^{g}, p_{e}^{g}).
Proof. We shall denote by $\left[y_{e i}\right]$ the element of E_{e}^{g} which is represented by $y_{e i}$. Let $\left[\left(i, y_{i}\right)\right]$ be any element of E^{f}, and if $\left(j, y_{j}\right)$ is another representative of $\left[\left(i, y_{i}\right)\right]$, then $y_{i}=f_{i j^{*}} \cdot y_{j}$. Then, $y_{e i}=z_{e f_{i i}} \cdot y_{i} \in E_{e i}^{g}, y_{e j}=z_{e f_{j j}} \cdot y_{j} \in E_{e j}^{g}$ and $y_{e i}=z_{e f_{i i}} \cdot y_{i}=z_{e f_{i i}} \cdot\left(f_{i j} \cdot y_{j}\right)=\left(z_{e f_{i i}} f_{i j} z_{f_{j j} e}\right) \cdot\left(z_{e f_{j j}} \cdot y_{j}\right)=g_{i j} \cdot y_{e j}$. Thus, clearly $h:\left[\left(i, y_{i}\right)\right]$ $\epsilon E^{f} \rightarrow\left[y_{e i}\right] \epsilon E_{e}^{g}$ is a homeomorphic mapping and $p_{e}^{g} h=p^{f}$, hence h is an isomorphism from E^{f} onto E_{e}^{g}.

Thus we have the following commutative diagram:

This is a geometrical meaning of $\varphi^{\prime} \varphi$.
In conclusion, I wish to express my thanks to Prof. K. Morinaga for his encouragement and kind guidance.

References

[1] A. Grothendieck, A general theory of fibre spaces with structure sheaf, University of Kansas, Report no. 4 (1955).
[2] A. Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv., 32 (1957-58), 248-329.
[3] P. Dedecker, Sur la cohomologie non abelienne I (dimension deux), Canadian J. of Math. vol. 2, no. 2 (1960), 231-251.
[4] R. H. Bruch, A suvey of binary systems, Berlin, (1958).

[^0]: * The numbers in brackets refer to References at the end of this paper.

