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In the paper [3], Koizumi and Shimura solved affirmatively the follow-
ing problem: let A and B be abelian varieties defined over a field k with a prime
divisor p. Suppose that there exists a homomorphism of A onto B, defined over
k. If A is without defect for p, then is there an abelian variety which is iso-
morphic to B over k and without defect for p ? In this paper we shall generalize
this result for the cases of arbitrary group varieties and homogeneous spaces
(Theorem 3), and apply it to a problem which concerns compatibility of the
reduction process with the process making a coset space of a group variety
by a subgroup (Theorem 4). Our generalization is not complete, because we
need a ground ring extension in the process of constructing a group p'-variety
(resp. a homogeneous p'-space) from a pre-group ^-variety (resp. a pre-homo-
geneous p-space). However if k is complete with respect to the prime p, we
do not need any ground ring extension. In other words it is possible to gen-
eralize completely the result obtained in [3] in this case.

First we shall define a pre-group ^-variety, a pre-transformation p-space,
etc., which corresponds to a pre-group, a pre-transf ormation space, etc. in
[9], and prove some basic results (§1). Next Weil's idea in [11] is adapted
to the case of p-simple }>varieties. The main result of §2 is stated in Theorem
1, whose applications will be seen in §3. Then we shall apply Weil's method
of construction of a group variety (resp. a transformation space) from a pre-
group (resp. a pre-transformation space) to the case of ^-simple ^-varieties.
Theorem 2 in §3 corresponds to the main theorem in [9]. Theorem 3 is, then,
a direct consequence of the basic results in §1 and Theorem 2. In §4 an ap-
plication of Theorem 3 is given, to which we referred already in the above.
§5 is devoted to the study of the reduction of generalized Jacobian varieties
under a certain restriction.

Throughout the paper, we shall fix the basic field k and a discrete valua-
tion ring o with the maximal ideal p and denote by K the residue class field
o/p. The terminologies and the notations in [8] and [13] will be freely used.

Here the author wishes to express his hearty thanks to Prof. Y. Nakai
for his suggestions and his advice during the period of completing this work.

§1. Group p-varieties and homogeneous p-spaces

Let (V, V) and (IV, W) be two p-simple p-varietiesυ, and let/be a rational

1) We shall denote p-varieties by (V, V) etc.. For the precise notations, see §5 in Q3]. A p-variety
is called to be p-simple, if the corresponding model of a function field is p-simple.
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mapping of V into W defined over k. Let x be a generic point of V over k.
Then y=*f(χ) is a generic point of a p-subvariety (JF0, WQ) of (JF, W). Let M
and iV be the models M(V, V) and M(JF0, JF0) of the function fields k(x) and
&(y) respectively. Let a be a point of (F, F) such that the spot P of M cor-
responding to α dominates a spot of JV. Then we say that / is defined at a. If
/ is defined at a generic point of V over K, we say that / is defined modulo p.
Moreover if the generating spot of M over p dominates that of iV, / is called
a p-rational mapping. Then / defines naturally a rational mapping / of V into
JFo, which maps a generic point of V over K onto that of Wo. Let / be a bi-
rational correspondence between F and JF. If / and f1 are both p-rational, we
say that / is a p-birational correspondence between (F, F) αraϊ (>F, B̂ ). Then
we say that f is biregular at a in (F, F), if the corresponding spot P to a in Λf
is also a spot of iV.

Let (F, F) be a p-simple p-variety such that F is a pre-group defined over
k2). Let / be the normal law of composition on F. Then if the birational cor-
respondence of F x F into itself, which map (x9 γ) onto (x, f(x, y)) and onto
(f(χ,y\y) respectively, are both ^-birational, we say that (F, V) is a pre-group
p-variety. Let φ be the inverse function of the pre-group F. Then if / and φ
are everywhere defined on (Fx F, F x F) and (F, F) respectively, (F, F) is
called a #rotφ p-variety3).

PROPOSITION 1. Let (F, F) &e α pre-group p-variety. Then the inverse
function φ on V is p-birational.

PROOF. Let x and y (resp. x and y) be independent generic points of F
over k (resp. of V over K) and put z ~f(x, y) (resp. z —f(χ> yj). If μ> is the ra-
tional mapping of Fx F into F which maps (z, y) onto x, μ is p-rational and
we have φ(x) = μ(y, z) (cf. the proof of Proposition 4 in [9]). Therefore we
have [(y, z)S(j, «)] ̂ > O(y, z)2.μ(y9 *)] = [φWS/^Cy, «)]. On the other hand we
have [(y, z)S(y, z)]nϋ;W = [(Λ?)S(Λ)]. Since μ is p-rational, [φ(Λ)S^(y, z)] is
a discrete valuation ring and hence we have [(»£(#)] = [Φ(Λ)S^(J, «)]. This
means that φ is p-birational and φ(x) = μ(y, z). q.e.d.

Let (F, F) be a pre-group to-variety and (JF, W) a p-simple p-variety such
that JF is a pre-transformation space with respect to F, defined over kA\ Let
g be the normal law of composition on W with respect to F, and let x and u
be independent generic points of F and JF over k. If the birational correspond-
ence between Fx W and itself, which maps (x, u) onto (x, g(x, u)), is p-bi-
rational, (JF, /^) is called a pre-trαnsformαtion p-spαce with respect to (F, F).
Moreover if W (resp. W) is a pre-homogeneous space with respect to F (resp.
F)4), (JF, JF) is called a pre-homogeneous p-spαce with respect to (F, F).

2) For the definition, see £9J.

3) Notice that this definition is different from that of £Γ]. Our group p-variety is a group p-variety

without defect for p in the sense of

4) For the definition, see [9]
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Suppose that (V, V) is a group p-variety. If g is defined everywhere on
(Vx W, VxW\ we call (Ψ, W) a transformation p-space with respect to (F, V).
Moreover if W and W are both homogeneous spaces with respect to V and V
respectively, (JF, W) is called a homogeneous p-space with respect to (V, V).

PROPOSITION 2. Let (G, G) be a group p-variety, and let (ff, H) and (T, T)
be a homogeneous p-space and a transformation p-space with respect to (G, G)
respectively. Let X be a rational mapping of H into T such that X is defined
modulo p and X(xu)5) is equal to xX(u) for independent generic points x and u of
G and H over k respectively. Then X is everywhere defined on (H, H).

PROOF. Let a be a point of H and x a generic point of G over κ(a). Then
x~ιά is a generic point of H over κ(a). Then we have, by assumptions, [(#, u)

On the other hand we have [ 0 , u)-&+(x, ί c " 1 ^ ) ] ^ ^ , xu)-^*Qc, α)], and hence,
applying Proposition 7 in [8], we have [(*, u)-^{x, ^~1α)]ΓΛk(xu) = [(xu)-2->(άy].
Therefore the spot \Xχu)-^+(ά)\] dominates the spot [ λ C ^ - ^ λ O Γ ^ ) ] . Since
xu is a generic point of H over k, X is defined at a.

Similarly it is easily seen that λ is defined at any point of H, applying
Proposition 17 of Chap. II in [12] instead of Proposition 7 in [8]. q.e.d.

COROLLARY. Let (G, G) and (F, F) be two group p-varieties. Let X be a
rational mapping of G into F such that X is defined modulo p and X(xy) is equal
to X(x)-X(γ) for any independent generic points x and y of G over k. Then X is
everywhere defined on (G, G).

PROOF. This is a direct consequence of Proposition 2, if we notice that
(G, G) and (F, F) are considered naturally as a homogeneous p-space and a
transformation p-space with respect to (G, G) respectively. q.e.d.

PROPOSITION 3. Let (F, V) be a p-simple p-variety and W a variety defined
over k such that there is a generically surjective mapping f of V into W defined
over k. Then there are a p-simple p-variety (T, T) and a birational correspond-
ence h between W and T defined over k such that fo=2g°f is a p-rational map-
ping of (V, V) into (Γ, T).

PROOF. Let x be a generic point of V over k and x that of V over K. Then
the specialization ring R^\_{x)-^->{xy\ is a discrete valuation ring6). Let y be
the image of x by/. Then k(x) contains k(y). If S is the contraction of R to
k(y), S is also a discrete valuation ring of k(y) whose maximal ideal is generated
by a prime element π of o. Then the residue class field K of S is a finitely
generated regular extension over K. Let zu ..., zt be the elements of S such

5) For simplicity, we shall often write xa, etc. instead of g(x, a), etc..

6) The generating spot of a p-simple model is a discrete valuation ring with a prime element

which is a prime element of o.
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that their residues -zi, - ,zt generate K over K. Since k(y) is separable over k,
the integral closure of o[z] is also an affine ring over o (cf. Proposition 4,
Appendix in [4]). Therefore we may assume that o [z] is integrally closed.
Let m be the maximal ideal of S, and put n — o[^]Atn. Then it is easily seen
that the rank of π is equal to 1, and hence that o[z]n is a discrete valuation
ring contained in S. This means that o [z] n is equal to S. Let (T\ Tf) be the
^-variety which is the locus of z over o. Then it is easy to see that there is
an o-open subset (71, T) of (T\ Tr) which has only one generating spot S over
p. The multiplicity μ(S) is equal to 1, since S has; it as a prime element (cf. §3
in [13]). (T9 T) and the birational correspondence h between W and JP, which
maps y onto z, are our solution. q.e.d.

PROPOSITION 4. Let (G, G) be a group p-variety and let T be a homogeneous
space defined over k with respect to G. Let g be the normal law on T. Assume
that T has a point a rational over k. Then there is a pre-homogeneous p-space
(To, To) with respect to (G, G) such that T is birationally equivalent to To over k
by the birational correspondence h of T into To and such that h(g(*, h"1^))) is
the normal law on (ZΌ, To). Moreover the mapping of (G, G) into (Γo, TQ) which
maps x onto h(g(x, a)) is p-rational.

PROOF. The rational mapping g' of G into Γ, which is obtained from g
by putting g'(χ) =g(x, ά)—xa for a generic point % of G over k, is defined over
k. Since T is a homogeneous space over k, gι is a surjective mapping onto T.
By Proposition 3, there are a p-simple p-variety (To, To) and a birational cor-
respondence h between T and To such that/o^&og ' is ^-rational. Let t be the
image of x by/0. Then we have k(t) = k(xa). Now we define a normal law g0

of composition on To with respect to G by putting go(γ, ή—hζyh^Qty—hiγxa),
where y is a generic point of G over k(x). Then we have k(y, t) — fe(y, xd) and
k(γ, yxa) = k(y, h(yxaj) = k(y, go(y, ί)) On the other hand we have k(y, xd) =
A:(̂ 5 yΛ β), since T is a homogeneous space with respect to G. Therefore we
have k(y, t)=k(y, go(y, tj). Moreover let z be a generic point of G over k(x, y).
Then we have go(z, go(y9 t)) = go(zy, t). These relations mean that g0 is a nor-
mal law of composition on To with respect to G.

Next let x and y be two independent generic points of G over K. Then we
have [(*, 7 ) ^ > f e y)] ^ [(^)-0>(^)] D [/o(^)-^/o(j^)] = [A(y«)-^/oCy*)] =
[#o(y, ^-^/oCy^)], since/o is p-rational. On the other hand we have [(y, x)-&+
(y, 3c)] Ak(y, t) = [(y, ί)-**>(/, ^)JJ where ί is the image of x by /0. Therefore
we have [(y, ί)-^>(y, ϊ)] ̂  [go(y, ή-^/oCy, ̂ )] and hence g0 is p-rational. Since
go(y, t) is a generic point of Γo over k(y\ we have similarly [(y, go(y, ί))-2-^
(y5 ^o(y, tjy\ = ί(y-\ go(y, tj)-^(y'\ go(y, t))Ί > [(ί)-^>©]5 and hence we have
Ky, t)-2+(y, ί)] = [(y, go(y, t))-*+(y9 go(y, t))^ This means that (Γo, f0) is a
pre-homogeneous p-space with respect to (G, G), since g0 is p-rational. q.e.d.

PROPOSITION 5. Let (G, G) 6e a group p-variety and G a group variety de-
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fined over k, such that there is a rational homomorphism X of G onto G defined
over k. Then there are a pre-group ^-variety (Go, Go) and a birational corre-
spondence h between G' and Go defined over k, such that h(x'y')—h(x)h(/) for in-
dependent generic points x and y of G' over k and such that h-X is ^-rational.

PROOF. Letg be the rational mapping of GxG' onto G such that g(x, x)
=X(x)x for independent generic points x and x of G and G respectively. Then
G is considered as a homogeneous space with respect to G. Since the unit
element e of G is a point rational over k, there are a pre-homogeneous p-space
(Go, Go) and a birational correspondence h between G and Go by Proposition 4.
Moreover if x and y are independent generic point of G and if t is the image
of x by the p-rational mapping ho\ of (G, G) into (Go, Go), the rational mapping
#o(y> t) = h(k(yx)) is the normal law of composition on (Go, Go) with respect to
(G, G). Let s be the image of y by fox. Then the rational mapping /0(s, t) =*
hQi'1 (s)/*"1 (tj) =>h(x(y)X(x)) of GoxGo into Go defines the structure of a pre-
group on Go. Then we have go(y, t)—h(x(yxj)—h(x(y)X(x)) ~/o(s, t\ and hence
[(y, 0^>(y 5 ϊ)l > lgo(y, t)-^>(go(y, *))]=*C/ofc ty&>g0(y9 f) l where y and t are
independent generic points of G and Go over K. On the other hand, if 5 is the
image of y by &oλ, we have [(y, ^ - ^ ( y , tj\r\k(s, t)~\(s, t)-^+(s, ί)] and hence
it is easy to see that [(5, t)-£+(s> ί)] =* [(5, /0(5, ί))-^>(5, go(y, ί))]. Therefore/0

is p-rational and fo(s, t) is equal to go(y, t).
Similarly we have [(5, i)-2+(s, ί)] = [(ί, /0(s, tj)-2+(t, /0(s, ί))]. Therefore

(GO, Go) is a pre-group p-variety. q.e.d.

§2. Descent of ground rings.

First we assume that 0 is complete. Let k! be a separable extension of k
of finite degree n. Let $ be the set of all distinct isomorphisms of kr over k
into the algebraic closure k of k. If σ is an element of $, we denote by /cσ the
image of k' by σ-. Let oσ be the valuation ring of kσ with the maximal ideal
pσ, which is the unique prolongation^ of p in kσ. In particular we put o' = oε,
and p ' ^ p ε where 8 is the identity isomorphism of kr. Let (F, F) be a {/-simple
p'-variety and σ an element of 3f. Then we shall denote by (Fσ, Fσ) the pσ-
simple pσ-variety which is the transform of (F, F) by the isomorphism σ-.
Similarly if / is a rational mapping of a p-simple p-variety (Fo, Fo) into (F, F),
we denote by fσ the transform of / by σ.

PROPOSITION 6. Let kr be a separable extension of k of finite degree n and
%S the set of all the isomorphisms of kf into the algebraic closure k of k. Assume
that 0 is complete and that kr is unramified over k8). Let (Fo, Fo) be a ^-simple
^-variety and (F, V) a ψ-simple protective (resp. affine) pf-variety, such that

7) Let ¥ be an extension of k and o' a discrete valuation ring of V such that o'^o and of\\>' — p,
where p' is the maximal ideal of o'. Then we say that {V, p'} (or simply pr) is a prolongation of
{0, p] (or p) in k'.

8) This means that po' — p' and o'/p' is separable over o/p.
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there is a ψ-birational correspondence f between (Vo, Vo) and (V, V). Then there
is a p-simple protective (resp. affine) p-variety (IV, W) and a p-birational cor-
respondence F between (Vo, Vo) and (W, W), such that Fof1 is biregular at every
point of (V, V) where the mappings fσ°f~ι are defined for all σ e 8 .

This proposition is a generalization of Proposition 1 in [11], whose proof
is also available for our proposition. In fact the compositum K of fields kσ is
also unramified over k, since o is complete (cf. §1, Chap. 4 in [1]). Therefore
any subfield of K containing k is unramified over k. Let Kp be as in the proof
of Proposition 1 in [11], and (op, pp) the prolongation of (o, p) in Kp. Then we
can choose a basis (a,χ, ••-, adp) of Kp over k, such that each αz is in op and the
residues modulo pp are a basis of op/pp over o/p, since Kp is unramified over k.
Then hpv in the proof are expressed as linear combinations of g ω(p) with coef-
ficients in the integral closure of o in K. This means that our proposition is
proved in the same way as in that of Proposition 1 in [11].

Now we return to the general case, i.e. we do not assume that o is com-
plete.

LEMMA 1. Let F and H be rational mappings of a p-simple ^-variety (X, X)
into two p-simple ^-varieties (W, W) and (T, T), both defined modulo p. x
being a generic point of X over k, assume that t = H(x) is a generic point of T
over k and that H is ^-rational. If Rt is the generating spot9) of (Γ, T) in k(t)
over p with the maximal ideal φ / 5 we assume that x has a locus (Vt, Vt) over Rt

which is a ^-variety\ Let Ft be the mapping of (Vti Vt) into (W, Ψ) induced by
F on (Vu Vt). Then F is defined at every point of (Vt9 Vt) where Ft and H are
both defined.

The proof is very similar to that of Lemma 2 in [11]. Therefore we omit
the proof.

Let (Ty T) be a p-simple p-variety and t a generic point of T over k. If Rt

is the generating spot of (T9 T) in kit) over p, denote by Sβ, the maximal ideal
of Rt. Similarly if tr is also a generic point of T over &, denote by Rt, and φt,
the generating spot of (Γ, T) in k(jf) over p and its maximal ideal. Then if
(yu vt) is a Sβrsimple ^-variety, we shall denote by (Vf, Vv) the transform
of (Vt, Vt) by the isomorphism of k(t) onto k(tr) which maps t onto t'. Similarly
if ft is a ^-rational mapping of (Vt, Vt) into a p-simple p-variety (F, V\ we
shall denote by ft, the transform of ft by the same isomorphism.

PROPOSITION 7. Let (T, T) be a p-simple p-variety and t a generic point of
T over k. Let (Vh Vt) be a ^t-simple ^-variety which is an Rt-open subset10) of

9) We shall understand by this the generating spot in k{t) of the model M(T, T) corresponding to
(T, T).

10) We can naturally define a topology on a p-variety from the Zariski topology on the model cor-
responding to this p-variety. This topology will be called the o-topology, and an open (resp. closed)
subset in this topology is called o-open (resp. o-closed).
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an affine ^-variety, and (V, V) a p-simple p-variety such that there is a Sβr

birational correspondence ft between (V, V) and (Vt, Vt). Let d be a point of Vt

such that ft'vfl1 is biregular at d, where tr is a generic point of T over k(t).
Then there is a prolongation pf of $ in a finite separable extension kr of k, and
there are a p'-simple affine p'-variety (W, W) and a pf-birational correspondence
F between (V, V) and (IV, W) such that F^fj1 is biregular at d. Moreover if o is
complete, (W, W) and F are taken as a p-simple affine p-variety and a ^-bi-
rational correspondence.

This proposition is a generalization of Proposition 2 in [11], whose proof
is also available in our case. In fact we can construct a p-simple p-variety
(X, X) and a ^βrbirational correspondence gt between (Tx Vt, TxVt) and (X,
X), which correspond to X and gt in the case of Proposition 2 in [11].
Then by Lemma 1 gt is biregular at (ΐf, a), if t is a generic point of T over
Rt/%. Let Ao be the #rclosed subset of (Tx Vt, Tx Vt) where gt is not biregu-
lar and put Ao=Aor\(TxVt). Then Txd is not contained in Ao. From Ao we
can obtain a /c-open subset T of T such that, if h is any algebraic point over
K in T\ gt is biregular at (tf

u a). Let t\ be a simple point on T\ separably
algebraic over K, and P the spot of (Γ, T) in k(t) corresponding to h. Then P is
a regular local ring with a system (TT, n, , τn) of parameters containing a
prime element π of o (cf. Proposition 6 in [13]). Let q be the prime ideal (n,
..., Tn) of P and put Q = Pί. Let t\ be a point of T which corresponds to Q.
Then h is also a simple point of T, separably algebraic over k, and the specia-
lization ring ι/ = [ί i-^ίi] is isomorphic to P/J, which is an unramified dis-
crete valuation ring over ι\ Let ψ be the maximal ideal of c/. Then, in the
same way as in the case of Proposition 2 in [11], we easily see that there are
a p'-simple affine ^-variety (Fi, V\) and a p'-birational correspondence /i be-
tween (V, V) and (Vl9 V\) such that/io/^1 is biregular at d. Therefore we may
put ( r , W)=(VU Vλ) and F=/i.

If o is complete, it is easily seen that we can apply Proposition 6 to (Vu

F]), (F, V) and/i. Therefore there are a p-simple affine variety (IV, W) and a
p-birational correspondence F between (V, V) and (IV, W) such that, if /,•(£ =
1, ..., s) are the transforms of fx by all the isomorphisms of the quotient field
kr of o' over k, Fofi1 is biregular where all the fi°fΐ1 are defined. Then we
easily see that Fofj1 is biregular at d.

COROLLARY. Let (T, T) be a ^-simple ^-variety, and let t and tf be independ-
ent generic points of T over k. Let (V, V) be a ^-simple i-variety and (Vt, Vt)
a ^-simple ^rvariety such that there is a ^-birational correspondence ft be-
tween (V, V) and (Vt, Vt). Assume that ft'°fl

ι is everywhere biregular. Then
if a is any point of Vt, there is a prolongation p' of fl in a finite separable ex-
tension of k, and there are a $'-simple affine p'-variety (W, W) and a #''-bira-
tional correspondence F between (V, V) and (W, W") such that F^f'1 is biregular
at d. Moreover if o is complete, (W, ίV) and F are taken as a p-simple affine p-
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variety and a p-birational correspondence.

This corollary corresponds to Corollary of Proposition 2 in [11] and the
proofs are quite similar. Therefore we omit the proof.

THEOREM 1. Let (T, T) be a p-simple ^-variety. Let t and tf be two inde-
pendent generic points of T over k. Denote by Rt and ^ (resp. Rt, and ^/) the
generating spot of (T, T) in k(t) (resp. k(tf)) over p and its maximal ideal. Let
(F, V) be a p-simple ^-variety, and (Vt, Vt) a ^-simple ^t-variety such that
there is a ^-birational correspondence ft between (V, V) and (Vt, Vt). Assume
that ft'ofj1 is everywhere bίregular. Then there is a prolongation tf of p in a
finite separable extension kr of k, and there are a tf-simple tf-variety (W, JF)
and a tf-birational correspondence F between (F, V) and {W, W) such that Fofj1

is a Ί$'t-birational biregular correspondence between (Vt9 Vt) and (W, W), denot-
ing by ψt the maximal ideal of the generating spot of (T, T) in k'(t) over tf.
Moreover if o is complete, (W, W) and F are taken as a ^-simple ^-variety and
a #-biratίonal correspondence.

This theorem is a generalization of Theorem 5 in [11]. The proof is also
given similarly by using the above corollary and Corollary of Proposition 2
in [11].

§3 Construction of group ^-varieties and transformation p-spaces.

In this section we shall construct a group p'-variety or a transformation
p'-space attached to a pre-group p-variety or a pre-transformation p-space,
where tf is a prolongation of p. For this purpose we define a p-chunk. Let
(JF, W) be a pre-transformation p-space with respect to a pre-group p-variety
(F, V). Then (IV, W) is called a p-chunk of transformation space, if, any point
a of W (resp. ά of W) and a generic point x of V over k(a) (resp. x of V over
κ(aj), xa and x~ι(xa) (resp. xά and x~ι(xa)) are defined. Moreover if xa (resp. xά)
is a generic point of W over k(a) (resp. of W over (a)), {W, W) is called a homo-
geneous p-chunk. A pre-group p-variety (F, V) is called a group p-chunk if
(V, V) is a homogeneous p-chunk considered as a pre-transformation p-space
with respect to itself, and if the inverse function φ is everywhere defined on
(F, V).

We first give the following

PROPOSITION 8. Let (W, W) be a pre-transformation ψ-space with respect
to a pre-group p-variety (F, V). Let Ω be the set of those points a on W or d on
W such that xa and x~ι(xa) (resp. xά and x^ixaj) are defined for x generic over
k(a) on V (resp. x generic over κ(a) on V). Then Ω is an o-open subset of (W, W),
and all Ό-open subsets of Ω not disjoint with W are φ-chunks. If a 6 Ωr\W, we
have x~ι(xa)^a, k(x, a)=*k(x, xa), and a is a point of the locus of xa over k(a) on
W. If de Ωr\W, we have x~ι(xd)=?d, [(#, u)-^>(x, α)] = [(#5 xa)-&->(x9 xd)~\, where
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x and u are independent generic points of V and W over k respectivelyr, and a is
a point of the locus of xά over κ(ά) on W.

This proposition is a generalization of Proposition 3 in [9], whose proof
is also available in our case. Therefore we omit the proof.

COROLLARY. Notations being as in Proposition 8, let Ωh be the set of all the
points a or ά in Ω such that W (resp. W) is the locus of xa over k(a) (resp. xά
over /c(ά)). Then Ωh is an i-open subset of Ω, which is not empty if (W, W) is
pre-homogeneous and empty if (W, W) is not pre-homogeneous. In the former
case Ωh and all v-open subsets of Ωh not disjoint with W are homogeneous ̂ -chunks,
and if a, b (resp. ά, b) are any two points of Ωhr\W (resp. Ωhr\ W), there are two
generic points x, y of V over k(a, b) (resp. x, y of V over κ(d, b)) such that xa =
yb (resp. xa=yb).

PROOF. If we show that Ωh is c-open, the others are easily seen by the
corollary of Proposition 3 in [9]. Since Ωhr\W is &-open and Ωhr\W is /c-open,
we have to show that the closure of W—(Ωhr\W) in (W, Ψ) is disjoint with
Ωhr\W. Let a be a point of W—(Ωhr\W) and ά a specialization of a over o.
Let x be a generic point of V over k(a) and x that of V over κ(ά). Then xa is a
specialization of xa over R^ [(α)-^>(α)]. Let S be a valuation ring of k(a)
dominating R such that the residue class field of S is algebraic over that of
R (cf. Corollary 3 of Theorem 5 in p. 14 of [14]). Then xa is a specialization
of xa over S and hence we have dimyfe(α)(Λ;ίz)>dimίC(^)(^α) (cf. Proposition 2 in
[8]). This means that the locus of xa over κ(ά) is different from W. There-
fore a is not in Ωhr\W'. q.e.d.

From the above Proposition 8 and Corollary, we obtain easily the follow-
ing proposition, which corresponds to Proposition 4 in [9].

PROPOSITION 9. To every pre-transformation ψ-space (resp. pre-homogene-
ous p-space or pre-group φ-variety), there is a χ>-birationally equivalent $-chunk
(resp. homogeneous p-chunk or group p-chunk) which is an affine ^-variety.

PROPOSITION 10. Let (V, V) be a group p-chunk and (W, W) a p-chunk of
transformation p-space with respect to (V, V). Let s be any point of V and u a
generic point of W over κ(s). Then the mapping u-^sΰ is a birational correspond-
ence between W and itself. Moreover if (α, b) is a point of the graph of this
mapping, sd and s'1^ are defined, and we have [(#, w)-^>(s, α)] =* [(#, xu)-^*(s, 6)],
where x and u are independent generic points of V and W over k.

The proof is an adaptation of those of Propositions 5 and 6 in [9], and
we omit it.

Now we construct a group ^'-variety and a transformation p'-space at-
tached to a group p-chunk and a p-chunk of transformation f-space, where p'
is a prolongation of p in an extension of k. Let (V, V) be a group p-chunk and
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(JF, W) a p-chunk of transformation p-space with respect to (F, F), both being
assumed to be affine p-varieties. Let n, 71 be the dimension of F, W9 and take
N>4=n and >Zn+nr. Let tί9 , ̂  (resp. ?i, , ?ΛΓ) be independent generic points
of V over fc (resp. of V over /c) and put Όt — [fe, ..., tN)-^(ϊu • ., ?#)]. Let i£,
and ^ be the quotient field and the maximal ideal of Όt respectively. Then
Of is a discrete valuation ring and #Όt =* ̂ . Let u be a generic point of JF
over Kt and put ua^tΛu and (Srt,SΛ)=<JF, W) for each α=*l, • •-, iV. Let (Taβ, TΛβ)
be the locus of (uΛ9 uβ) over O*. Then it is easy to see, by Proposition 6 in [9]
and Proposition 10, that (SΛ9 SΛ) and (TΛ?9 TΛ?) define a ^-simple φ r variety
(St9 St\ which is s$ rbirationally equivalent to (W, W). In the same way we
can construct a ^βrsimple φ r variety (Gh Gt), which is φ rbirationally equiva-
lent to (F, V). Then we can see in the same way as in [9] that (G,, Gt) is a
group ^-variety and (Sh St) is a transformation ^βrspace with respect to (Gh

Gt). Moreover if (JF, W) is homogeneous, (St, St) is a homogeneous ^βrspace.

Let (Γ, f) be the locus of (tu -..9tN) over 0. Then Rt is no other than the
generating spot over p of the p-simple p-variety (T9 T) in k(tu , tN). Then
we can easily see, by the definitions and Corollary of Proposition 2, that (Gty

Gt) satisfies the conditions of Theorem 1, and that if (βt9 St) is a homogeneous
φrspace, (5ί5 St) also satisfies the same conditions by Proposition 2. Therefore
we have the following theorem, applying Proposition 9 and Theorem 1.

THEOREM 2. (i) Let (F, V) be a pre-group %-variety. Then there is a pro-
longation #' ofpina finite separable extension of k, and there is a #'-birational-
ly equivalent group ψ-variety (G, G).

(ii) Let (JF, W) be a pre-transformation ψ-space with respect to (F, F).
Then there is a prolongation #" of p in a separable extension of k, and there is
a #"-birationally equivalent transformation $'-space (S, 5) with respect to (G,
G). // (JF, W) is a pre-homogeneous #-space, (S, S) is a homogeneous p"-space
and p" is taken in a finite separable extension of k.

(Hi) If 0 is complete, (G, G) is taken as a group ^-variety, and (S9 S) is
taken as a homogeneous p-space in the case where (W,W) is pre-homogeneous.

THEOREM 3. (i) Let (G, G) be a group ^-variety and G a group variety de-
fined over k such that there is a rational homomorphism λ of G onto G defined
over k. Then there is a prolongation p' of p in a finite separable extension of k,
and there is a group pf-variety (Go, Go) such that Go is biregularly equivalent to
G by the rational isomorphism μ of G onto Go and such that μ-X is a p7-rational
homomorphism of (G, G) onto (Go, Go). (Go, Go) is uniquely determined up to p'-
birationally biregular isomorphism. If 0 is complete, (Go, Go) is taken as a group
p-variety.

(ii) Let S be a homogeneous space, defined over k, with respect to G and
g(*, *) the normal law of composition on S. Then there is a prolongation p" in
a finite separable extension of k, and there is a homogeneous p"-space (βθ9 50)
with respect to (G, G) such that So is biregularly equivalent to S by the rational
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mapping v of S onto So and such that v (§•(*, v"1^))) is the normal law of com-
position on (So? So). (So, So) is uniquely determined up to p''-birationally biregu-
lar equivalence. Moreover if a is a point of S rational over k, (So, So) and v can
be taken such that y(g (*, aj) is a $"-rational mapping of (G, G) onto (So, So). //
o is complete and if S has a point rational over k, (So, So) is taken as a homo-
geneous j: -space.

PROOF. The existence is seen by Propositions 4, 5 and Theorem 2. As-
sume that (GΊ, Gι) and μλ satisfy also the same conditions as (Go, Go) and μ.
Let kr be the field in which p' is defined. Let x be a generic point of G over k!
and put yo=*μ\(x) and γi=*μi\(χ). Then we have yι~ μi-μ~ι(yo) and A/(y0) —
k'(yι). Let R be the generating spot over p' of (G, G) in k'{x). Then by as-
sumptions RίλkXyi) is the generating spot of (G, , C, ) in fe'(y, ) for i—0, 1. This
means that μi-μ'1 is p'-birational, since Rr\k'(yo)=iRf\k'Xyi). Therefore (Go,
Go) is p'-birationally isomorphic to ( d , Gi) by Corollary of Proposition 2.
Similarly we see the uniqueness in the case of (So, So) by Proposition 2. q.e.d.

§4. Reduction of coset spaces of group varieties*

Now we give an application of Theorem 3 to the reduction of coset spaces
of group varieties modulo p.

PROPOSITION 11. Let (G, G) be a group ^-variety, and Z a positive cycle
rational over k on G such that its support \Z\ is a subgroup of G. Then the
support \Z\ of the cycle Z, which is obtained from Z by the reduction modulo p,
is also a subgroup of G.

PROOF. Let ά, b be two points of \Z\. Then it is easy to see t h a t there
are two points a,bot \Z\ such t h a t (α, b) is a specialization of (α, b) over o,
and t h a t db"1 is a specialization of ab"1 over o. Therefore άb"1 is in \Z\. q.e.d.

THEOREM 4. Let (G, G) be a group ^-variety and Z a rational cycle over k>
consisting of components with coefficients 1, such that its support \Z\ is a sub-
group of G. Let Z be the cycle on G obtained from Z by the reduction modulo p
and Zλ the cycle on G with coefficients 1 consisting of all components of Z. Then
there is a prolongation \)f ofpina finite separable extension of k, and there is
a homogeneous ψ-space (H, H) such that H is biregularly equivalent to the coset
space G/Z, and such that there is a purely inseparable mapping λ of G/Zx onto
H. G/Zχ is biregularly equivalent to H by λ, if and only if Z^ZX. Moreover if
o is complete, (H, H) is taken as a homogeneous ψ-space.

PROOF. Let F be the rational mapping of G onto G/Z defined over k such
that F(x)~xa for a generic point x of G over k and a rational point a of G/Z
over k(cΐ. Proposition 2 in [10]). Then, by Theorem 3, there is a homogene-
ous p'-space (H, H) and a biregular birational mapping v of G/Z onto H, where
p' is a prolongation of p in a finite separable extension kf of k. Then H may
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be considered as the coset space G/Z defined over ti with the natural mapping
F0=vF9 which can be assumed to be a ̂ '-rational mapping of (G, G) onto (lϊ, H).
Let x be a generic point of G over kf and t the image of x by Fo. Similarly
let x be a generic point of G over K! and ί the image of x by Fo. Then the
locus (Γ, Γ) of (x, t) over o' on (GxH.GxH) is the graph of Fo and is a p'-
simple subvariety of (G x H, G x 5"). The intersection cycle Γ (G x t) is defined
on G x H and equal to xZ x ί (cf. the proof of Proposition 2 in [10]). Since Fo

is {/-rational, Γ is the locus of (x91) over *' and hence Γ (G x ί) is also defined
on Gxϊϊ. By Theorems 17 and 18 in [8] we easily see xZx t=*Γ (G x ί). This
means that xZ is a prime rational cycle over κ'(t) and for any point s in \Z\ —
|Zi I and a generic point #' of G over /c'(s), F0(x/)=sF0(xrs). Therefore there is a
rational mapping λ of C/Zi onto # , which is everywhere defined on G/Z\.
Let Fi be the natural mapping of G onto G/Zλ. Then Fo is equal to λ ί Ί on G
and if A is the graph of Fu />(G x h) is equal to xZλ x tu where ϊi=*FiQc). Let
ϊ2 be a point of G/Zi5 whose image by λ is t. Then there is a point x in G,
such that xZλ x ϊ2=*Γ1*(Gx t2). Since FQ(x)^X-Fι(χ)^X(ΐ2) — F, x'Z must be ^Z
and hence xZx is equal to xZλ. This means that ί i ^ ^ Therefore λ is purely
inseparable. The assertion on biregularity is easily seen from this fact. The
last assertion is seen by Theorem 3. q.e.d.

COROLLARY. Notations being as in Theorem 4, assume that the characteristic
of /c is zero. Then the cycle Z obtained from Z by the reduction modulo p
consists of components with coefficients 1.

§5» Reduction of generalized Jacobian varieties.

First we shall consider the reduction of a quotient variety of a variety
V by a finite group of automorphisms on V.

Let (F, V) be a ^-simple p-variety and/ a p-birational biregular mapping
of (F, V) onto itself. Then we say that / is a p-automorphism on (V, V), and
f defines naturally an automorphism on V.

PROPOSITION 12. Let (V, V) be a ^-simple affine $-variey and Q a finite
group of ^-automorphisms on (F5 V). Let g be the finite group of automorphisms
on V which are defined by elements of g. Then there is a ^-simple ^-variety (IV,
W) such that W is the quotient variety V/Q of V by g and such that W is the
image of the quotient variety V/Q of V by cj. Moreover W is identified with V/Q
if and only if the order of Q is equal to that of g.

PROOF. Let x be a generic point of V over k and A the affine ring o[Vj
over o. Let AQ be the subring of A which consists of the elements of A fixed
by Q. Then it is easy to see that AQ is also an affine ring over o (cf. the proof
of Proposition 18, Chap. Ill in [7]). Let (JF, W) be the affine p-variety defined
by AQ, which is p-simple, since pA5 is a prime ideal of AQ. The above cited
proposition also shows that W is no other than V/Q. On the other hand V and
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W are defined by the affine rings A/pA and AQ/pAQ over K respectively, and
A^/pAQ is contained in (A/pAf. Therefore there is an everywhere regular
mapping of F/g onto W. Moreover we have [F: W~\ μ(JV\ W)=*μ{V\ V)\_V\ W~\
by Theorem 12 in [8]. Since (F, V) and (JF, W) are both p-simple, this means
[ F : JF]=^[F: JF]. Therefore we have the last assertion. q.e.d.

PROPOSITION 13. Let (F, V) be a p-simple p-variety such that every finite
subset of (F, F) is contained in an affine o-open subset. Then there is a p-simple
p-variety (Wm Wn),for any positive integer n, such that Wn (resp. Wn) is identi-
fied with the n-fold symmetric product V(n) of V {resp. V{n) of V).

PROOF. We can easily generalize Proposition 12 for the case where (F,
V) satisfies the same condition as in Proposition 13 (cf. Proposition 19, Chap.
Ill in [7]). Then our assertion is a direct consequence of this fact and the
definition of the symmetric products of a variety. q.e.d.

Let (C, C) be a p-simple protective p-variety of dimension 1. We assume
that all the singular points of C are rational over k, and that those of C are
rational over K. Let x be a generic point of C over k and x that of C over K.
Let SI be a semilocal ring in k(x) in the sense of Rosenlicht [5] such that the
places of SI include all the places of k(x) which are not absolutely simple.
Similarly let ® b e a semilocal ring in κ(x) such that the places of %$ include
all the places of κ(x) which are not absolutely simple. Then we shall say that
^-linear equivalence is preserved into ^-linear equivalence under the reduction
modulo p, if any rational divisor on C over K, which is obtained from a rational
divisor on C over k linearly equivalent to zero in the sense of Si-equivalence,
is linearly equivalent to zero in the sense of ^-equivalence (cf. §2 in [5]). Let
(V, p') be a prolongation of (o, p) in an extension kr of k. Then we may as-
sume that kf and k(x) (resp. K =* o'/p' and κ(x)) are free over k (resp. K). We
denote by &'SI (resp. κ'Ί&) the extension of SI to k'(x) (resp. ^ to ιcf(όcj)ιl\ Then
we shall say that %-linear equivalence is preserved separably into ^-linear
equivalence under the reduction modulo p, if the following conditions are satis-
fied; let Ίz be any separable extension of k and (c/, p') any prolongation of (o,
p) in kr. Then £/ SI-linear equivalence is preserved into //^-linear equivalence
under the, reduction modulo p\

In the following we shall assume that Si-linear equivalence is preserved
separably into "©-linear equivalence under the reduction modulo p and that SI-
genus g of C is equal to S-genus of C. Moreover we assume that there is a
simple point x0 on C, rational over k, whose specialization over o is a simple
point xo on C.

By Proposition 13 there is a ^-simple ^-variety (ΪF, W) such that JF(resp.
W) is identified with the g-fold symmetric product of C (resp. C). A positive
divisor of degree g on C (resp. C) is naturally identified with a point of W

11) For the definition, see §3 in
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(resp. W). Let xu , xg, yu --,yg be independent generic points of C over k

g g

and put X = ]>jte) and Y-'Σ(yi). Then it is known that there is only one
* = 1 i = 1

positive divisor Z of degree g such that Z is equivalent to X+ Y—g (x0) in the
sense of Si-linear equivalence, and that the rational mapping / of Wx JFonto
W) which maps (X, F) onto Z, defines a structure of a pregroup variety on W
{cf. [5] and [6]). Let xu , %, yi, • ••, yg be independent generic points of C

_ g _ g __ _

over K, and put X— Σfe) and F = $](r/) Then (X, 7) is a specialization of
(X, F) over o, whose specialization ring will be denoted by S. Let Z be a
specialization of Z over S. Then Z is equivalent to X+F —g-(̂ 0) in the sense
of 53-linear equivalence from the assumptions on 21 and Ig. On the other hand
Si-genus g on C is equal to ^-genus of C and hence Z is uniquely determined.
We have κ(X, F) =* κ(X, Z) =» «(F, Z). From these facts we easily see that S
dominates the specialization ring [Z-^Z]. Similarly we see that [(X,
(X, Z)] dominates [ 7 Λ f ] and that [(F, Z)-β>(f, Z)] dominates
This means that / defines on (W9 W) a structure of a pre-group ^-variety. Then
by Theorem 2 there is a group ^'-variety (/, /) such that / (resp. J) is biregu-
larly isomorphic to the generalized Jacobian variety12) of C (resp. C) corre-
sponding to Sί-linear (resp. 33-linear) equivalence relation, where $' is a pro-
longation of p in a finite separable extension of k. Let F be the p'-birational
correspondence of (W9W) into (/,/), which transforms the structure of the
pre-group p-variety on (JF, W) into that of (/,/).

Let xu •••, xg (resp. xί9 - ,χg) be independent generic points of C over k(x)
g g

(resp. C over Λ(Λ)) and put X=> Σ(«ι) (resp. X ^ Σ(^)). Then there is only one
ir1 *=1

positive divisor Y on C (resp. Ϋ on C) such that Y (resp. F) is a generic point
of W over &'(#) (resp. JF over κ(xj) and is equivalent to 1 + (x) — (Λ;0) (resp. X
+ (Λ) — (ico)) in the sense of Sί-linear (resp. IB-linear) equivalence. Then it is
known that F(Y)~F(X) (resp. F(Ϋ)-F(X)) is a rational point of / over k'(x)
(resp. / over K! (X)), and that the rational mapping φ of C into / (resp. φ of C
into/), which maps x to F{Y)—F(X) (resp. x onto F(Ϋ)—F(X)), is a canonical
mapping of C into / (resp. C into /). Let O' be the generating spot of (C, C)
in k'(x). Since (X, F) is a specialization of (X, F) over C/, (F(X), F(F)) is a
specialization of (F(X), F(F)) over O' and hence F(F) — F(X) is a specializa-
tion of F(Y)—F(X) over O'. This means that φ is a p'-rational mapping of (C,
C) into (/, /) and that φ is defined from φ by the reduction modulo p'. There-
fore we have the following

THEOREM 5. Let (C, C) be a ^simple projective ^-variety of dimension 1
such that all the singular points on C (resp. on C) are rational over k (resp. K).
Let 21 (resp. ϋB) be a semilocal ring of a function field k(x) of C over k (resp. κ(x)
of C over K), whose places include all the places in k(x) (resp. κ(x)) which are not

12) For the definition, see
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absolutely simple. Assume that %-linear equivalence is preserved separably into
^-linear equivalence under the reduction modulo p, and that %-genus of C is
equal to SQ-genus of C. Then there is a prolongation #' ofpina finite separable
extension of k, and there are a group $'-variety (/, /) and a #'-rational mapping
φ of (C, C) into (J, J), such that J (resp. J) is the generalized Jacobian variety of
C (resp. C) corresponding to %,-linear (resp. ^-linear) equivalence relation and
such that φ (resp. φ) is a canonical mapping of C into J (resp. C into J).

COROLLARY. Let (C, C) be a ^-simple protective ^-variety of dimension 1
such that C is non-singular. Then C is also non-singular, and there are a group
#'-variety (/, /) and a #'-rational mapping φ of (C, C) into (/, /) such that J
(resp. J) is the Jacobian variety of C (resp. C) and such that φ (resp. φ) is a
canonical mapping of C into J (resp. C into /), where $ is a prolongation of £
in a finite separable extension h.

PROOF. If a is a singular point on C, any specialization of a on C over o
is also singular (cf. e.g. Proposition 6 in [13]). Since (C, C) is p-complete, this
means that C is non-singular. Now we apply Theorem 5. The condition on
linear equivalence is clearly satisfied (cf. Theorem 20 in [8]). On the other
hand the genus of C is equal to that of C by Theorem 3 in [2]. Therefore we
have our assertion. q.e.d.

Faculty of Science,
Hiroshima University.
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