. Scr. Hirosuima Un1v. Ser. A-1
28 (1964), 19-32

Point-free Parallelism in Wilcox Lattices

Fumitomo MaEepa
(Received February 15, 1964)

1. Introduction.

In the previous papers [4] and [57, I have investigated the properties of
affine matroid lattices, using the parallelism given in [1], and I have seen
that the points have significant roles. Hence this parallelism can not be
applied to the non atomic lattices. Hsu [2] gave an apparently point-free
parallelism, but in [4] Theorem (2.3), I have shown that this parallelism is
coincident with that of [17].

In the present paper, I give a point-free parallelism using the modular
elements instead of points, and applying to the Wilcox lattices, I obtain the
same theorems as in [4 ] and [5].

In appendix, I investigate the modular centers of affine matroid lattices
from the standpoint of the Wilcox lattice, and I obtain the same results as in
the preceding paper [4].

2. Point-free parallelism in weakly modular symmetric lattices.

DeriniTion (2.1). In a lattice L, we write (a, b))M if (cva)Nb=c\U(anb)
for every c<b. When b covers a, we write a<<b.

In a lattice L with 0, ¢ | b means anb=0, (s, b)M; and ¢ ]| b means aN\b=
0, (a, b)M (M being the negation of the relation M). If ¢ | b implies b | a, then
L is called a symmetric lattice (cf. [8] p. 495); and if an\b=0 implies (a, D) M,
then L is called a weakly modular lattice (cf. [4] (1.1)).

A relatively atomic, upper continuous, symmetric lattice is called a
matroid lattice (cf. [5] (2.1)).

In this paper, we deal with a given lattice L with 0.

DeriniTiOoN (2.2). In a lattice L, o is called a modular element of L, if
(b, ) M for every b e M (cf. [6] p. 326). A point p, if it exists, is a modular
element.

Remark (2.3). Especially when L is a weakly modular symmetric lattice,
since aNbx0 implies (a, b)M, « is a modular element if and only if anb=0
implies a | b for every b€ L.

Reference (2.4). In [1] p. 273, the parallelism in a matroid lattice L is
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defined as follows: Let a, b be nonzero elements of L, if

2.4.1) anb =0,
(24.2) a<a\Ub and b<a\Ub,

then we write a||b, and say that ¢ and b are parallel. But (2.4.2) is equivalent
to the following condition:

(2.4.3) there exist points p and ¢ such that

a\Jqg=>b\p, p<La, g£Lb.

(Since a, b<La\Uqg=b\UpLa\Ub, we have a\Ug=bUp=a\Ub.)

In [17, [4] and [5], using the above definition of parallelism, the pro-
perties of weakly modular matroid lattices are obtained. In these investiga-
tions, the points p, ¢ in (2.4.3) have significant roles. Hence we shall say that
the above parallelism is a point-set parallelism. Since this parallelism can
not be applied to non atomic lattices, we introduce a new parallelism.

DeriniTioN (2.5). Let g, b be nonzero elements of a lattice L. When

(2.5.1) anb=0,
(2.5.2) there exists a modular element m such that

m\Jb=a\Ub, m<La,

then we write a<<|b. Of course m<0.
(m>

If a<|b and < |a both hold, then we write «||p and we say that a, b are

(m) (n) (msnd)
parallel with axes m, n.

Turorem (2.6). Let a, b be nonzero elements in a lattice L. In order that
al|b, it s necessary and sufficient that the following conditions both hold.

(m>n)
(2.6.1) anb=0,
(2.6.2) there exists modular elements m, n such that
aUn=>b\Um, m<La, nLb.

Proof. Necessity is evident from (2.5).
Sufficiency. From (2.6.2), we have

aLaUn=bUm<La\Jb and bLbUmLa\Jb,
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hence aUn=b\um=a\Ub. Therefore a<|b and b<|a. Consequently ald.
(m) )

(msn)

Remark (2.7). If we require the equi-dimensionality of 4, b in case al|b,

(msnd)

we must set a condition
(2.7.1) m~n,

where “~” means some equi-dimensional relation in L. In this case we write
allb. Cf. (7.3) below.

(m~n)
Lemma (2.8). In a lattice L, if a<<|b and m<a, then bl a.
m)

Proof. By (2.5), anb=0 and m\Ub=a\Ub. Hence
mub)Nna=@ubNa=a>m=m\J (b Na).
Consequently (b, ¢)M, and since bne=0 we have b a.

Lemma (2.9). In a lattice L, if a<<|b and m<LaLa, then a;<|b.
Gm) (m)

Proof. a;nbLanb=0. And m\Uub<La;\Ub<La\ub. Hence by (2.5.2) we
have m\Ub=a;\Ub. Consequently a;<|b.
(m)

Lemma (2.10).  In a lattice L, let a<<|b and b<by. If anb,=0 then a<< |§’Z’
(m) (m
and 1f m<b, then a<lb,.

Proof. By (2.5.2), we have
m\Jb,=m\Jb\Uby=a\Ub\Uby=a\U b,.

Hence if anb,=0 then we have a<|b;. And if m<b, the we have b,=a\Ub,,
m>

that is, a<b;, since a=b, contradicts anb=0.

Lemma (2.11).  In a weakly modular lattice L, let a<<|b and n be a modular

(m)
element with 0<n<b. Set bi=(a\Un)Nb, then albi.

(msn)

Proof. From (2.5.2), we have m\Ub=a\Ub, and since (a\un)Nb>xn>0, we
have (b, a\un)M. Being m<La\Un, we have

hum={eunnbum=@@un)Nbum)=@@Uun)N(a\Ub)=aVln.

Since anbLanb=0, by (2.6) «fb; holds.
(m,n)
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TuaeoreM (2.12). (Parallel mappings). In a weakly modular summetric
lattice L, let allb. Put

(m>n)
Ta;=(@\In)N\b for a€L(m,a),
Sby={B1Um)Na for b€ L(n, b).

Then T and S are mutually inverse, isomorphic mappings between L(m, a) and
L(n, b).

In order that a;, by correspond by these mappings, it is mecessary and
sufficient that

(1) aauUn=bUm

holds. And in this case ai|bi.

(mn)

Proof. (i) It is evident that 7@, € L(n, b) and Sb;, € L(m, a). By (2.9) we
have a;< |b. Hence by (2.11) we have ;|| Ta;. Similarly we have Sb1Hb)1. Thus
m) (

msn) (msn
by (2.6), (1) holds and we have a||5:.
(msn)

(ii) Conversely assume that (1) holds. Since L is symmetric and mNb=
0, we have (m, b))M. Hence

Ta1———(al\./n)f\b:(bl\Jm)f\b:bl,

similarly Sb;=a;. Thus a; and b, correspond by T and S.

(iii) Next we shall prove that T and S are mutually inverse, isomorphic
mappings. Put b;=7a;. Then by (i), (1) holds. Hence by (ii), we have STa,=
Sby=a;. Similarly we have TSb,=b,. Therefore by T and S, there exists a
one to one correspondence between L(m, a) and L(n, b) preserving the order.
Hence L(m, a) and L(n, b) are isomorphic.

3. Point-free parallelism in Wilcox lattices.

Dermirion (3.1). A Wilcox lattice L is constructed in the following
manner. Let 4 be a given complemented modular lattice partially ordered
by a relation a<b, and having the operations a\/b, aAb. Let SC 4 be a fixed
set with the following properties:

3.1.1) 0&S; and €S, 0<bLa implies beS.
3.1.2) a,beS implies aVVbeS.

Define L=4—S. Then L is a weakly modular, symmetric lattice partially
ordered by the relation a<b, with the operations a\Ub, b which satisfy the
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following conditions:

(3.1.3) a\Jb=a\/b,

a/Nb if aAbel,
3.14) anb=

0 if aANbeS.

And for o, b€,

(3.1.5) alb inL ifandonlyif aAb=0,
(3.1.6) allb inL if and only if aAbe€S.

(Cf. (8] pp. 497-498.) We call L a Wilcox lattice and A the modular extension
of L.

Remark (3.2). In the above construction of the Wilcox lattice, instead
of (3.1.2), we may use the following condition:

(8.2.1) a€L, b<La implies the existence of ce¢ L with a=b\c¢, bAc=0.

In this case, L is a weakly modular, left complemented lattice, and is a
special case of the Wilcox lattice given in [97] pp. 456-457. (Cf. [8] p. 499).
Some investigations in what follows hold also in this kind of Wilcox lattices.
But we use (3.1.2) in (3.5) below.

Derinrrion (3.3). In a Wilcox lattice L, an element » in S is called an
imaginary element of L, and a nonzero element o of L is called a regular
element when aA\u=0 for every u€S. The set of all regular elements in L
is denoted by R. If ¢ € R and 0<a; <Lq, then a; € R.

When « € L is expressed as

a=m\ u, meR, ue€ES,

then q is called an irregular element of L. And we write u=¢(a). When a is
a regular element we put ¢(a)=0.

Lemva (8.4). In a Wilcox lattice L, a regular element a is a modular
element.

Proof. Let b be an element of L such that an\b=0. Assume that aA\b=
v €S. Then aAu=u €S, which contradicts the regularity of «. Therefore by
(8.1.4) aAb=0, and by (3.1.5) we have o« 1 b. Hence by (2.3) ¢ is a modular
element.
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Lemma (8.5). In a Wilcox lattice L, if
a=m\Vu=n\ov, m,n€R, u,veES,
then u=v. Therefore ¢(a) 1s uniquely determined with respect to a.
Proof. By the assumption, we have
a=mVu=m\ @\ o).

Since by (8.1.2) u\/v € S, we have m A\ v)=0. Hence u and u\/v are relative
complements of m in a, and u<u\/v. Therefore, by the modularity of 4, we
have u=u\/v, that is v<u. Similarly uz<», and we have u=v.

LemmaA (8.6). Let a, b be irregular elements in a Wilcox lattice L. Then
a<Lb 1mplies ¢(a) Lc(b).

Proof. Let

a=mVu b=n\o, m,n€R, u,veS.

Since u<a<b, we have b=n\/ (u\/v). Hence by (3.5) we have v=u\/v. There-
fore u<Lwv, that is, ¢(a) L c(b).

Remark (8.7). In a Wileox lattice L, by (3.4), regular elements are
modular elements. Hence for the parallelism «||b, we use regular elements

(msn)
my 1.

Turorem (3.8). In a Wilcox lattice L, when m<a, m € R, the following two
propositions are equivalent.

(@) a<|b.
m>

® aNbeS and a=mV (a \D).

Proof. (a)—(B). Since from (2.8) a || b, by (8.1.6) we have aAb € S. Since
m\Ub=a\Ub by (2.5.2), we have, by (8.1.3) and the modularity of 4,

mV@Ab)=aANmVb)=aA(eVb)=a.
B)>(). From aAbeS, by (8.1.4) we have anb=0. Since

aVb=m\V(@Ab)\Vb=m\Vb,

we have a\Ub=m\Ub. Therefore a<|b.
m)
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Lemma (3.9). In a Wilcox lattice L, when m<a, n<b and m,n € R, allb if

(m.n)

and only if
a=mV (@Ab), b=nV (@ /Ab) and a/Nbe€S.

In this case ¢(a)=c(b)=a/\b.
Proof. This is evident from (3.8) and (3.5).
Lemma (3.10). In a Wilcox lattice L, for m,n€ R and u€ S, if
a=m\Vu b=nVu and ann=0,
then allb.

(m.n)

Proof. By (3.4), n is a modular element, hence by (2.3) ann=0 implies
a_1Ln. Therefore by (3.1.5) we have a An=0. Since

aANb=aN@Vu)=@An)Vu=uc€S,

by (3.9) we have q|b.

(msn)

Turorem (8.11). Let a be an irregular element in a Wilcox lattice L, such
that

a=m\ u, meR, ues.

Then for any regular element n with ann=0, there exists one and only one
irregular element b such that a|lb. In this case b=n\ u.
(m,n)

Proof. Put b=nVu, then by (8.10) we have a|jb. If there exists " such
(msn)
that «||b’, then by (3.9) we have
(m,n)

a=m\V (@ANb), ¥=nV(@AND) and a \b €8S.
Since by (8.5), u=aAb, we have b=0'.

Remark (3.12). (8.11) is a form of Euclid’s parallel axiom, this is due
to (3.1.2).

Tueorem (3.13). In a Wilcox lattice L, let a<|b and m<a, n<b, m,n € R.

(m)
Then there exists one and only one element b, such that al|bi. And in this case
bl ——:/— b. (m,n)

Proof. By (3.8) we have a=m\/ (aAb) and aAb€S. Since annLanb=0,
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by (8.11) there exists one and only one element b, such that a#;, and b,=
(msn)
n\V(@Ab)Lb. Cf.(2.11).

Lemuva (8.14). In a Wilcox lattice L, let a, b be irregular elements such
that m<a, n<b,m,n € R. Then a<|b implies ¢(a)<Lc(b).
()

Proof. By (3.13), there exists b, such that a||b; and ,<b. Then by (3.6)
(m,n)
and (8.9), we have ¢(a) =¢(by) L c(b).

Turorem (3.15). In a Wilcox lattice L, let a, b be irregular elements such

that a<<|b and m<a, n<b, m,n € R. Then there exists one and only one a; such
(m)

that az||b and oL as.

(msnd)

Proof. Put a,=m\/ ¢(b), then by (3.10) we have a,||b. Since a< |b by
(msn) (m)
(3.14) we have ¢(a)<¢(b). Hence

a=m\ t(a)Lm\ ¢(b) = as.
Since bm=0, the uniqueniss follows from (8.11).

Reference (3.16). (3.15) is a form of parallel axiom used in [2] p. 4.

4. Comparability theorem in Wilcox lattices.

Turorem (4.1). (Comparability theorem). Let a, b be irregular elements
in a Wilcox lattice L, and anb=0. Then there exist a’,a”’, b, b’ € L and m, n € R
such that
€89 a=d \Jd', a Na’' =m,
b=b\Ub”, b Nb’ =n,

2°) N0 and (@) Ae@)=0.

(m,n)
In this case ¢(a’) =c¢(b') = ¢(a) N\ ¢(b).
Proof. Since g, b are irregular elements, there exist m, n € R such that
a=m\ ¢(a) and b=n\ ).
Denote by W the set S with 0 adjoined. Then W is a relatively complemented

modular lattice. Since ¢(a), ¢(b) € W, if we put w=c(a)\¢(b), then there exist
u, v € W such that
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@H) t(@)=w\ u, wA\u=0,
2) t(d)=w\ v, wAv=0,
3 uA\v=0.

(Cf. [3] p. 14 Hilfssatz 1. 12).
Put o' =m\Vw, o’ =mVu, ' =n\Vw, b’=n\v. Then o, d”’, b, b’ €L and by
(1) we have

a=m\Vt)=mVw)VimVue=d Va =d\Jd"

Since mAw\Vu)=mANAet(@)=0 and wAu=0, we have (m, w, u) L. Therefore
wA\a'=wA(m\Vu)=0 (cf. [3] p. 13 Satz 1.8). Since m<La", by the modularity
of A4, we have o' Ad'=m\/w)\a’=m. Hence by (3.1.4), we have a'N\a’=m.
Similarly by (2), we have b=b"Ub” and b N\b"'=n.

From (3.10) we have o' ||b’, and from (3) we have ¢(a")Ac(d")=uNv=0.

(m,nd)

Now ¢(a)=c¢(¥)=w=1c(a) \c().

Tureorem (4.2). Let a, b be trregular elements in a Wilcox lattice L. If
a || b, then there exist irregular elements a,, by such that

a ” bl, aléa, b1 éb and al/\b1=a/\b.

(m»n)

Proof. By (8.3), there exist m, n € R such that m<ae and n<<b. Put
a;=m\ (@ \b) and bi=nV(@ANDb).

Then a;<a and b,<b. Since, by (3.1.6) e¢Ab €S and a;N\nLanb=0, by (3.10)
we have a]|b;. Since o;\n=0 and n is a modular element, by (2.3) and (3.1.5)

(m,n)

we have a¢; An=0. Hence
aa ANby=a N\ {nVAb}=a/b.

Tueorem (4.3). (Modularity and parallelism). Let o, b be irregular ele-
ments in a Wilcox lattice L, and an\b=0. Then the following three propositions
are equivalent.

() @ Lb.

(B) There do not exist irregular elements ay, b, such that

ay ” bl) 23] éa, bléb'

(m»n)

@ @ ANed)=0.
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Proof. (a)—(B). If there exist irregular dements oy, b; such that a,|b,,

(msn)

a1 <La, bi<Lb, then from (2.8) we have ¢, || b;. On the other hand, «_1 b implies
a; 1 by (ef. [8] p. 492), contrary to a; || b;.

(B)— (@) follows from (4.2).

B)— (). When ¢(a)A\c(b)>0, from (4.1), there exist «’, b’ such that o' La,
b <Lb and ¢(@)=c¢@®)=c¢(a) AN ¢(d)>0. Then «, b are irregular elements in
contradiction to ().

M —(B). If there exist irregular elements «a,;, b; such that

ay Hbl, a éa, by é-ba
(msn)
then by (3.9) we have ¢(a;)=¢(b,), and by (3.6) we have ¢(a;)<Lc(a), ¢(b1) L (D).
Hence

t(@) N\ e(®) = c(a) A e(by) = e(ar) >0,

which contradicts (7).

Reference (4.4). Theorems (2.12), (4.1) and (4.3) correspond to the
Theorems (3.1), (5.1) and (7.8) in [5]].

5. Modular centers of Wilcox lattices.

Derinrrion (5.1). Let L be a Wilcox lattice such that L=4—S. For an
element g of L, if u<a for every u €S, then we write SCa, and we call a a
||-closed element of L.

We sall say that 0 is a [|-closed element. Denote by M the set of all |-
closed elements of L.

ReMARrk (5.2). When « is a ||-closed element of a Wilcox lattice L, let
m be any regular element with m<a. Then for any irregular element b such
that m<b, we have b<La.

Tueorem (5.3). In a Wilcox lattice L, the set M is a modular sublattice of

Proof. (i) We shall first show that M is a sublattice of L. Let a, b€ M.
If one of ¢ and b is zero, it is evident that o\Ube M and anbe M. Hence
assume that @, 520, then we have SCe and SCb. Since SCa<La\/b, we have
a\Jb e M. When a/A\b €L, by (3.1.4) we have SCa/Ab=anb; and when a/\be€S
by (3.1.4) we have anb=0. Hence in both cases, we have anb e M.

(ii) Next we shall show that M is modular. Let a, b, c € M and c<b. If
one of a, b, ¢ is zero, then
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o)) (cUa)nb=c\U(anb)

is evident. Hence assume that «, b, ¢ are all nonzero. Since A4 is a modular
lattice, we have

) (cVa)ANb=c\/ (a \b).
If aAbelL, then by (3.1.1) we have (c\Va)/A\beL. Hence by (3.1.3) and

(3.1.4) we have (1).
If aAbeS, then by (6.1) aAbLc. Hence we have

3) (cVa)yANb=c\V (a/\b)=ce€L.
Therefore by (3.1.3) and (3.1.4), we have
cVa)ANb=(\Ja)Nb and anb=0.
Hence from (3) we have
cva)Nnb=c=c\U(@Nb).
Thus (@, b)M holds for all cases.
DermviTiON (5.4). In a Wileox lattice L, the set M of all ||-closed elements

is called the modular center of L. And when M is composed of only two
elements 0 and 1, we say that L is modularly irreducible. (Cf.[4] (4.12).)

6. Modular centers of Wilcox lattices with imaginary units.

DeriniTion (6.1). In a Wilcox lattice L= 4—S, if S has the greatest
element i, then we call i the imaginary unit of L, and we say that L is a
Wilcox lattice with i.

In this case, S={xe4; 0<xLi}.

RemaRrk (6.2). In a Wilcox lattice L with i, a nonzero element « of L is
a regular element if and only if aAi=0.
This is evident from Definition (3.3).

Dermrion (6.3). In a Wilcox lattice L with i for a regular element m of
L, set I(m)=mV\i, and 1(0)=0.

TuaeoreMm (6.4). Let o be a nonzero element of a Wilcox lattice L with i.
Then the following three propositions are equivalent.
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() a1is a ||-closed element.
® i<a.

(1) There exists a regular element m such that o= I(m).

Proof. (a)<(P) is evident from Definition (5.1).
(B)— (). Since 4 is a complemented modular lattice, from i<a, there
exists an element m such that

a=m\ i, mANi=0.

Then from (6.2), m is a regular element and «=1I(m). Of course, m is not
necessarily unique.

N—>B). If a=I(m)=mVi, then i<a.

Tueorem (6.5). Let a, b be nonzero elements in the modular center M of a
Wilcox lattice L with i. If anb=0, then ab.

(m.nd

Proof. By (6.4), there exist regular elements m, n such that

a=m\Vi and b=nVi.

Since annLanb=0, by (3.10) we have a||b.
(m,n)
Tueorem (6.6). The modular center M of a Wilcox lattice L with i is a
complemented modular sublattice of L, and M is isomorphic to AG, 1)={a€ 4;
1<La}.

Proof. By (6.4) M is the set My={az € 4;i<a} with 0 adjoined. Hence
there exists a one to one correspondence between A(i, 1) and M such that if
i<a a—>a, and i—0. And by (3.1.3) and (3.1.4), we have, if i<a, b a\/b—>a\Ub,
if i<a aVi=a—a=a\J0, if i<aAb aAb—anb, and if i<a aNi=i—>0=an0.
Hence the above correspondence preserves the lattice operations. Therefore
M is isomorphic to 4(, 1), which is a complemented modular sublattice of A.

Remark (6.7). A Wilcox lattice L with ¢ is modularly irreducible if and
only if ; is the hyperplane of A.

Proof. Since i is the hyperplane of 4 if and only if A(, 1) consists of
only i and 1, this remark is evident from Definition (5.4).

7. Appendix. Modular centers of affine matroid lattices.

Previvinaries (7.1). As in (2.4) refered, in a matroid lattice L, we
define the point-set parallelism. A weakly modular matroid lattice L of
length >4 is called an affine matroid lattice (cf. [4] (3.3)), when L satisfies
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the follownig weak Euclid’s parallel axiom:

Let ! be a line in L. If p is a point such that p %/, then there exists at
most one line £ such that /||t and p<k.

In this section, we treat only the affine matroid lattice which are not
modular.

In an affine matroid lattice L, a line [ is called incomplete, when for any
point p=/, there exists a line k such that /||t and p<k. And a line [ is called
complete, when there exists no line parallel to I. An element ¢ of length >. 2
is called incomplete, when any line contained in « is incomplete (cf. [4] (3.4)).
For any point p in L, there exists a maximal incomplete element 7(p) which
contains p. If I(p)=¢1, then either I(p)=1(g) or I(p)||I(¢) for any points p, ¢ in
L (cf. [4] (4.1)). If I(p)=1, then L satisfies the following strong Euclid’s
parallel axiom:

Let [ be a line in L. If p is a point such that p X/, then there exists one
and only one line % such that ||k and p <k

An affine matroid lattice L is a Wilcox lattice with the modular extension
A=LUS and with the imaginary unit i=[I(r)], r being any point in L (cf.
[6] (7.1)). Let £o={I(t.); « €I} be the decomposition space of L (cf. [4]
(4.3)). When p, q be any different points in L, the line puUq is a complete line
if and only if p and ¢ are contained in different I(z,) and I(z5) in 2, (cf. [4]
(4.4)).

Now we have the following lemma.

Lemma (7.2). In an affine matroid lattice L, an element a of length 2 is
a regular element if and only if any line I contained in a is complete, that is,
for any different points p, g <a, we have I(p)=xI(q).

Proof. (i) Necessity. If there exist p, ¢<a (p=xq) such that I(p)=1(g),
then the line /[=p\q is an incomplete line, and [[]<I<La. Since [{]e€ S, this
contradicts the regularity of a. (Cf. for detail [5] (7.1).)

(i1) Sufficiency. If « is not a regular element, then there exists ue€ S
with e Au=c0. Set u;=a/u, then by (3.1.1) u; € S. Since 4 is atomistic, there
exists an incomplete line [ in L, such that [/]<Lu;<a, [[] being a point in 4.
Since 1< |a by [4] (2.8), there exists a line I’ such that I’=] or /]|l and /' <La.
Let p, ¢ be points such that I’=p\ugq, then p, ¢<a (p=x¢) and I(p)=1(¢), which
contradicts the assumption.

Remark (7.3). When an affine matroid lattice L satisfies the strong
Euclid’s parallel axiom, any line in L is incomplete, hence by (7.2), only the
points are regular elements. Therefore all point-free parallelisms are in the
from «l|b which is nothing but the point-set parallelism b (cf. (2.4)). Since

(P
L is an irreducible matroid lattice (ef. [4] (8.7)), the perspectivity of points

p~q is transitive (cf. [7] p. 186), hence we may also write al|b.
p~q
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ReEMARK (7.4). In an affine matroid lattice L, by [5] (7.2) and [5] (6.5),
an incomplete element « is written in the from a=p\/u, where p is a point in
L and u€S. Hence the maximal incomplete element I(p) containg p, is
expressed as p\i. Therefore I(p) is coincident with I(m) in (6.3) when the
regular element m is the point p. And p<La implies I(p)=pViLa, if and only
if i<a. Hence by (6.4) the ||-closed element of L defined in (5.1) is coincident
with that of [4] (4.10). And the modular centers of L defined in (5.4) and [4]
(4.12) coincide.

By (6.6), M is isomorphic to 4@, 1) and I(p)=pVi is a point of A, 1).
Consequently Theorem (6.6) is an alternative proof of [4] Theorem (4.11),
except the irreducibility of M.

To prove the irreducibility of M, we shall prove the irreducibility of
AG, 1). Let p\i, g\Vi be two different points in 4@, 1). Since I(p)=cI(g), by
[4] (4.4), puq is a complete line of L. Hence by [4] (3.6), p\ug contains a
third point r. Since puUr=¢q\Ur=p\Uq is a complete line, I(r)cI(p) and ()=
I(g). Hence rV/i is a third point contained in the line (p\Vi)V(¢Vi) in 4G, 1).
Consequently by [4] (1.12), 4G, 1) is irreducible.
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