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Introduction

Recently the importance of the ideal boundary, which was introduced by
Kuramochi [4] in 1956 and is now called the Kuramochi boundary, has been
well recognized. For instance, a large part of the book of Constantinescu
and Cornea [ 3] is devoted to the study of the Kuramochi boundary.

Independently of them, a seminar to read Kuramochi’s paper [4] was
held in 1959-60 with Dr. Matsumoto, then an assistant at Hiroshima Univer-
sity. By the aid of the notes made by Dr. Matsumoto, the present author
justified the whole part of pp. 145-162 of [4] and gave lectures based on it
at Kyushu University in 1962. The theory of BLD functions (called Dirichlet
functions in [3]) was used there. However, his results had been left unpub-
lished because the theory was rather complicated and needed further
improvements to be regarded as an accessible version of Kuramochi’s theory.
Meanwhile, it was informed that Constantinescu and Cornea succeeded in
developing the theory of Kuramochi boundary rigorously and their book was
under preparation. This made the present author more reluctant to publish
his notes in spite of a kind suggestion by Constantinescu to publish them in
a Roumanian journal. It is also to be noted that Kuramochi himself tried to
make his theory clear in [5; 6] but there have been remaining still several
obscure points.

Now in this paper the original method of Kuramochi is made elementary
by avoiding the theory of BLD functions. Although there is nothing new in
results concerning the Kuramochi boundary, it is hoped that this paper will
help people become familiar with Kuramochi’s theory on his boundary.

It is possible to introduce the Kuramochi boundary in higher dimensional
spaces in a similar manner. It needs, however, more careful discussions in
details and is not carried out in this paper. For the Kuramochi boundary
for Green spaces of higher dimension, we refer to Maeda’s papar [7] where
it is discussed along the line of [37].

Except §1 in which we give a proof of the Dirichlet principle by the aid
of the notion of harmonic subflows, the contents of this paper are quite
parallel to those of the paper [8] of R. S. Martin. Readers must be very
well acquainted with this paper [8] and so detailed explanation of each
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section is omitted here. We shall not be concerned with the values of
potentials on the Kuramochi boundary in this paper.

The prerequiste knowledge is some fundamental notions about abstract
Riemann surfaces such as exhaustion, double, normal family of harmoniec
functions, etc. and certain classical results in the theory of logarithmic
potentials in the plane.

§ 1. Dirichlet principle

Let R be an open Riemann surface. We shall call a domain in R a
parametric disk if a local variable z is defined on its closure and it is mapped
onto |z|<1l. The closure of a parametric disk will be called a closed
parametric disk. In this paper we take a closed parametric disk K, once for
all, and set R*"=R—K,. An exhaustion will mean an increasing sequence
{R.}, n=1, 2, ..., of relatively compact domains such that K,CR;, R,\VOR,C
R,.1 (n=1,2, ...), each 0R, is analytic, i.e. it consists of a finite number of
closed analytic curves, and no component of R—R, is compact. We shall
write R,=R,—K, We shall call a relatively compact open set or a compact
set in R regular if its boundary consists of a finite number of analytic ares.

Let a harmonic function A(P) be given in an open set G on R such that
it is not constant in any component. A curve ¥ will be called orthogonal
(with respect to 2(P)) if grad 2==0 on ¥ and there is a neighborhood of v in
which a single-valued harmonic conjugate 2* of 2 can be defined so as to be
constant on Y. A maximal orthogonal curve will be called an orthogonal
trajectory (for h(P)). It is orthogonal to level curves of ~2(P) at each point
of intersection. Since A(P) increases or decreases strictly on each orthogonal
trajectory, no orthogonal trajectory is a closed curve. Each orthogonal
trajectory tends to the boundary of G unless it terminates at a critical point
where grad 2=0. Let ¢ be an open analytic arc® on whose closure grad 250
and %~ is constant. In a neighborhood of ¢ we can find a single-valued
harmonic conjugate 2* of o. We call the bundle of orthogonal trajectories
passing through ¢ a harmonic flow (for ~A(P)), and call a subbundle a harmonic
subflow (for A(P)) if its intersection with ¢ is measurable with respect to A*.
Let 2(P)=a on c. If d>0 is suitably chosen, % takes all values of [a—d, a+d ]
on each orthogonal trajectory passing through ¢. The part of the harmonic
flow on which ¢—d<h(P)<a+d is called a regular tube. It is a domain and
its closure is called a regular compact tube.

In the proof of the Dirichlet principle, we shall use

1) By an open analytic arc we mean an open analytic curve which does not oscillate, i.e. which
has definite end-points.
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Lemma 1. We can divide G minus all critical points into disjoint harmonic
subflows.

Proor. We cover the remaining open set by a countable number of
regular tubes. With each tube we associate the harmonic flow passing
through it. If the harmonic flows are denoted by Fi, F, ..., the harmonic
subflows I';=F,, I';=F,—F,, I's=F;—F,—Fy, ... satisfy the condition.

Let K be a regular compact set in R’. A continuous function fon R'—K
will be called piecewise smooth if f is continuously differentiable in an open
subset GCR' —K such that R"—K—G locally consists of a finite number of
points and open analytic arcs. Given a continuous function @ on 0K, we shall
denote by 2z _x(®) the class of all piecewise smooth Dirichlet finite (meaning
that the Dirichlet integral is finite) functions with boundary values ® on 9K
and 0 on 9K,.

Now we formulate the Dirichlet principle as follows:

Tueorem 1. Let K be a regular compact set in R, and assume D g _x(P)
#+=¢. Then there is a unique h< Dz _x(P) which has the minimum Dirichlet
integral among the functions of P _g(P), and h is harmonic in R'—K.

Proor.? We may assume KCR;. We shall denote the Dirichlet integral
by || ||*>. Take any f€ 2 _x(®). First we prove the theorem in R,. Let 2,
be the harmonic function in R,—K which has the boundary values ¢ on 9K
and 0 on 9K, and whose normal derivative vanishes on 0R,. One way to find
%, is as follows: Consider the double R, of R, along dR, (see p. 199 of [17]) and
denote by K and K, the symmetric extensions of K and K, respectively. The
restriction to R, —K of the Dirichlet solution on R,—K —K, for the boundary
function @ on 9K and 0 on 9K, is equal to %,.

Let G be an open subset of R'— K such that f is continuously differentiable
in ¢ and R'—K—G locally consists of a finite number of points and open
analytic ares. With the aid of Lemma 1 we divide all components of R,—K,
in which 4, is not constant, into disjoint harmonic subflows 7'y, Iy, .- for h,.
In order to show [[h/[x: x <[/fllz; -, it suffices to show [hllcr, <]/ f]l-r,- for
each % where the subscript [/, ] indicates that the integrals are taken on 77
as a point set.

Let 7 be an element of 7", which does not coincide with any open analytic
arc contained in R'—K—G, does not terminate at any critical point and which
does not pass through any point belonging to R*—K—G minus the open
analytic ares. Then 7 tends to the boundary of R'—K in both directions and

2) This proof is found in [9] in the plane case.
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every compact subarc of ¥ meets any one of these open analytic arcs at most
a finite number of times. Take a conjugate A} of A, on the harmonic flow
which contains I, and regard &, + ik} as a local variable on the harmonic
flow. Since the normal derivative 94,/0y vanishes on dR,, each component of
OR, minus the critical points is orthogonal to level curves terminating on 0R,
and hence 7 does not terminate on 9R,. If v terminates at two points Py, P,
on 9K, then

Sy | grad f| dh,= S \df | = |p(Py—p(Py)| = Sydhn,

where grad f is defined with respect to the local variable £,+iz; and 7 is

oriented so that 4, increases. We obtain the same inequality S |grad f | dha
7

gg dh, if one end-point of ¥ lies on 0K, instead on 0K; evidently it does not
b4

happen that both end-points of ¥ lie on 0K,. If 7 oscillates, we take sequences
of points on ¥ converging to some points of 0K\U0K, and conclude the same
inequality.® We derive

(S dﬁn>zég |gradf|2dh,,g dh

and g dhngg |grad f|*dh,. Thus we obtain
7 b

Hh,,ulzng g dh,,dh;‘gn \grad £2dhdht = i fliEr
(ra)nex Jv

where ¢, is an analytic arc which I, intersects orthogonally.

We remark that the mixed Dirichlet integral (f—7,, h")"% _x Vvanishes.
Actually, for any ¢>0, Hh,,HR;Z _Kglih,,ie(f—h,,)HR; _x. Hence 0<+2¢(h,, f—
h,,)R;_K+82Hf—h,,}.I§€;~K, so that 0"+ 2(h,, f—ha)r! _K+a][f—hn!j§e;_;(. By letting
¢—0 we conclude (f—h,, hﬂ)R;Z _x=0.

If m>n, hn€2 R - x(®) and hence (h,—h,, h,,)R/ x=0. Therefore, 0=
V=l = Wl — Wl < g i — g Simee [l <
Ifll3-x<oco for all n, ||A,l% %/-x increases to a finite hmlt. Hence {#,} form a

Cauchy sequence and %, tends to a harmonic function 2 on R'—K both in

norm and locally uniformly, because 2,=0 on 0K, In order to show that A

takes the boundary values @ on 9K, set M= max |®| and consider the harmonic
K

3) We can actually prove that no y oscillates.
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funection 2’ (%" resp.) in R; —K which takes the boundary values ® on 0K, 0 on
0K, and M (—M resp.) on 0R;. Evidently A< h,<h' in R;—K for each » and
hence »"<h<I’' in R;—K. Since both 7’ and %" take the boundary values ¢
on 0K and 0 on 0Ky, so does &. The relation |A| <lim|#,]| <] f||<co shows

that A€ 2z _x(®) and also that 2 has the minimum Dirichlet integral among
the functions of 2. _x(P).

Finally, let us prove the uniqueness. As in the case of R, we derive
(g—h, B)=0 for any g € 2 _x(®). If there is another extremal #’, (A" —h, b)=
(h—Hn, K)=0. Hence ||h—~'||=0. Since 2—4" vanishes on 0K,, h="H'.

CoroLrAry. (g—h, B)=0 for any g& Dr _x(P).

We shall denote 2 by ®x. We note that the maximum principle holds
for @x: min (n;in ?, H)<@pr<<max (n%ax ®,0) in R"—K. If @ is constantly 1
K K

on 9K, we can find f€ 2 _g(1) easily. This special @5 will be denoted by
og. Furthermore, we remark that @x is a linear functional of . Namely,
if ¢ is a constant and if Pz _x(P)F+ & and Dg_x(¥)FE £, then (cP)x=cPpx
and (P+V)x=Px+Vx.

We give a property of @g.

TueoreMm 2. Let K, K’ be regular compact sets in R’ such that KCK'.
Ther (Px)x=Px.

Proor. The function fin R'—K which is equal to (®x)x- in R'—K’ and
to Pk in K'—K belongs to 2z _x(®). Hence |Pxllr-x <[ fllzr-x by Theorem
1. This gives ||®x|z—x<I|(Px)x||z—x- Since px belongs to 2z _x(Px), Px=
(Px)x, on account of the uniqueness of (Px)g..

§ 2. Definition of @ for general @

So far we have defined ®@x only for @ which is continuous on 0K and for
which 2z _g(P)#+&. We shall denote by CDx the class of such functions on
oK. If e (CDg, max (px(P), 0) as a function on R'—K is piecewise smooth
Dirichlet finite and has the boundary values max (@, 0) on 8K and 0 on 0K,.

It is easy to observe that the points of K are separated by functions of CDk.
By means of Stone’s theorem (see [ 2], p. 54) we can infer that CDx is a dense
subelass, with respect to the uniform convergence, of the class Cx of continu-
ous functions on 9K. Since |Px(P)—Vx(P)| <max|p—| for any ¢, ¥ € CDg
by the maximum principle, ®x(P) is uniquely defined for any @ €Cx even if
Dp_g(P)= . It is a harmonic function of P in R'—K and continuous on
(R"—K)U0K\U0K,. For each fixed P, it is a positive linear functional on Cx.
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Hence there is a Radon measure % supported by K such that
M Px(P)= | PQdrk@©

for every @ € Cg.
For an arbitrary pl’-measurable @ >0, we define @x(P,) by S(pd#f}“.

Suppose that @x(P,) is finite and let D be the component of R'—K which
contains P,. Let {®;} be an increasing sequence of upper semicontinuous

functions on 0K such that S(p].d,zf,'}" increases to S?d/b;}n, and {Jr;} be a decreas-
ing sequence of lower semicontinuous functions on 9K such that g\!fjdy.?
decreases to SWZ#?. We shall write lim ;=@ and limr;=@®. Since both

S?d#f} and g@i#ﬁ} are harmonic functions in D and coincide with each other

at P, D, they are identical in D. Since P<p <P, p=o pk-a.e. for every
PeD. This implies that @ is p%-measurable. Thus the p&-measurability
does not depend on the choice of P in a fixed component of R'—K. Further-
more @x(P) is harmonic in a component once it is finite at some point of the
component.

In case S(Pd,u-f}” = oo we express @ by lim min (@, M). Since Sd/x-f,'}<oo,
Moo

min (@, M) is pk-measurable for every PeD and so is .
It is easily seen that min (ianf @, 0) < pr<max (saup ®, 0) holds in R — K
K K

and that ¢x ,x, <Pk, + Pk, for any compact sets K; and K; in R’ and for any
Borel measurable function @ >0 given on 90K,\U0K,.

We shall prove a theorem analogous to Theorem 2.

Tueorem 3. If @ is non-negative pk-measurable for PER'—K' and if
KCK/, then 9k is pk-measurable as a function on 0K and (Px)x(P)=Px(P).

Proor. First we shall show that this is true if @ is continuous. Certainly
Pk is pk-measurable. We approximate @ by @; € CDg uniformly on 9K. For
each j, (P)x)k-=(®;)x by Theorem 2. We obtain (Px)x, =9k by letting j—>oo.
Next if {yr;} is monotone, if (V;)k is p% -measurable as a function on 9K’ and
if (V)x)x-=0)k for each j, then (lim )k is x% -measurable as a function
on 9K and ((Iim V))g)x-=im v¥r,)x. Therefore, for ¢ and ® defined above,
Pk and Px are pk-measurable, (Px)x(P)=Px(P) and (Px)x(P)=Px(P). It

holds that g@Kd#f,'}/= S@de.{},, which implies @, =@, pk-a.e. Since pxr<
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Pr < Pg everywhere, ¢ is uk -measurable on 0K'. Furthermore, (9x)x(P)=
Px(P) because Px(P)=Px(P)=Px(P) and Px(P)= (Px)x (P) = (P& (P)<
(Pr)x(P)=Pg(P).

§ 3. Function N

Let Q be a point in R" and {R,} be an exhaustion such that Q€ R;. Let
N,(P, Q) be the positive harmonic function in R,— {Q}, which vanishes on 0K,
has a vanishing normal derivative on dR, and has a logarithmic singularity
with coefficient 1 at Q. We can show its existence by considering the double
of R,.

Before proving a theorem we state a general remark. If a harmonic
function £ is defined in a ring subdomiain' D of R’ partly bounded by 0K, and
if 2 has the boundary value 0 on 0K, then 4 is harmonic on 8K, and in a ring
domain which is the reflexion of D along 9K, on account of the symmetry
principle.

We prove first

TuroreMm 4. N,(P, Q) converges to a function N(P, Q) locally uniformly on
R—(K,—0K,)—{Q} and HN,,—NHR; tends to zero as n—>oco. The function

N(P, Q) has a logarithmic singularity with coefficient 1 at Q and vanishes on
0K,.

Proor. Let z be a fixed local variable at Q such that z(Q)=0 and |z| <1
corresponds to a parametric disk in R. We set A,(z)=N,(P(z), Q)+log|z|. It

is defined at z=0 so as to be harmonic there. We denote £,(0) by 7, and
have

We denote by D, the image on R of the disk |z| <r<1. By the aid of Green’s
formula it holds that

, ’ ON,
”Nn”%,’;brz oD N, —5 = ds

"o
and

lim(|N, |3/ p, + 27 log r) = 277,
r—0 ”

Let m>n. It holds that
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0N,
(N, Nm)R,’;Dr = SBD Ny "oy ds

r

and hence

lim {(NV,, Ny)g’_p, + 2 logr} = lim S T - aa]:;"'/ds = 27 .
r—0 ” r

7—0 JaD
Therefore
0[N, — Ny = lim |V, — N7, = lim [, -, + 2 log )
+ (IN, 13 -p, + 27 log 1) — 2{(N,, Nyas—p, + 27 log 1} ]

<2, 4 21V — AT = 2 (Vi — V).

Accordingly, v, decreases as n— oo,

We want to see that v, does not tend to —oco as n—>oo. The function
hn(z2)=N,(P(z), Q)+ log |z| is a harmonic function of z on |z| <r and it is
=logr on |z| =r. By the minimum principle, it is >logr on |z|<r.
Consequently, 7, =1%,(0)=logr> —c. Now we have lim ||V, — N[z’ =0.

Fix k. Since N,—N, vanishes on 0K, and is harmonic in a neighborhood of
0K,, N,—N, converges both in norm and uniformly on any compact set in
R,—(K,—0K,) as n—> . Consequently N, converges uniformly on any com-
pact set in R—(K,—0K,)— {Q}. We shall denote lim N, by N. This function

has a logarithmic singularity at Q and N,—N is harmonic in R]. Since
][(N,,—N)——(N,,,—N)HR;:”Nn—N,,,HR;l—»0 if n<m and n— oo,

we conlcude that N,—N tends to a harmonic function H in R’ such that
H(N,,——N)—H![R;—+0 as n—>oo. Since N=lim N,, H=0. Thus HN,,—NHR;—>O

as n— oo, Our theorem is now completely proved.

Our function N(P, Q) does not depend on the choice of exhaustion. Asa
function of P it is harmonic in R'— {Q}, vanishes on 9K, and has a logarithmic
singularity at Q. Outside any neighborhood of Q it has a finite Dirichlet
integral. Since N,(P, Q)=N,(Q, P), N(P, Q)=N(Q, P).»

Let us see that it is a continuous function in the extended sense (i.e.
admitting o) on (R—(K,—0Ky)) x (R—(K,—0K,)). Let Py, Qo€ R—(K,—0Ky)
and Py+Q,. Let a>1 be given. By making use of Poisson’s formula we
observe that there is a neighborhood D of P, such that

4) N is denoted by & in [3].
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a 'N(Py, Q)< N(P, Q)< aN(Py, Q) for any PeD

so far as Q is kept away from P,. Since N(P,, Q) is a continuous function of
Q, we can find a neighborhood D’ of Q, such that N(P,, Q) is close to N(Py, Qo)
if QeD’. Consequently, N(P, Q) is close to N(P,, Q) if PeD and Q€D

Next we consider the case when Py=Q,. Let D, be a disk on which a
local variable z is defined such that z(P;)=0. The function 2(P, Q)=N(P, Q)+
log |z(P)—z(Q)| is a harmonic function of each variable while the other is
fixed. In the same way as above we can show that A(P, Q) is a continuous
function of (P, Q) on Dyx D, Since it is finite-valued, it is bounded if both
P and Q are restricted to some neighborood of P,. We infer that N(P, Q)=
h(P, Q)—log|z(P)—=z(Q)| tends to co as both P and Q approach P,. Thus N(P,
Q) is a continuous function of (P, Q) in the extended sense.

Now we may take N(P, Q) as a kernel of potential. For any non-negative
measure p in R such that x(K,)=0 we can define the potential SN (P, Q)dp(Q).

We shall write it as Nu:(P) too. When we consider a potential Ny, we always
assume that x(Ko)=0 and that Np is not identically equal to oo. It is a
superharmonic function in R’. We shall use the terminology that a measure
w18 on a Borel set B if x(B)=0 for any Borel set B’ disjoint from B. Thus
we shall consider measures on R’; later we shall consider also measures on
the Kuramochi boundary.

We shall prove

Tueorem 5.  For any regular compact set KCR', (Nw)x <Ny in R —K.
The equality holds if S, is included in the interior K' of K.”

Proor. First we prove Nx=N in the case that the pole Q is an inner
point of K. We know that Nk is equal to the limit of the following harmonic
function 4, in R,—K: &, is equal to N on 0K\UdK, and 0h,/0v=0 on dR,. Since
N,—N uniformly on 9K, 2,—N,—0 in R"—K as n— co. Consequently, Nx=
lim A,=lim N,=N in R —K.

In case Qo€ R'—K, N(Q, Q) is a continuous function of Q on K. Hence

Nk is continuous on 0K and N—Nx=0 there. Since N— Ny is superharmonic

in R"—K, we can show N> N by the same reasoning as in the first case. If

Qo € 0K, we approximate N(Q, Qo) by an increasing sequence {f;} of continuous

functions of Q on 9K. By definition Nx=lim(f;)x. We infer (f)x <N for
.

each jin R'—K and derive Ny <N there.
If 4 is a measure with S, CK',

5) Actually we can prove the equality if S,CK but omit the proof.
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Wwe® = [| N ©Q )ap@)dni @ = || V@ @)t @ (@)

- SN(P, 0)du(Q) = Nu(P).

In the general case we infer (Vu)x(P)<Nu(P) by making use of the inequality
Ng<N.

§ 4. HS functions and SHS functions

First we define an SHS function. Let V(P) be a positive lower semi-
continuous function in R" which is not identically equal to . If Vg(P)<V(P)
in R'—K for any regular compact set K in R/, then V(P) is called an SHS
function® in R’. It follows that V(P) is superharmonic in R. If V(P) is
harmonic in R/, it is called an HS function. Next let V(P) be an SHS function
in R and {K,} be a sequence of concentric closed parametric disks in R
strictly decreasing to K,. If Vox (P) tends to zero as m— oo in R, V(P) will
be called an SHS, function.” If, in addition, V(P) is harmonic in R/, it will
be called an HS, function. If {V,} is a decreasing sequence of SHS (SHS,
resp.) function and if the limiting function is lower semicontinuous, then it
is an SHS (SHS, resp.) function. If {V,} is an increasing sequence of SHS
(SHS, resp.) functions and the limiting function 7 is not identically equal to
oo (is dominated by an SHS, function resp.), then V is an SHS (SHS, resp.)
function.

First we prove
Tueorem 6. Ewvery potential Nu is an SHS, function.

Proor. On account of Theorem 5 it satisfies the inequality (Vu)x<XNpu.
Let {K,.} be a sequence taken as above. We fix any point P,€ R’. Denoting
by pn the restriction of 1 to K, if mo is large, Ny, (P,) is smaller than any
given ¢>0 because x(Ko)=0. Naturally (Num,sx,(Po)<Npm,(Po)<e for any
m. On the other hand, since N(x—pn,) has the vanishing boundary value on
0Ko, (N(p—pemy))ox,(Po) L 0 as m—oco. Thus lim (Wu)sx,<e and hence =0.

m—oo

We shall use the following well-known facts in the theory of logarithmic
potentials in the plane.

Lemma 2. If vi(z) and vy(z) are the logarithmic potentials of measures

6) This is called superharmonic by Kuramochi and “positiv vollsuperharmonisch” in [37].
7) This is called a function of potential type in [3].
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and v respectively and v,(z)=v.(z)+a harmonic function in a domain D, then
w(B)=v(B) for every Borel subset B of D.

Lemma 3. (Riesz decomposition theorem). Any superharmonic function
in a plane domain D is equal to the sum of a harmonic function tn D and the
logarithmic potential of a measure on D.

Consequently, for any superharmonic function V(P) in an open set GC R/,
we can speak of the measure which gives locally and hence globally in G the
potential part in the Riesz decomposition of ¥ with respect to the kernel N.

We shall establish

Tueorem 7. If V(P) is an SHS function in R and K is a regular compact
set in R/, then the function v(P) equal to Vg(P) in R’ —K and to V(P) on K is
equal to the potential of some measure supported by K.

Proor. Since Vi (P)<V(P) in R'—K, v(P) has the mean value property
(i.e. v(P)= the mean value of v on any sufficiently small disk around P) on
0K and hence in R’. In order to show the lower semicontinuity of »(P), we
approximate it from below by an increasing sequence {f;} of continuous
functions on 9K. We extend (f;)x to a function on R’ by setting it equal to
V in K—0K. This extension is lower semicontinuous in R’ and increases to
v(P) in R as j—»>oco. Thus v(P) is lower semicontinuous and hence »(P) is
superharmonic in R’.

Let x be the measure which gives the potential part in the Riesz decom-
position of v(P). On account of Lemma 2 it is supported by K. The function
v(P) — Np(P) is harmonic in R. Let K, be a regular compact set in R’
containing K in its interior. From Theorems 3 and 5 it follows that

(v—Nwg,=v— Np in R —K,.
Consequently

sup |v — Np| = max |v — Np|.
R -K, 9K,

Thus max |v—Np| is attained on #K;. By the maximum principle v—Npu
Y

must be constant in R'. Since it vanishes on 0K,, v=Ny in R'.
In virtue of Theorem 6 we have
CoroOLLARY. Vi extended by V is equal to an SHS, function.

We approximate R’ by an increasing sequence {D,} of regular subdomains
such that D,\voD,CR’. By the preceding theorem, on D,\JdD,, V(P) is equal
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to the potential of a measure y, supported by D,\dD,. We denote by s, the
restriction of yx, to D, and put wj,=p,—p,. It holds that

2) V=Nu, + Nu, on D,U0D,.

We observe that y,, is identical to the measure which gives the potential part
in the Riesz decomposition of V(P) in D,. As n— oo Ny, increases and Ny,
decreases to a harmonic function in R. Consequently the function U=
lim Ny, is an HS function in R. Thus we have the following decomposition

n—oo

theorem in R’.

Turorem 8. Every SHS function is equal to the sum of an HS function
and a potential.

§ 5. Definition of V; for an SHS function V

We have considered @i for a regular compact set KCR and a pk-
measurable function @ on 0K. In this section, by F or by F’ we shall mean a
closed subset of R’ whose boundary consists of a countable number of analytic
curves clustering nowhere in R’. For an SHS function V in R’, we define Vp
by lim V5, in R'—F, where F, is defined by FN(R,\J0R,). The increasing

n—roo

limit exists because

Ve e, = Ve, ZVr, XV if n<m

by Theorem 3. In the following we shall denote the extensions to R’ by ¥-of
Vr,and Vy again by Vr, and Vr respectively. By the corollary of Theorem
7, Vr, is an SHS, function in R'. We already noted that the limit of any
increasing sequence of SHS functions is an SHS function if the limiting
function is not identically equal to co. Consequently, V' is an SHS function
in R. Furthermore, it is dominated in a ring domain DCR/, partially
bounded by 0K, and disjoint from F, by Vr_p which has the vanishing
boundary value on 0K,. Therefore Vr is an SHS, function in R’. We remark
that (U+V)r=Ur+Vyp if U and V are SHS functions.
We shall prove an analogue of Theorem 3.

TueoreM 9. Let FCF', and V be an SHS function in R'. Then (Vp)p =
VF wm R’.

Proor. Let n<<m. Since F,CF,, (V. rF! =Vp, in R by Theorem 3. By
definition, Vr,<<Vpr in R’. Therefore, Vpng(yp)p;n in R". By letting m—
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first and then n— o, we obtain Vr <(Vr)r. in R’. Conversely, since V5 is an
SHS, function, (Vr)r-<Vr in R’. Thus we obtain the equality.

Next we prove

Tueorem 10. Let V be a piecewise smooth Dirichlet finite SHS function
m R. Then ||[Vi,—Vr|r-r, tends to zero as n— oco.

Proor. Let m>n. By Theorem 1, (Vr —Vr,, Vr,)r-r,=0 and hence
0 |[Vp, — Velkr—r,= | Ve llz-r, + IWV13-rn = 1 Veullk-pye
Therefore

1Velltr-r, <1im [ Ve, % —p, + IV I[F-p,

m—roo

We let n—co and have lim|Vz,||3-r, <lim|Vy % _r, The existence of

i n—>o0

lim||Vr, ||z, is inferred and it follows that {Vr} form a Cauchy sequence.

The pointwise convergence lim V' =V being known, we conclude that |[V»,

n—oo

—Vrl|lrr-r,—>0 as n— oo,
In virtue of this theorem it is rather easy to prove

TueoreMm 11. Let V be a piecewise smooth Dirichlet finite SHS function
i R, and f be a piecewise smooth Dirichlet finite function tn R’ which takes
the values V on F and 0 on 0K,. Then (f—Vp, Vi)r-r=0, and Vi 1s the unique
function which gives the smallest norm among the functions like f.

Proor. We apply Theorem 1 and obtain (f— Vs, Vi )r-r,=0. On
account of Theorem 10 we conclude (f—Vr, Vr)r-r=0. The proof can be
completed in the customary way.

Cororrary 1. Let FCF'. For the above V,
Ve = Vel p = 1Verlbr—r — WWellk-r + VI35

Cororrary 2. Suppose that the above V is bounded. The function V,
which is harmonic in R,—F, which takes the boundary values V on 0FN\R, and
0 on 0K, and which has the vanishing normal derivative on OR,—F, converges
to Vk as n—> co.

For, extracting a subsequence {V,,} converging to V, in R'—F, we have
by Fatou’s lemma
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” Vo“ gg “ Vnk”R;k—F g “ VF“'

As in the proof of Theorem 1 we can show that V, takes the same boundary
values as ¥V on 0F\U0K,. Therefore Vy=Vr by the above theorem. It follows
that lim V,=Vr because every convergent subsequence of {V,} converges to

oo
Vr.

§ 6. Definition of Kuramochi boundary

We observed already that N,(P, Q) tends to N(P, Q) uniformly in a
neighborhood of 0K, for any fixed Q € R’ on account of the symmetry principle.
Therefore

oN . ON, , .. WG]?\Z,& _
Yox, O ds = gaKOI'ZIE—aTds = lﬂlg: gaxo oy ds = 2.

Let {Q;} be a sequence of points tending to the boundary of R. We can see
that no subsequence of {N(P, Q;)} tends to the constant oo as j—>co. Actually,
let D be a ring subdomain of R’ whose one boundary component is 0K, and A
be the harmonic measure function of C=8D—0K,. It holds that min 04/0y>0
on 0K, and N(P)g(mcin N)R(P)in D. If N(P)— co in R/, then 0N/avgmcinN-
min 04/0y — oo uniformly on 8K,. This contradicts the relation SaK ON/0vds

9K,
=27. Consequently, {N(P, Q;)} form a normal family and every converging

subsequence converges uniformly on any compact subset of R—(K,—0K)).

If N(P, Q;) converges, {Q;} will be called a fundamental sequence. If the
limiting functions of two converging sequences {N(P, Q,)} and {N(P, Q))} are
equal to each other, we say that {Q;} and {Q;} are equivalent and call an
equivalence class a Kuramochi boundary point. We call the set of all Kura-
mochi boundary points the Kuramochi boundary of R and denote it by 4y.
If PeR, Q€ 4y and {Q;} in R’ determines Q, then we set

this value does not depend on the choice of fundamental sequence. We note
that N(P, Q)=0 for P€ 9K, and gaK ON/0vds = 2. We introduce a metric on
R'\Uudy by
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d(Qi, Q) =80 |1 TNp 0N T TENP, Qi) |

PER]

for any Qi, Q; on R'Udy, where we recall that R;=R,—K,. The topology
induced by this metric on R’ coincides with the original topology. With this
metrie, (R— R))\Udy is a compact metric space because {N(P, Q,)} form a
normal family for any {Q;} tending to 4y. The space R"\UOK,\dy has a
countable base of open sets. It is easy to prove that, for any compact set
K, CR’' and any compact set K, CR'\U 4y disjoint from K;, N(P, Q) is continu-
ous as a function on K; x K,.

Next we prove

Turorem 12. The definition of boundary points of R does not depend on
the choice of K, in the sense that every equivalence class of sequences of points
near the boundary of R is the same.

Proor. It will be sufficient to consider two closed parametric disks K,
and K, such that K,CK,—0K, Let {Q;} be a fundamental sequence with
respect to K, converging to Q€ 4y. We choose {R,} such that R,>DK,. We
consider V,(P, Q;) and N (P, Q;) defined in R,=R,—K, and R'=R—K, respec-
tively. We set

H,(P, Q]) = Nn(P> Q]) - ZV,,(P, Q/)
and
H(P> QJ) = N(P, QJ) - ZV<P3 QJ)

Since N, and N, tend to N and /V respectively as n— o, H,(P, Q;) tends to
H(P, Q). We want to verify that lim H(P, Q,) exists as j—>oco. We have

< lim max |H,(P', Q;) — H,(P, Qu)|
nee P’Eakﬂ

= lim max |N,(P', Q;) — Na(F', Qu)|
n= preoko

= max |[N(P', Q;) — N(P', Qn)|
P’eako

on R'. Since the last side is small if j and & are large, the convergence of
H(P, Q,) is concluded. Hence N (P, Q,) tends to a harmonic function in R’ as
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j—oo. It implies that if {Q;} and {Q}} are equivalent fundamental sequences
with respect to K,, they are so with respect to K,.

Next we shall prove the converse. Let {Q;} and {Q}} be sequences which
determine different boundary points Q and Q' with respect to K, but the same
boundary point Q with respect to K,. Since |N(P, Q,)—N(P, Q})| tend to 0
on R’ as j— oo, it follows from (3) that

IN(P, Q) —N(P, Q)| =< ma;zc IN(P’, @) — NP, Q)|
P’CoK,

on R’. On the other hand it is evident that

sup [N(P, Q) — N(P, Q)] =< max |[N(P', Q)— NP, Q).
Ko—-Ko P’€9Ko

Thus |N(P, Q) — N(P, Q)| takes its maximum at an interior point of R'.
Therefore it is a constant in R’. Now it follows that N(P, Q)=N(P, Q).

§ 7. Integral representation of HS, and SHS, functions
First we prove

Lemma 4. Ewvery HS, function U(P) takes the vanishing boundary value
on 0Kj,.

Proor. We consider a sequence {K,} of concentric closed parametric
disks strictly decreasing to K;,. By Theorem 7 U is equal on K;—(K,—0K,)
(m>=2) to the potential of a measure ., supported by 0K;\VoK,. We denote
the restrictions of 4, to 0K, and 0K, by s, and w, respectively. If m<m/,
Theorem 5 yields

N,u-;:t = (N/'l';/”)Km—1‘(Km'—aKm') = (N;l:;:,)al{ < UaKm—l on R— Km—l-

m—-1 =

Since U is an HS, function, Usk, _, tends to zero as m— co. Hence lim Ny, =0

m—oe

and U=lim Ny, in K;—K,. The total mass of p,, m=1,2, ..., is bounded

because for any fixed PeK;, — Ko, nrelzlan NP, Q) ), (R < Ny, (P) S U(P) < oo.
QoK
Therefore we can choose a subsequence of {,} converging vaguely to a

measure on dK;. Then U is equal in K;—K, to the potential of the measure.
This shows that U has the boundary value zero on 9Kj.

Turorem 13. Every SHS, function V(P) in R’ can be expressed by the
potential of a measure on R \J 4y, and vice versa.
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Proor. By Theorem 8 V' is equal to U+ Np, where U is an HS function.
By Theorem 6 Ny is an SHS, function and hence U is an HS, function. It
suffices to prove our theorem for U. Consider an exhaustion {R,} of R. On
account of the above lemma Usz, is equal to U on R;,. We denote by ., the
measure on OR, which gives Nyu,=Usr, The total mass of ., is equal to

@2m) ! S@Npﬂ/avds where the integral is taken along 0K,\dR, for any p>n.
Since

ONgpn ,
By ds =

S N g hm‘ AT limg 0
3Rp v 3Ry

aﬂ g—o J aRI’ a g—oo

the mass is equal to

oK, oy

We extract a subsequence of {u,} vaguely convergent to a measure x on 4y.
The equality U=N; follows.

To prove the converse, we shall show first that, if Q& 4y, then (N(-,
Mx(P)<N(P, Q) for any regular compact set KCR'. Let Q; e R*—K tend
to Q. Since (N( -, Q)x(P)<<N(P, Q;) and both sides tend to (N( -+, Q))x and
N(P, Q) respectively, the required inequality follows. Next we consider any
w with S,C4dy. Certainly Ny has the boundary value 0 on 0K, and

Wk (P = | Np @ik @ = || NQ, @) @ e(@)

=V 0)au@) = Nu)

Thus Ny is an SHS, function.

Let F Dbe a closed set with analytic boundary in R’ as considered in §5,
and let V(P) be an SHS function in R". We shall prove

Tueorem 14. Denote the closure of F in R\Jdy by F°. There esists
with S,CF® such that Np=Vr in R'.

Proor. Let F,=FN(R,V0R,). By Theorem 7 there is x, supported by
F, such that Ny,=Vr, in R'. The total mass of ., is equal to

1 S ON ey 71_8 V5, 1 S 0Vok
oK, oK, oK, oy

2 oy ds = 2r T oy = 2n oy B
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where K is a closed parametric disk which contains K, in its inside and is
disjoint from F. There is a subsequence {u,} converging vaguely to a
measure p supported by F? because F° is a compact set in R'\U4y. Since
N(P, Q) is a continuous function of Q€ R'U4dy—{P} for any fixed PR,
VEny(P)= Ny, (P) tends to Nu(P) for any P € R'—F. Consequently,

Vr(P)=lim V5, (P) = Nu(P).

We recall that the restriction of u, to the interior F: is equal to the
measure which gives the potential part of the Riesz decomposition of V in
Fi. We shall denote it by v,. Hence the restriction v of i to F’ has the same
property and v, increases to v as n—oo. It follows that u,,—v,, converges
vaguely to x—v. Atany PeF’

gNd,ﬁ = gNdv + SNd(,,b —») =lim S Ndy,, + lim SNd(#.,,k — )
koo hoeo

= limSNd,u.n =7.

n—so0

What remains is to prove Nu(P)=Vz(P) for every P€dF. Since the
function V7 is superharmonic in R/, its mean value on a disk around P tends
to V#(P) as the disk diminishes. The mean value of V» equals the mean value
of Nu and hence Vp(P)=Np(P).

Another theorem concerning Vr is

Turorem 15. Let 1 be a measure on R'\J Ay, and F be as above. Then
(N,u)p = NF;L wm R

Proor. If K is a regular compact set in R’,
Ny = || Ny = | Ny = Vi
Therefore
(Np)p =HUm(Np)r, = lim Np,p = Npp.
Let A4 be a closed subset of 4y. Define

A(m)={PeR; d(P, A)g—r}z—}.
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We cover dA4(m) by a countable number of closed disks D,, D,, ... with centers
on 0A(m) such that each D; has a positive distance from 64(m—1) and no
compact set in R’ intersects an infinite number of D;s. We set A (m)=
A(m)U (U ;D;). Next we consider the harmonic measure of 94'(m) with respect
to the open set A'(m—1)—A'(m)—0A'(n—1). There exists a level curve r=c¢,
0<e<1, consisting of a countable number of analytic curves. We set

A™ = A (m)\U {P; h(P)=¢}.
This is a closed set with analytic boundary in R’ and its closure in R'\Udy
is a neighborhood of A4.
For an SHS funection 7 in R’ we consider V(). This decreases as m— oo

to an HS, function. We shall denote the limit by »4. We note that Vi, =V
for any HS, function V. Let us prove

Turorem 16. Let V be an SHS function in R’ and A be a closed subset of
dy. Then there exists . supported by A such that

VaP)= | NP, Qdu@  on R.

Proor. Take above {4™}. By Theorem 14 there is a measure u,
supported by (4™)? and satisfying Nu,=Vawm in R'. Its total mass is not

greater than (2”)_1S < OV ay/0vds. We extract a vaguely convergent sub-
9K,

sequence of {u,} and denote by . the vague limit. We have
V4(P)=lm Vs (P)= Np(P) for any PeR’.
Finally we prove

Turorem 17. Let 1 be a measure on R'\J Ay, and A be a closed subset of
AN. Then

(Np)a= Nap.
Proor. Take {4™}. By Theorem 15

(N/L)A = llm (N/J')A(”‘) = 11m NA(m)/,b = NA/J.-.

§ 8. Classification of boundary points

First we aim at proving (V.)a=V4 for any piecewise smooth Dirichlet
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finite SHS function ¥ in R'.
TueoreM 18. For such V
|V amy — Va]| >0 as m-—»oco,
Proor. Let p<m. By Corollary 1 of Theorem 11, it holds that
0= |[Vaem) = Vawr |z atw = |[Vawl|zr—ae) = |V a3 am + [V G- a0m.

It follows that ||Vae||g—am has a limit as m— oo and that {Vsm} form a
Cauchy sequence. We know the existence of lim V==V, and derive lim

” Vaem)— VA”R’—A("&) =0.
Tureorem 19.  For the above V,
Va)a="Va.

Proor. Let p<m. By Theorem 11

”(VA - VA("'))A(F)”R'—A(P) g ” Va— VA(”‘)I[R'—A(P) g “ Via—Vawm lRf_A("‘).

The last quantity tends to zero as m— co by the preceding theorem. There-
fore, by Theorem 9 and then by the preceding theorem again,

0=1im||(Va)ar) — (Vam)aw) || r—ar

m—roo

=lim |(Va)a — Vam||r—ae) = |(V)aw) — Val|.

m—roo

Hence Vo=(Vi)a for each p. The equality (Va)a=V4 follows from this.
COROLLARY. (wg)a=a.

TuroreM 20. Let V be an SHS function in R', and A be a closed subset of
Ay with w4=0. Then (Va)a=Va.

Proor. Take {4™} as above. Since V, is an HS, function, (V1<
Va)am ZVa.

To prove V,<<(Vi)a We use the decomposition V=U+ SR Ndu obtained

in Theorem 8. By Theorem 17 V,;=U,s+ SR Nadp. Similarly we obtain (Va)a
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=<UA)A+SR,(NA)Ad,L. If QeR and M>0 is large, the function Ny(P, Q)=

min (N(P, Q), M) is a piecewise smooth Dirichlet finite SHS function and
(NoD)a=((Nu)a)a. By Theorem 19 we see that (Wy)a)a=Ny)a=Na Therefore
it suffices to prove U, <<(U,)s for any HS function U.

First we prove
) (Uam) — Un)g =Uam) — Ua in RR—K

for any regular compact set K in R. We shall set 4™ =A™N(R,JOR,).
Let p (p>m) be a large number so that A”’"\K=#. Set M=max U. We
consider

Uagmw = Uspy + Moy — (Uam — Ug )i

as a function in R'—K—A4®. This is bounded superharmonic and takes the
non-negative boundary values. Therefore, the function is non-negative in
R —K—AP so that

Uagm = Uap)g =Usgm — Uap) + Mo 4(p.

We let n—>co and have
(Uamy — Ua)g Z Uamy — Uatp) + Mo 40

in RR—K—A®., Next we let p— o and derive (4).
We use (4) for K=A4% with k<m, and obtain

(UA(m) - UA)A(];) gUA(m) - UA in R/—A(k)-

As j>o0, (Usm)atr—>(Ugm)a® and (U —>(Us)aw. Therefore, (Usm)aw

—(Upawy <Usmy— Uy in R'—A®. We apply Theorem 9 and have (Usm)am
=Usm. Thus Us<<(Upam in R'—A®, whence Uy <<(Uyp)a.

Now we proceed to classify the points of 4y. We set

oON
a(Q)=—21;SaK —%Pﬁ)—ds for Q& 4dy.

TueoreMm 21. For Q€ dy, a(Q)=0 or 1.

Proor. By Theorem 16, Ny =a(Q)N. If 0,=0,
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Ny = Ny = @(Q)Negy = a2 (QN

on account of Theorem 20. Thus a(Q)(1—a(Q))N=0. Therefore a(Q)=0 or
1.

If wiy>0, oigy=cN with ¢>0 by Theorem 16. Using the Corollary of
Theorem 19 we have

Negy = ¢ (0@ = ¢ 'oggy = N.
Since N,gy=a(Q)N, N=a(Q)N follows. Thus a(Q)=1.

CororrAry. According as a(Q)=0 or 1, (N( -, Q)(P)=0 or N(P, Q).

A point Q € 4y with w,>0 is called stngular by Kuramochi. The above
proof shows that a(Q)=1 for every singular point Q.

Let us establish
THEOREM 22. The set 4y=4{Q € dy; a(Q)=0} 1s an F,-set.

Proor. Let m be a positive integer. Suppose that, for every closed set
F in R’ with analytic boundary whose closure F? contains a neighborhood of
QE 4y in R'Udy and is contained in the m~'-neighborhood of Q, it holds that

O(NC, D ,

3K, oy

R

ar(Q)=5_- S
We shall show that the set ¢,, of all such points Q is closed. This will prove
the theorem because 4,=\U{,.

Let Q;€0, and Q;—Q,. Take F at Q, such that the closure F¢ is
contained in the m~'-neighborhood of Q,. There is j, with the property that,
for every j=jo, F* is contained in the m~'-neighborhood of Q,. By assumption
ar(Q;)=1/2 for every j=j,. Given ¢>0, we can take a large » such that

1 O(NC+,Q)r , 1 O(N(-, Qr,
2 SaK0 oy ds—e<oz gaKO oy s,

where F,=FN(R,U0OR,). It follows that

1_ 1 O(N(C+, Q)rF 1 S lim O (NC- 5 Qi)r
2 l, o Saxo oy & =9n oK, }g oy d
1 . OWNC-, Q))F, LS O(NC+, QF,
= 2r Sax,J 1,152 oy ds = 2r ok, oy ds

ds—e.

L O(N( ) QO))F
= 2r S oy
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Since ¢ can be arbitrarily small, we have @r(Q,)<1/2. This implies that
Qo €0,. Thus §, is closed.

§ 9. Canonical representation

Throughout this section V' (P) will mean an SHS function and F a closed
set in R’ with analytic boundary. We set 4,=4x— 4,. It is equal to {Q € 4n;

a(Q)=1}.
First we prove

Lemma 5. Let {4,} be a sequence of closed subsets of 4dn increasing to a
closed set A, and assume Va,=0 for each p. Then V,=0.

Proor. Let P,€R’ and take ¢>0. For each p we choose a closed set F,
with analytic boundary in R’ such that its closure F¢ in R'\U4y is a closed
neighboorhood of 4,, Po&F, and Vr,(Py)<e/2". It holds that UF;> U4, =4.

» »

There are Fy, ..., F, such that \_q/F; is a closed neighobrhood of 4. We take
=1

{4} as in §7. If m is large, A™ C\UF,. We obtain
p=1

I

q
VA(’")n(R,,uaR”)g V(péll Fp) N (RyUBRy) p%‘i VFpﬂ (R, U9R,)

>

for each n. It follows that V<V, << i} Vr, and
=1

¢ =€
ValPo)=>Vr,(Po)= >} 55 = ¢
p=1 =1

Since ¢ can be arbitrarily small, ¥ ,(Py)=0.

Turorem 23. Let V(P) be an SHS function. Then Vg(P)=0 for any closed
subset E of 4.

Proor. First we consider the case where (Vg)r=Vr for any closed subset
E of 4,. Consider ¢,, defined in the proof of Theorem 22, and let 4 be a closed
subset of ¢, with diameter less than (2m)~!. Let F be a closed set with
analytic boundary in R’ such that the closure F¢ of F in R'\U4dy is a closed
neighborhood of 4 and F* is contained in the (2m) '-neighborhood of 4. Since
the diameter of A is less than (2m)! and F° is contained in the (2m)'-
neighborhood of 4, F° is contained in the m !-neighborhood of any point of A.
Hence ap(Q)<1/2 for every Q€ ACd,. By Theorem 16 ¥, is represented as
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the potential N of a measure u supported by 4. Using Theorem 15 we have

_ 1 oNe 1 Vi, 1 0Faa

# D) =g Sa,{o v BT SaKU v = SaKG o
_ 10 0WNma, 1 0WNwr, 1 0WNep)
2z LKO oy ds = 27 SaKO oy ds = 27 SBK oy ds

1 ON.
=g il s = | e Qan@ = a2
There follows x(4)=0 and hence V,=0.

Since ¢, can be divided into a finite number of closed sets with diameter
less than (2m)~}, V5, =0 by Lemma 5. Let E be any closed subset of 4,. Each
ENG,, is closed and E=\U(ENJ,). On account of Lemma 5 Vz=0.

Now we recall that (ws)a=w, for any closed subset 4 of 4y (Corollary
of Theorem 19), and derive wp=0 for EC 4,. Consequently we can apply
Theorem 20 and conclude Vz=0 for any SHS function V.

We need some preparations for Theorem 24. Let F be a closed set with
analytic boundary in R’ and A4 be a closed subset of 4y. We take {4™)} as
before. The closure (4A™)® in R'\U 4y decreases to 4 as m— co. By Theorem

16 we represent V4 by N/,e(’”>=g Ndy™ in R'—A™. We may assume

(A(m)ya
that ™ converges vaguely to a measure p whose potential N,u,=g Ndy is
A

equal to V4 in R. We set A™ =A™ N\(R,UOR,). We know that 4 supports
a measure x such that V, »=Np{. We may assume that x converges
vaguely to ™ as n— oo for each m. Let v be the restriction of x{™ to F.
We may assume that v/ converges vaguely to a measure »™ as n— oo for
each m, and furthermore that »™ converges vaguely to a measure v as m—>co,

Let us prove

LeMMA 6. Let F' be a stmilar closed set in R’ such that FCF and FNOF =
#. Then Nv<Vp itn R —F'.

Proor. It holds that M < Np™=V, . Since F’ contains S, (m in its

interior, (Nvy)r = Um(NV)rinr,uor,=NVy® by Theorem 5. Therefore Nv,»
p—reo
<V, ,@)pg Ve in R'—F'. By letting n— oo and then m— oo we conclude the

lemma.

Now we can establish
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Tuaeorem 24. Let V be an SHS function and A be a closed subset of Ay.

Then V4 can be represented in the form S Ndj:.
And,

Proor. Take {4™} and {x"} as above. We shall show that .(4,)=0.
Let ¢>0 be given and fix Py€R’. Since V;,=0 by Theorem 23, there is a
closed neighborhood E' of §, in R"\U 4y such that F'=E NR’ is a closed set in
R’ with analytic boundary and satisfying Vz.(P))<e. Let E be a similar
closed set such that F=ENR' CF and FNOF = g. We take {?}, {v"} and
v as above. Let us see ;«(0,)=v(0:). Let f be a continuous function in R"U4dy

such that 0 =/=1, f=1 on 0,, its support S; CE and Nfd#. and Sfdy are close
to £(0;) and v(0;) respectively. We have S Jd e, :S fdvim. As n—co they tend

to S jdp™ and g fdv™. Then by letting m—co we obtain S fdp= S fdv. It
follows that :(0,)=v(0%).
We apply Lemma 6 and have

|, NP Q@ =Ny =Ve (P <e i R,

whence Ss Ndy=0. This shows v(0;)=p(0,)=0. This is true for each %k and
k
accordingly (4¢)=p(\U8r)=0.
k

Since V,y=V for any HS, function V, we obtain

CororrAry. Any HS, function is represented as S Nd .
4

We shall call this measure ;: canonical, and the representation a canonical
representation. The uniqueness will be shown later.

We shall apply Theorem 24 to obtain a result which generalizes Theorems
19 and 20.

Turorem 25. For any SHS function V in R’ and closed subsets A, A" of Ay
such that AC A, it holds that (V). =Va. If F is a closed set with analytic
boundary in R’ and the closure of F' in R'\Udy 1s a closed neighborhood of A,
then (VA)F/Z VA.

Proor. By Theorem 24 there is a measure p such that Vi =Npg=

SA ) Ndy.. Theorem 17 implies that (Vi) = (Np)ar = Nap. 1f Q€ A4y,
N4y

(NC+ , @)a(Q)=N(P, Q) because (N( -+, Q)(P) =(N( -, Q))a(P)=N(P, Q) and
(NC+ , Q)y(P)=N(P, Q) by the Corollary of Theorem 21. Thus (Va)a=Nap



296 Makoto OHTSUKA

=Nu=V4 The equality (Va)r-=Va4 is established similarly.

§ 10. Minimal functions

Let U be an HS, function. It will be called minimal if V'=cU whenever
V and U—V are HS, functions.
We prove a lemma which will be used below.

Lemma 7. Let a minimal HS, function U(P) be expressed by SBN(P, Q
dp(Q) with a Borel subset B of 4dy. Then p is a point measure at some Q, € B
r
with mass ¢ = (27:)‘1}31{ oU/0dy ds.

Proor. Let 4; be a closed subset of B with diameter less than 1 such
that x(4;) > 0. Next let 4, be a closed subset of 4; with diameter less than
1/2 such that (4,)>0. In this way we obtain a sequence {4;} of closed
subsets of B such that ;.(4;)>0 for each j and N4; is a point Q,€B. Since

J

U is minimal and U~ | Nap={

s

satisfying U ___CjSA Ndyg. Thus U can be written as gNd/;-j, where S, C 4;.
j

B Ndp is an HS, function, there is ¢;>1
i

We see that the total mass of .; is equal to c= (27r)‘1gaK oU/oyds. Let p

be the vague limit of a subsequence of {u;}. It follows that ., is a point
measure at Q, and

UP) = SN(P, QO dus(Q)=cNP, Q)  inR.

If . is not the point measure at Q,, there is a closed set 4 C B such that Q, ¢ 4
and . (4)>0. By the above reasoning we find a point Q; € 4 such that U(P)
=cN(P, Q;). This is equal to cN(P, Q,), and there follows Q,= Q, which is a
contradiction.

We shall establish

Tueorem 26. 1) Let U be minimal and A a closed subset of Ay. If Uy >0
and U— Uy 1s an HS, function, there is a point Qo € AN 4, such that

_ by 1 ou ,

U(P)=cN(P, Qo) with ¢ = o SaK[,i@)) ds.

2) Any minimal function is a constant multiple of N(P, Q,) for some
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Qo € 4.
3) NP, Qo) is minimal if and only if Qo € 4.

Proor. 1) We express U, as a potential S Ndi by Theorem 24. Since
U is minimal and both U, and U — U, are HS, ftfr?cdéions by assumption, Uy =
cU. The condition U,>0 implies that ¢'>0. Thus U=¢"1U,= c"‘SAMlNd,u,.
By Lemma 7 we find a point Q, € AN 4, such that U(P) = cN(P, Q).

2) Take 4y for Ain 1).

3) Let Q,€ 4; and suppose that both V(P) and W (P)= N(P, Q,) — V(P)
are HS, functions. By the Corollary of Theorem 21 (N( -, Qo)) (P) =
N(P, Qo). Hence Vg3 + Wop =N, =N=V+W. Since Vg <V and W
=W, Vigg=Vand Wg,=W. By Theorem 16 again we have V(P)= Vg ;(P)
=cN(P, Qo).

Conversely, if N(P, Q) is minimal, there are Q; € 4, and a constant ¢ by
2) such that N(P, Q) = ¢N(P, Q;). It holds that N(P, Q)) = N(P, Q). Thus Q,
- Ql S Al.

§ 11. Uniqueness of canonical representation

For the sake of completeness we shall prove the uniqueness, although
the method is entirely due to Constantinescu-Cornea [37], 12. First let us see
that any f€C® (i.e. f is three times continuously differentiable) with compact

support Sy in R’ is equal to (27z)‘1SSNAzf dxdy, where A, is the Laplacian with
respect to a local variable z=x+ iy and (27) 'A.f dxdy is conformally inva-
riant, thus defining a measure o of general sign on R'.

We assume that S;CR,. Let N, be the function on R, as defined in §3.
We know that N — N, tends to 0 locally uniformly in R — (K,—0K,) as n— .
It is a classical result that Ag(“loglz—c |A; fdxdy) = —2nA. f. 1t follows that

the Laplacian of N,0 — f vanishes everywhere in R, and hence N0 —f is
harmonic in R,. It vanishes on 0K, and its normal derivative vanishes on
0R,. Therefore, it is equal to zero identically and N, = f follows in R;. By
letting n— oo we conclude No = f.

Let K be a regular compact subset of R’ and Q be a point of 4y. By
Theorem 7 (N( « , Q)x(P) extended by N(P, Q) over K is equal to the potential
of a measure on 9K. We shall denote this measure by po x. We shall show

that S fdpe, k is a continuous function of Q € 4y for any continuous function

fon K. We may suppose that f is defined in R" and has a compact support.
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First assume that f belongs to C*. We express it by No = Nv; — v}, where
v; and v} are both non-negative. It holds that

|fsa, = || NP, @) e, x Py @) = || NP, @)do, (P

=V, @@ — V-, @)@
From the inequality

sup V(- , @)x(Q)— (NC+, Q)x(Q)] = max [N(Q', Q2) — N(Q', Q)|
Q'ER'-K Q'EoK

valid for any Qi, Q; € 4y, it follows that g fdpe, k is a continuous function of

Q€ 4y. Next, any continuous function f with compact support in R’ can be
approximated uniformly by a sequence of functions of C*® which vanish outside

a fixed compact set in R’. We infer that S fduq, k is a continuous function of

Q € 4y generally.
We give

Lemma 8. If Q€ 44, i%q,or, converges vaguely to the unit measure at Q as

n—> 0o,

Proor. For simplicity we shall write ,§ for ng oz, We note that the
total mass of 1§ is one. Let yo be the vague limit of a subsequence {.9,}.

On R, N, tends to Ny, Since N(P, Q) = SN(P, 09du8(Q) in R., N(P, Q)=

SN (P, Q")duo(Q") in R'. By Lemma 7 there is a point Q, € 4y such that N(P, Q)

= N(P, Q,) which implies Q = Q,. Thus p, is the unit measure at Q and our
lemma is proved.

Now we prove

TuroreMm 27. Camonical representation of any HS, function is unique.

Proor. Suppose that Ny :S Ndp = SA Ndy=Ny in R. We define a
Al 1

measure p, on R’ by S fdpn = SS fdpddp(Q). This is possible because S faud is

a continuous function of Q on 4. Similarly we define v,. We have
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|V, @)@ = || 5P, )2 @@ = [ (0, 09, @) ds(0)
= (Np)or,(P)  if PER —0R,

and
|¥e, @) = || NP, 8@ dn@) = |V, Qdps@ = Nu(p) it PeOR,

Similarly Nv, = (W)sg, in R —0R, and = Ny on 0R,. Hence Nu,= Ny, in R'.
By the aid of Lemma 2 we conclude p, =v,.
Let f be a continuous function on R"U4y. Since g fdpg is bounded and

v

tends to f(Q) as n— oo by Lemma 8,
tim | = tim | | ) (@ = { st

Thus p, converges vaguely to . Similarly v, converges vaguely to v and the
identity =y is concluded.

Taking Theorem 24 into consideration we derive

CororLLARY. Let A be a closed subset of Ady. The canonical measure for
V4 1is supported by A.
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