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Introduction

Recently the importance of the ideal boundary, which was introduced by
Kuramochi [_4Γ\ in 1956 and is now called the Kuramochi boundary, has been
well recognized. For instance, a large part of the book of Constantinescu
and Cornea [3] is devoted to the study of the Kuramochi boundary.

Independently of them, a seminar to read Kuramochi's paper [4] was
held in 1959-60 with Dr. Matsumoto, then an assistant at Hiroshima Univer-
sity. By the aid of the notes made by Dr. Matsumoto, the present author
justified the whole part of pp. 145-162 of [jΓ] and gave lectures based on it
at Kyushu University in 1962. The theory of BLD functions (called Dirichlet
functions in \ΊSJ) was used there. However, his results had been left unpub-
lished because the theory was rather complicated and needed further
improvements to be regarded as an accessible version of Kuramochi's theory.
Meanwhile, it was informed that Constantinescu and Cornea succeeded in
developing the theory of Kuramochi boundary rigorously and their book was
under preparation. This made the present author more reluctant to publish
his notes in spite of a kind suggestion by Constantinescu to publish them in
a Roumanian journal. It is also to be noted that Kuramochi himself tried to
make his theory clear in [β; 6] but there have been remaining still several
obscure points.

Now in this paper the original method of Kuramochi is made elementary
by avoiding the theory of BLD functions. Although there is nothing new in
results concerning the Kuramochi boundary, it is hoped that this paper will
help people become familiar with Kuramochi's theory on his boundary.

It is possible to introduce the Kuramochi boundary in higher dimensional
spaces in a similar manner. It needs, however, more careful discussions in
details and is not carried out in this paper. For the Kuramochi boundary
for Green spaces of higher dimension, we refer to Maeda's papar [7J where
it is discussed along the line of [3].

Except §1 in which we give a proof of the Dirichlet principle by the aid
of the notion of harmonic subflows, the contents of this paper are quite
parallel to those of the paper [βj of R. S. Martin. Readers must be very
well acquainted with this paper [8J and so detailed explanation of each
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section is omitted here. We shall not be concerned with the values of
potentials on the Kuramochi boundary in this paper.

The prerequiste knowledge is some fundamental notions about abstract
Riemann surfaces such as exhaustion, double, normal family of harmonic
functions, etc. and certain classical results in the theory of logarithmic
potentials in the plane.

§ 1. Dirichlet principle

Let R be an open Riemann surface. We shall call a domain in R a
parametric disk if a local variable z is defined on its closure and it is mapped
onto H < 1 . The closure of a parametric disk will be called a closed
parametric disk. In this paper we take a closed parametric disk Ko once for
all, and set R'=R—K0. An exhaustion will mean an increasing sequence
{Rn}, n=l, 2, ..., of relatively compact domains such that K0CRu Rn^JdRnC
Rn+ι (n=l, 2, ...), each dRn is analytic, i.e. it consists of a finite number of
closed analytic curves, and no component of R—Rn is compact. We shall
write Rr

n—Rn—KQ. We shall call a relatively compact open set or a compact
set in R regular if its boundary consists of a finite number of analytic arcs.

Let a harmonic function h(P) be given in an open set G on R such that
it is not constant in any component. A curve 7 will be called orthogonal
(with respect to h(P)) if gradΛ=^0 on 7 and there is a neighborhood of 7 in
which a single-valued harmonic conjugate h* of h can be defined so as to be
constant on 7. A maximal orthogonal curve will be called an orthogonal
trajectory (for h(P)). It is orthogonal to level curves of h(P) at each point
of intersection. Since h(P) increases or decreases strictly on each orthogonal
trajectory, no orthogonal trajectory is a closed curve. Each orthogonal
trajectory tends to the boundary of G unless it terminates at a critical point
where grad A = 0. Let c be an open analytic arcυ on whose closure grad hφO
and h is constant. In a neighborhood of c we can find a single-valued
harmonic conjugate A* of h. We call the bundle of orthogonal trajectories
passing through c a harmonic flow (for h(P)\ and call a subbundle a harmonic
subflow (for h(P)) if its intersection with c is measurable with respect to A*.
Let h(P) = a on c. If d>0 is suitably chosen, h takes all values of [a—d, a + dΓ\
on each orthogonal trajectory passing through c. The part of the harmonic
flow on which a—d<h(P)<,a + d is called a regular tube. It is a domain and
its closure is called a regular compact tube.

In the proof of the Dirichlet principle, we shall use

1) By an open analytic arc we mean an open analytic curve which does not oscillate, i.e. which

has definite end-points.
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LEMMA 1. We can divide G minus all critical points into disjoint harmonic
subflows.

PROOF. We cover the remaining open set by a countable number of
regular tubes. With each tube we associate the harmonic flow passing
through it. If the harmonic flows are denoted by Fl9 F2, •••, the harmonic
subflows Γ1 = Fi9 Γ2 = F2—FU Γ3 = F3 — F2 — FU . satisfy the condition.

Let K be a regular compact set in R. A continuous function / o n R—K
will be called piecewise smooth if / is continuously differentiate in an open
subset GCR—K such that R—K—G locally consists of a finite number of
points and open analytic arcs. Given a continuous function φ on dK, we shall
denote by @R'-K(<P) the class of all piecewise smooth Dirichlet finite (meaning
that the Dirichlet integral is finite) functions with boundary values φ on dK
and 0 on dK0.

Now we formulate the Dirichlet principle as follows:

THEOREM 1. Let K be a regular compact set in R\ and assume @R'-κ(ψ)
φφ. Then there is a unique hζ ^R^-K{Ψ) which has the minimum Dirichlet
integral among the functions of @R'-κ(φ\ and h is harmonic in R — K.

PROOF.2) We may assume KCRi- We shall denote the Dirichlet integral
by [| |j2. Take any / £ @R'-κ(ψ)- First we prove the theorem in Rn. Let hn

be the harmonic function in R'n — K which has the boundary values φ on dK
and 0 on dK0 and whose normal derivative vanishes on dRn. One way to find
hn is as follows: Consider the double Rn of Rn along dRn (see p. 199 of [1]) and
denote by K and ^ 0 the symmetric extensions of K and Ko respectively. The
restriction to R'n —K of the Dirichlet solution on Rn — K — K0 for the boundary
function φ on dK and 0 on dK0 is equal to hn.

Let G be an open subset of R—K such that / is continuously differentiate
in G and R—K—G locally consists of a finite number of points and open
analytic arcs. With the aid of Lemma 1 we divide all components of R'n—K,
in which hn is not constant, into disjoint harmonic subflows Γu Γ2, for hn.
In order to show \\hn\\R' κ^\\f\\Rr -K, it suffices to show l!Aw[[crΛi^[|/l!:rΛ: for
each k where the subscript DΓJ indicates that the integrals are taken on Γk

as a point set.

Let 7 be an element of Γk which does not coincide with any open analytic
arc contained in R — K—G, does not terminate at any critical point and which
does not pass through any point belonging to R — K—G minus the open
analytic arcs. Then 7 tends to the boundary of R — K in both directions and

2) This proof is found in Q9J in the plane case.
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every compact subarc of 7 meets any one of these open analytic arcs at most
a finite number of times. Take a conjugate Λ* of hn on the harmonic flow
which contains Γk, and regard hn + ϊh* as a local variable on the harmonic
flow. Since the normal derivative dhn/dv vanishes on dRm each component of
dRn minus the critical points is orthogonal to level curves terminating on dRn

and hence 7 does not terminate on dRn. If 7 terminates at two points Pu P2

on dK9 then

= \ dhm
γ

where grad / is defined with respect to the local variable hn-\-ίhζ and 7 is

oriented so that hn increases. We obtain the same inequality I | grad /1 dhn

dhn if one end-point of 7 lies on dK0 instead on dK; evidently it does not

happen that both end-points of 7 lie on dK0. If 7 oscillates, we take sequences
of points on 7 converging to some points of dK\JdK0 and conclude the same
inequality.3) We derive

and \ dhn<λ \gradf\2dhn. Thus we obtain

IIMu-d = ( ί dhndh*n <\\ I grad f\ 2dhndh* - |j/||fΓ4]j

where ck is an analytic arc which Γk intersects orthogonally.

We remark that the mixed Dirichlet integral (f—hmhn)R'-K vanishes.

Actually, for any ε>0, \\hn]\R^κ^\\hn±e(f-hn)\\R^κ. Hence 0^±2e(An,/-

hn)R'H-κ + e2\\f-hn\\2

R>n-κ, so that 0<±2(hnJ-hn)R^κ + e\\f-hn\\R^κ. By letting

ε->0 we conclude (f—hn,hn)R'-κ = 0-

If 7τz>7z, hmζ@R'n-κ(SP) and hence (hm—hn,hn)R'κ = 0- Therefore, 0<I

\\hm-hn\\R^κ = \\hm\\pnlκ - \\hn\\ι^κ^\\hj[\\>m-κ - W l V * S ί n c e 1 1 ^ 1 1 ^ ^
II/III/-A < O ° for all n, \\hn\\\'-K increases to a finite limit. Hence {hn} form a
Cauchy sequence and hn tends to a harmonic function h on R!—K both in
norm and locally uniformly, because hn — 0 on dK0. In order to show that h
takes the boundary values φ on dK, set M— max I φ I and consider the harmonic

dK

3) We can actually prove that no 7 oscillates.
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function A' Qι' resp.) in R[—K which takes the boundary values φ on dK, 0 on
dK0 and M (-M resp.) on dRx. Evidently tif<:hn<Lti in R[-K for each n and
hence h"<Lh<Lti in R[—K Since both h! and h" take the boundary values φ
on 9Kand 0 on dK0, so does A. The relation I |A| |^lim| |AM | |^ | |/ | |<oo shows

n—*°°

that Λ 6 @R'-κdP) and also that A has the minimum Dirichlet integral among

the functions of @R,-.K(<P)-

Finally, let us prove the uniqueness. As in the case of Rn we derive
(g—h, A) = 0 for any ge Q>Rr-κ(φ). If there is another extremal h\ (A'—A, A) =
(A-A', A0 = 0. Hence J[A— 1̂1 = 0. Since A-A' vanishes on dK0, h=ti.

COROLLARY, (g — h, A) = 0 /or αnj/ g € @R'-K(Φ)

We shall denote A by <?#. We note that the maximum principle holds
for ψκ' min (min φ, 0)<^#<ίmax (max φ, 0) in R!—K. If φ is constantly 1

ax 3x

on 9X, we can find fe@R,-.κ(ΐ) easily. This special φκ will be denoted by
ωκ. Furthermore, we remark that φκ is a linear functional of φ. Namely,
if c is a constant and if ®R>-K(Φ)Φ 0 and $R'-K(Ψ)Φ 0, then icψ)κ —
and

We give a property of <?#.

THEOREM 2. Lei X", K! be regular compact sets in R! such that KCKf.
Then

PROOF. The function/in R — K which is equal to (φκ)κ> in R—K and
to φκ in K — K belongs to ®R>-K(<P). Hence \\φκι\[R^-κ<,\\f\\^-κ by Theorem
1. This gives \\<PK\\R'-K'<>\\(<PK)K'\\R'-K'. Since ψκ belongs to ®R,-κiΦκ\ <Pκ =
(Φκ)κ' on account of the uniqueness of (φκ)κ>-

§ 2. Definition of φκ for general φ

So far we have defined ΦK only for φ which is continuous on dK and for
which @R'-κ(φ)Φ0. We shall denote by CDK the class of such functions on
dK If φζ.CDK) max (φκ(P\ 0) as a function on R—K is piecewise smooth
Dirichlet finite and has the boundary values max (φ, 0) on dK and 0 on dKQ.

It is easy to observe that the points of dK are separated by functions of CDK.
By means of Stone's theorem (see Q2], p. 54) we can infer that CDK is a dense
subclass, with respect to the uniform convergence, of the class Cκ of continu-
ous functions on dK. Since | φκ(P) — Ψκ(P) I <lmax | φ — ψ \ for any <p, ψζ CDK

by the maximum principle, φκ(P) is uniquely defined for any φeCκ even if
@R'-κ((P)= 0 It is a harmonic function of P in R—K and continuous on
(R — K)\JdK\JdK0. For each fixed P, it is a positive linear functional on CK-
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Hence there is a Radon measure μκ supported by K such that

(1) Ψκ(P)=\ Ψ(Q)dμp

κ(Q)
J dK

for every φ e Cκ.

For an arbitrary μ£0-measurable ψ^O, we define ψκ(Po) by \ψdμκ\

Suppose that ψκ(Po) is finite and let D be the component of R'—K which
contains Po Let {ψj} be an increasing sequence of upper semicontinuous

functions on dK such that \ψjdμκ° increases to \ψdμκ\ and {ψj} be a decreas-

ing sequence of lower semicontinuous functions on dK such that \ψjdμQ

decreases to \ψdμp

κ\ We shall write \imψj = ψ and \imψj = φ. Since both

γPdμp

κ and γpdμί are harmonic functions in D and coincide with each other

at P0<εD, they are identical in D. Since φ<Lφ<Lφ, φ = φ μκ-a..e. for every
PeD. This implies that ψ is /^-measurable. Thus the /z£-measurability
does not depend on the choice of P in a fixed component of R'—K. Further-
more ψκ(P) is harmonic in a component once it is finite at some point of the
component.

In case \φdμ^° = <χ> we express φ by lim min (<p, M). Since \dy*£<°°,

min (φ, M) is μ ̂ -measurable for every PeD and so is φ.

It is easily seen that min (inf <ρ, 0)^<pjft:^max (sup φ, 0) holds in R!—K
dK dK

and that Ψκx\}K2^ΨκιΛ-ψκ2 for any compact sets Kι and K2 in .R' and for any
Borel measurable function φ^>0 given on dKι\JdK2.

We shall prove a theorem analogous to Theorem 2.

THEOREM 3. // φ is non-negative μp

κ-measurable for PeR—K and if
KCKf, then ΨK is μp

κ'-measurable as a function on dK and (<Pκ)κ'(.P) = <

PROOF. First we shall show that this is true if φ is continuous. Certainly
ΨK is /^/-measurable. We approximate φ by ψj € CDK uniformly on dK. For
each /, ((ψj)κ)κ' = (ψj)κ by Theorem 2. We obtain (φκ)κ' = Ψκ by letting /->oo.
Next if {ψj} is monotone, if (ψj)κ is /^/-measurable as a function on dK! and
if ((ψj)κ)κ' = (ψj)κ for each /, then (lim ψj)κ is /^/-measurable as a function
on dKf and ((lim ψj)κ)κ, = (\im Ψi)κ Therefore, for ψ and ψ defined above,
φκ and φκ are /^/-measurable, (φκ)ΛP) = (Pκ(P) and (φκ)κ<(P) = Φκ{P) It

holds that \<PκdμK'= \ψκdμp

κ^ which implies <Pκ = φκ μK'-8,.e. Since φκ<L
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Ψκ<LΦκ everywhere, φκ is μ%,-measurable on dK\ Furthermore, (<Pκ)κ'(P) =
<Pκ(P) because <pκ(P)=φκ(P) = φκ(P) and

§ 3. Function N

Let Q be a point in R! and {Rn} be an exhaustion such that QeRi. Let
Nn(P, Q) be the positive harmonic function in R'n — {Q}, which vanishes on dK0,
has a vanishing normal derivative on dRn and has a logarithmic singularity
with coefficient 1 at Q. We can show its existence by considering the double

of*;.

Before proving a theorem we state a general remark. If a harmonic
function h is defined in a ring subdoniainD of Rr partly bounded by dK0 and
if h has the boundary value 0 on dK^ then h is harmonic on dK0 and in a ring
domain which is the reflexion of D along dK0 on account of the symmetry
principle.

We prove first

THEOREM 4. Nn(P, Q) converges to a function N(P> Q) locally uniformly on

R—(Ko — dKo)—{Q} and \\Nn—N\\R' tends to zero as 7z->oo. The function

N(P, Q) has a logarithmic singularity with coefficient 1 at Q and vanishes on

dK0.

PROOF. Let z be a fixed local variable at Q such that z(Q) = 0 and \z\ < 1
corresponds to a parametric disk in R\ We set hn(z) = Nn(P(z), Q) + log\z\. It
is defined at ^ = 0 so as to be harmonic there. We denote hn(ϋ) by yn and
have

7 Λ = lim {iVΛ(P,Q) +log |z(P) I}.
P-+Q

We denote by Dr the image on R of the disk |z | < l r < l . By the aid of Green's
formula it holds that

and

lim(l|7VJί!'_r>r + 2π log r) =

Let m>n. It holds that
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and hence

lim Wm Nm)R>-j>τ + 2π logr} = lim [ hm -^Sr-ds = 2πΊm.

Therefore

0 <ί \\Nn - NJ%> = lim HiV, - Aj i/ . j , , = limKI|iVjβ;-j>Γ + 2τr log r)

^ - p r + 2τr log r) - 2 {(Nn, Nm)K_Dr + 2π log r}]

Accordingly, Ίn decreases as n->oo.
We want to see that Ίn does not tend to — oo as 7z->°o. The function

hn(z)=Nn(P(z\ Q)+ log |z | is a harmonic function of z on |z | <^r and it is
^ l o g r on \z\ = r . By the minimum principle, it is 2>logr on | z | < > .
Consequently, ΎW = ΛW(O)^logr> — oo. Now we have lim \\Nn — Nm\\R' = 0.

Fix k. Since Nn—Nk vanishes on dK0 and is harmonic in a neighborhood of
&KΌ, Nn—Nk converges both in norm and uniformly on any compact set in
Rk — (Ko — dKo) as 7z—>-oo. Consequently Nn converges uniformly on any com-
pact set in R—(K0 — dK0)— {Q}. We shall denote lim Nn by N. This function

n

has a logarithmic singularity at Q and Nn~N is harmonic in R'n. Since

^ I I ^ - i V . I U ^ O if n<m and TZ^OO,

we conlcude that Nn—N tends to a harmonic function H in R! such that
||(iVΛ-tf)-flr||Λ/->0 as 72->oo. Since Λ/r=limiVll, H^O. Thus \\Nn-N\\R>-»Q

n n n

as ra->oo. Our theorem is now completely proved.
Our function N(P, Q) does not depend on the choice of exhaustion. As a

function of P it is harmonic in R' — {Q}, vanishes on dK0 and has a logarithmic
singularity at Q. Outside any neighborhood of Q it has a finite Dirichlet
integral. Since Nn{P, Q)=Nn(Q, P), ΛΓ(P, Q)=iV(& P).4>

Let us see that it is a continuous function in the extended sense (i.e.
admitting oo) on (R-(Ko-dKo))x(R-(Ko-dKo)). Let Po, QoeR-(Ko-dKo)
and PoφQo- Let α > l be given. By making use of Poisson's formula we
observe that there is a neighborhood D of Po such that

4) TV is denoted by g in
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a-ιN(Pθ9 Q)<N(P, Q)<aN(P0, Q) for any PeD

so far as Q is kept away from Po. Since N(P0, Q) is a continuous function of
Q, we can find a neighborhood Ώ' of Qo such that N(P0, Q) is close to N(P0, Qo)
if QeDr. Consequently, N(P, Q) is close to N(P0, Qo) if PeD and QeD'.

Next we consider the case when Po = <2o Let Do be a disk on which a
local variable z is defined such that z(P0) = 0. The function Λ(P, Q) = N(P9 Q) +
log |z(P)~2r(Q)| is a harmonic function of each variable while the other is
fixed. In the same way as above we can show that h(P, Q) is a continuous
function of (P, Q) on Do x Do. Since it is finite-valued, it is bounded if both
P and Q are restricted to some neighborood of Po. We infer that "N(P, Q) =
A(P, Q)-\og\z(P)-z(Q)\ tends to oo as both P and Q approach Po. Thus iV(P,
Q) is a continuous function of (P, Q) in the extended sense.

Now we may take N(P, Q) as a kernel of potential. For any non-negative

measure μ in R such that μ(K0) = 0 we can define the potential \N(P, Q)dμ(Q).

We shall write it as Nμ(P) too. When we consider a potential Nμ, we always
assume that μ(K0) = 0 and that iVμ is not identically equal to oo. It is a
superharmonic function in R\ We shall use the terminology that a measure
μ is on a Borel set B if μ(B') = 0 for any Borel set B' disjoint from B. Thus
we shall consider measures on Rf later we shall consider also measures on
the Kuramochi boundary.

We shall prove

THEOREM 5. For any regular compact set KCR\ (Nμ)κ<^Nμ in R'—K.
The equality holds if Sμ is included in the interior K{ of K.5)

PROOF. First we prove NK = N in the case that the pole Q is an inner
point of K. We know that Nκ is equal to the limit of the following harmonic
function hn in Rf

n — K: hn is equal to N on 0K\JdK0 and dhn/dv=0 on dRn. Since
Nn-*N uniformly on dK, hn — Nn->0 in R' — K as /z-»oo. Consequently, Nκ =

n=N in R'-K.

In case Q0£R'—K, N(Q, Qo) is a continuous function of Q on dK. Hence
NK is continuous on dK and N—NK = O there. Since N—Nκ is superharmonic
in R'—K, we can show N^NK by the same reasoning as in the first case. If
Qo G dK, we approximate N(Q, Qo) by an increasing sequence {/}} of continuous
functions of Q on dK By definition Nκ = \im(fj)κ. We infer (fj)κ<LN for

each/in R!—K and derive NK<LN there.
If μ is a measure with Sμ C K\

5) Actually we can prove the equality if Sμ(^K but omit the proof.
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In the general case we infer (Nμ)κ(P)^LNμ(P) by making use of the inequality

§ 4. HS functions and SHS functions

First we define an SHS function. Let V(P) be a positive lower semi-
continuous function in R which is not identically equal to oo. If VK(P)<V(P)
in R — K for any regular compact set K in R, then V(P) is called an SHS
function^ in R. It follows that V(P) is superharmonic in R. If V(P) is
harmonic in R, it is called an HS function. Next let V(P) be an SHS function
in R and {Km} be a sequence of concentric closed parametric disks in R
strictly decreasing to Ko. If Vdκm(P) tends to zero as m^oo in R, V(P) will
be called an SHS0 function^ If, in addition, V(P) is harmonic in R, it will
be called an HS0 function. If {Vn} is a decreasing sequence of SHS (SHS0

resp.) function and if the limiting function is lower semicontinuous, then it
is an SHS (SHS0 resp.) function. If {Vn} is an increasing sequence of SHS
(SHSo resp.) functions and the limiting function V is not identically equal to
oo (is dominated by an SHS0 function resp.), then V is an SHS (SHS0 resp.)
function.

First we prove

THEOREM 6. Every potential Nμ is an SHS0 function.

PROOF. On account of Theorem 5 it satisfies the inequality (Nμ)κ<ίNμ.
Let {Km} be a sequence taken as above. We fix any point Po £ R Denoting
by μm the restriction of μ to Km, if m0 is large, NμmQ(P0) is smaller than any
given ε>0 because μ(K0) = 0. Naturally (Nμ.mQ)3κJPo)<^NμmQ(Po)<ε for any
m. On the other hand, since N(μ — μmQ) has the vanishing boundary value on
dK0, (N(μ — μmQ))dκm(Po) i 0 as m-+°o. Thus \im(Nμ)dKm<ε and hence =0.

We shall use the following well-known facts in the theory of logarithmic
potentials in the plane.

LEMMA 2. // vι(z) and v2(z) are the logarithmic potentials of measures μ

6) This is called superharmonic by Kuramochi and "positiv vollsuperharmonisch" in

7) This is called a function of potential type in £3].
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and v respectively and vι(z)=v2(z) + a harmonic function in a domain D, then
) = v(B) for every Borel subset B of D.

LEMMA 3. (Riesz decomposition theorem). Any superharmonic function
in a plane domain D is equal to the sum of a harmonic function in D and the
logarithmic potential of a measure on D.

Consequently, for any superharmonic function V(P) in an open set G C R,
we can speak of the measure which gives locally and hence globally in G the
potential part in the Riesz decomposition of V with respect to the kernel N.

We shall establish

THEOREM 7. // V(P) is an SHS function in R and K is a regular compact
set in R\ then the function v(P) equal to Vκ(P) in R—K and to V(P) on K is
equal to the potential of some measure supported by K.

PROOF. Since VK(P)<LV(P) in R—K, v(P) has the mean value property
(i.e. v(P)^ the mean value of v on any sufficiently small disk around P) on
dK and hence in R. In order to show the lower semicontinuity of v(P\ we
approximate it from below by an increasing sequence {//} of continuous
functions on dK. We extend (fj)κ to a function on R by setting it equal to
V in K—dK. This extension is lower semicontinuous in R and increases to
v(P) in R as j-+oo. Thus v(P) is lower semicontinuous and hence v(P) is
superharmonic in R.

Let μ be the measure which gives the potential part in the Riesz decom-
position of v(P). On account of Lemma 2 it is supported by K The function
v(P) — Nμ(P) is harmonic in R. Let Kι be a regular compact set in R
containing K in its interior. From Theorems 3 and 5 it follows that

(v-Nμ)Kl=v-Nμ in R'-KL

Consequently

sup I v — Nμ I = max I v — Nμ \.
R'-Ki 9*i

Thus m&x\v — Nμ\ is attained on dKλ. By the maximum principle v — Nμ
R'

must be constant in R. Since it vanishes on dK0, v=Nμ in R.

In virtue of Theorem 6 we have

COROLLARY. VK extended by V is equal to an SHS0 function.

We approximate R by an increasing sequence {Dn} of regular subdomains
suαh that Όn\JdDnCR. By the preceding theorem, on Dn\JdDn, V(P) is equal
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to the potential of a measure μn supported by Dn\JdDn. We denote by μ'n the
restriction of μn to Dn and put μζ = μn — μ'n. It holds that

(2) V=Nμ'H + Nμ'H on Dn\JdDn.

We observe that μ'n is identical to the measure which gives the potential part
in the Riesz decomposition of V(P) in Dn. As 7z->°o Nμ'n increases and Nμl
decreases to a harmonic function in R. Consequently the function U=
lim Nμ"n is an HS function in R. Thus we have the following decomposition

theorem in R'.

THEOREM 8. Every SHS function is equal to the sum of an HS function
and a potential.

§ 5. Definition of VF for an SHS function V

We have considered φκ for a regular compact set KCR and a μp

κ-
measurable function φ on dK. In this section, by F or by F we shall mean a
closed subset of R! whose boundary consists of a countable number of analytic
curves clustering nowhere in R. For an SHS function V in R, we define VF

by lim VFn in B!—F, where Fn is defined by Fr\(Rn\JdRn). The increasing

limit exists because

(VFn)Fm=VFn^VFm^V if

by Theorem 3. In the following we shall denote the extensions to R! by V of
VFn and FF again by VFjι and F F respectively. By the corollary of Theorem
7, VFγι is an SHS0 function in R'. We already noted that the limit of any
increasing sequence of SHS functions is an SHS function if the limiting
function is not identically equal to oo, Consequently, VF is an SHS function
in R!. Furthermore, it is dominated in a ring domain DCR\ partially
bounded by dK0 and disjoint from 2% by VR,_D which has the vanishing
boundary value on dK0. Therefore VF is an SHS0 function in R\ We remark
that (Z7+ V)F= UF+ VF if U and V are SHS functions.

We shall prove an analogue of Theorem 3.

THEOREM 9. Let FCF', and Vbe an SHS function in R. Then (VF)F> =

VF in Rr.

PROOF. Let n<m. Since Fn CFr

m, (VFn)F' = VFn in R by Theorem 3. By

definition, VFn<,VF in R'. Therefore, VFn<,(VF)F< inR. By letting m-• oo
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first and then rc->oo? we obtain VF<^(VF)F, in Rr. Conversely, since VF is an
SHSo function, (VF)F,<;VF in R\ Thus we obtain the equality.

Next we prove

THEOREM 10. Let V be a piecewise smooth Dirichlet finite SHS function
inR\ Then \\VFn— VF\\^-Fn tends to zero as ra—•oo.

PROOF. Let m>n. By Theorem 1, (VFjn—VFn, VFn)^-Fn=0 and hence

Therefore

II VF\\2RFn\\2R'-Fn

We let rc->oo and have ]^\\VFJ\\^Fn^\\m\\VFJ\2

R^Fn. The existence of
n->>oo n-*°°

\im.\\VFn\\R,-Fn is inferred and it follows that {VFn} form a Cauchy sequence.
w-»oo

The pointwise convergence lim VFn=VF being known, we conclude that \\VFn

— VF\\R'-Fn-+0 as 7z->oo.

In virtue of this theorem it is rather easy to prove

THEOREM 11. Let V be a piecewise smooth Dirichlet finite SHS function
in R\ and f be a piecewise smooth Dirichlet finite function in R! which takes
the values V on F and 0 on dK0. Then (/— VF, VF)R^F = 0, and VF is the unique
function which gives the smallest norm among the functions like f.

PROOF. We apply Theorem 1 and obtain (f—VFn, VFn)^-Fn = 0. On
account of Theorem 10 we conclude (/— VF:> VF)R,-F = 0. The proof can be
completed in the customary way.

COROLLARY 1. Let FCF\ For the above F,

\\V — V \\2 — ι\V \\2 W \\2 4- \\V\\2

\\VF' VF\\R'-F — \\VF'\\R'-F' ~ \VF\\R'-F ~Γ \\V I I F ' - F

COROLLARY 2. Suppose that the above V is bounded. The function Vn

which is harmonic in Rf

n — F, which takes the boundary values V on dFr\Rn and
0 on dK0 and which has the vanishing normal derivative on dRn—F, converges
to VF as rc—>-oo.

For, extracting a subsequence {Vnk} converging to Vo in R — F, we have
by Fatou's lemma
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\\Vo\\<Um\\Vnk\\R^F^\\VF\\.

As in the proof of Theorem 1 we can show that Vo takes the same boundary
values as V on dF\JdKQ. Therefore Vo= VF by the above theorem. It follows
that \\mVn=VF because every convergent subsequence of {Vn} converges to

§ 6. Definition of Kuramochί boundary

We observed already that Nn(P, Q) tends to N(P, Q) uniformly in a

neighborhood of dK0 for any fixed Q e R on account of the symmetry principle.

Therefore

Γ dN , Γ .. dNn . r f dNn _ _
—a— ds = I lim —~— ds = hm I —~— ds = 2π.

Let {Qy} be a sequence of points tending to the boundary of R. We can see

that no subsequence of {N(P, Qj)} tends to the constant oo as y-*oo. Actually,

let D be a ring subdomain of j ^ whose one boundary component is dK0, and A

be the harmonic measure function of C—dD — dK0. It holds that min dh/dv>0

on dK0 and N(P) ̂  (min iV)Λ(P) in D. If ΛΓ(P) -> oo in Λ', then dN/dv ̂  miniV
c c

min dΛ/dv -> oo uniformly on dK0. This contradicts the relation \ dN/dvds

= 2π. Consequently, {N(P, Qj)} form a normal family and every converging

subsequence converges uniformly on any compact subset of R—(K0 — dK0).

If N(P, Qj) converges, {Qj} will be called a fundamental sequence. If the

limiting functions of two converging sequences {N(P, Qj)} and {N(P, Qj)} are

equal to each other, we say that {Qj} and {Qj} are equivalent and call an

equivalence class a Kuramochί boundary point. We call the set of all Kura-

mochi boundary points the Kuramochί boundary of R and denote it by JN.

If PeR, QβJN and {Qj} in R determines Q, then we set

this value does not depend on the choice of fundamental sequence. We note

that N(P, Q) = 0 for PedK0 and \ dN/dvds = 2π. We introduce a metric on
JdKQ

R\JΛN by
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2) - 1 + N(P,Q2T

for any Qu Q2 on R'\JJN, where we recall that R[=R1 — K0. The topology
induced by this metric on R! coincides with the original topology. With this
metric, (R — Rι)\JΔN is a compact metric space because {N(P, Qj)} form a
normal family for any {Qj} tending to AN. The space Rr\JdKβ\J AN has a
countable base of open sets. It is easy to prove that, for any compact set
KiCR and any compact set K2CR'\JJN disjoint from Ki, N(P, Q) is continu-
ous as a function on Kι x K2.

Next we prove

THEOREM 12. The definition of boundary points of R does not depend on
the choice of Ko in the sense that every equivalence class of sequences of points
near the boundary of R is the same.

PROOF. It will be sufficient to consider two closed parametric disks Ko

and Ko such that KoCKo — dKo Let {Qj} be a fundamental sequence with
respect to Ko converging to Q£JN. We choose {Rn} such that Rι^>K0. We
consider Nn(P, Qj) and N(P, Qj) defined in Rf

n = Rn-KQ and R'=R-K0 respec-
tively. We set

Hn(P, Qj) = Nn(P, Qj) ~ Nn{P, Q,)

and

Since Nn and Nn tend to TV and N respectively as n-^oo^ Hn(P, Qj) tends to
H(P, Qj). We want to verify that lim H(P, Qj) exists as y-> oo. We have

(3) I H(P, Qj) - H(P, Qk) I = lim I Hn(P, Qj) - ffn(P, Qk) \
n->°°

< lim max | Hn (F, Qj) - Hn (F, Qk) |

= lim max | Nn(P\ Qj) - Nn(P\ Qk) \

= max \N(P\Qj)-N(F,Qk)\

on R\ Since the last side is small if / and fe are large, the convergence of
H{P, Qj) is concluded. Hence N(P, Qj) tends to a harmonic function in R! as
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y->oo. It implies that if {Qj} and {Qj} are equivalent fundamental sequences
with respect to Ko, they are so with respect to K0.

Next we shall prove the converse. Let {Qy} and {Qj} be sequences which
determine different boundary points Q and Q' with respect to Ko but the same
boundary point Q with respect to Ko. Since \N(P, Qj)—N(P, Qj)\ tend to 0
on R' as —• °°, it follows from (3) that

I N(P, Q) - N(P, ρ')I ^ max I ΛΓ(P', Q) - N(P', ρ') |

on £'. On the other hand it is evident that

sup I N(P, Q) - N(P, QOI ^ max I N(P\ Q) - N(P\ Q') \.

Thus I N(P, ρ) — iV(P, ρ') | takes its maximum at an interior point of R\
Therefore it is a constant in R\ Now it follows that N(P, Q)=N(P, Q').

§ 7. Integral representation of HS0 and SHS0 functions

First we prove

LEMMA 4. Every HS0 function U(P) takes the vanishing boundary value
on ΘK0.

PROOF. We consider a sequence {Km} of concentric closed parametric
disks strictly decreasing to JKO By Theorem 7 U is equal on Kχ~-(Km—dKm)
(m^>2) to the potential of a measure μ m supported by dKι\JdKm. We denote
the restrictions of μm to dKλ and dKm by μm and μ"m respectively. If
Theorem 5 yields

on R - Km^

Since U is an HS0 function, UdKm_1 tends to zero as m-+eo. Hence
m-*°°

and U=\im.Nμ'm in Kι — K0. The total mass of μ'm m—1, 2, ..., is bounded
m~*°°

because for any fixed PeK1-K2, min N(P, Q)μ'm(R)<Nμf

m(P)<LU(P)< oo.
QζdK

Therefore we can choose a subsequence of {μr

m} converging vaguely to a
measure on dK\. Then U is equal in K\—Ko to the potential of the measure.
This shows that U has the boundary value zero on dKQ.

THEOREM 13. Every SHS0 function V(P) in Rr can be expressed by the
potential of a measure on dR'\JjN, and vice versa.
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PROOF. By Theorem 8 V is equal to U+Nμ, where U is an HS function.
By Theorem 6 Nμ is an SHS0 function and hence U is an HS0 function. It
suffices to prove our theorem for U. Consider an exhaustion {Rn} of R. On
account of the above lemma UdRn is equal to U on Rr

n. We denote by μn the
measure on dRn which gives Nμn=UdRn. The total mass of μn is equal to

(2π)~ΛdNμn/dvds where the integral is taken along dK0\JdRp for any p>zz.

Since

Γ ΘNμH , r Γ dNqμn J Γ dNqμn, n

J dRp OV q-^oo j dRp <JV q-^oo J BRq VV

the mass is equal to

dNμn j l f du

~ - Λ = Γ j Γ Λ < O O

We extract a subsequence of {/>&„} vaguely convergent to a measure μ on J^.
The equality U=Nμ follows.

To prove the converse, we shall show first that, if QeΔN, then (ΛΓ( ,
Q))κ(P)<zN(P,Q) for any regular compact set KCΛ' Let Qj eR!-K tend
to ρ. Since (N( . , ρy)MP)^ΛΓ(P, ρy) and both sides tend to (ΛΓ( , ρ))^ and
Â (P, ρ) respectively, the required inequality follows. Next we consider any
μ with Sμ C ΔN. Certainly Nμ has the boundary value 0 on dK0 and

, Q')dμ%(Q)dμ(Q')

Thus Nμ is an SHS0 function.

Let F be a closed set with analytic boundary in R as considered in §5,
and let V(P) be an SHS function in R. We shall prove

THEOREM 14. Denote the closure of F in R\J ΔN by Fa. There esists μ

with SμCFa such that Nμ=VF inR.

PROOF. Let Fn = Fr\(Rn\JdRn). By Theorem 7 there is μn supported by
Fn such that Nμn= VFU in R. The total mass of μn is equal to

l r dNμ H , i f dvFn _ , l r dv3K j
-cr~ \ — o — ds — o— \ —^—rL- ds < o \ n ds < oo
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where K is a closed parametric disk which contains Ko in its inside and is
disjoint from F. There is a subsequence {μnk} converging vaguely to a
measure μ supported by Fα, because Fa is a compact set in Rf\JJN. Since
N(P,Q) is a continuous function of Q€R'\JAN — {P} for any fixed PeR\
VFnk(P)=Nμnk(P) tends to Nμ(P) for any P eR'-F. Consequently,

We recall that the restriction of μn to the interior Fι

n is equal to the
measure which gives the potential part of the Riesz decomposition of V in
Fι

n. We shall denote it by vn. Hence the restriction v of μ to F* has the same
property and vn increases t o v a s 7z->oo. It follows that μnk — Vnk converges
vaguely to μ — v. At any PeF*

\ Ndμ =\Ndv+[Nd(μ-v) = lim \ Ndvnk + lim \ Nd(μnk - »nk)

NdμH=V.

What remains is to prove Nμ(P)=VF(P) for every PedF. Since the
function VF is superharmonic in R\ its mean value on a disk around P tends
to VF(P) as the disk diminishes. The mean value of VF equals the mean value
of Nμ and hence VF(P) = Nμ(P).

Another theorem concerning VF is

THEOREM 15. Let μbe a measure on R'\J JN, and F be as above. Then

(Nμ)F = NFμ in R'.

PROOF. If K is a regular compact set in R\

(Nμ)κ = J j NdμdμK = j j Ndμκdμ = Nκμ.

Therefore

(Nμ)F = lim(iV^)Fw = lim iV>Λ/*

Let i b e a closed subset of JN. Define
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We cover dA(m) by a countable number of closed disks Dh D2, ••• with centers
on dA(m) such that each Dj has a positive distance from dA(m — ΐ) and no
compact set in R intersects an infinite number of D/s. We set Af(m) =
A(m)\J(\JjDj). Next we consider the harmonic measure of dAf(m) with respect
to the open set A(m—l)—Af(τn) — dA(m—l). There exists a level curve A=ε,
0 < ε < l , consisting of a countable number of analytic curves. We set

A(m) = A\m)\J {P; h(P)^ε}.

This is a closed set with analytic boundary in R and its closure in B!\J ΔN

is a neighborhood of A.
For an SHS function V in R we consider VA{m). This decreases as m-+ oo

to an HSo function. We shall denote the limit by VA- We note that VΔn=V
for any HS0 function V. Let us prove

THEOREM 16. Let V be an SHS function in R and Abe a closed subset of
ΔN. Then there exists μ supported by A such that

VA(P)=\ N(P,Q)dμ(Q) on R'.

PROOF. Take above {A(m)}. By Theorem 14 there is a measure μm

supported by (A{m))a and satisfying Nμm=VAw in R!. Its total mass is not

greater than (27r)~1\ dVΆw/dvds. We extract a vaguely convergent sub-
}dK0

sequence of {μm} and denote by μ the vague limit. We have

VA(P) = lim VA(m)(P) = Nμ(P) for any PeR.

Finally we prove

THEOREM 17. Let μ be a measure on R\JJN, and A be a closed subset of
ΔN. Then

PROOF. Take {A(m)}. By Theorem 15

(Nμ)A = \im(Nμ)A(m) = lim NAMμ = NΛμ.

§ 8. Classification of boundary points

First we aim at proving (VA)A=VA for any piecewise smooth Dirichlet
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finite SHS function V in R\

THEOREM 18. For such V

— F!A1|->0 a s

PROOF. Let p<m. By Corollary 1 of Theorem 11, it holds that

It follows that \\VA(m)\\R'-A(m) has a limit as m-+oo and that {VA(™)} forma
Cauchy sequence. We know the existence of lim VΆw = VA and derive lim

THEOREM 19. For the above F,

(VA)A=VA.

PROOF. Let p<m. By Theorem 11

\\(VA— V.A

The last quantity tends to zero as m-^oo by the preceding theorem. There-
fore, by Theorem 9 and then by the preceding theorem again,

= \im\\(VA)A(p) — VA(")\\R'-A(P) = \\(VA)A(P) — VA\\

Hence VA—{VA)A(P) for each p. The equality (VA)A=VA follows from this.

C O R O L L A R Y . (<*>A)A = ωA>

THEOREM 20. Let V be an SHS function in R\ and Abe a closed subset of

ΔN with ωA=0. Then (VA)A=VA

PROOF. Take {Λ(m)} as above. Since VA is an HS0 function, (VA)A^

To prove VA^(VA)A we use the decomposition V=U+\ Ndμ obtained

in Theorem 8. By Theorem 17 VA=UA+\ NAdμ. Similarly we obtain (VA)A

JR'
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= (UA)A + \ (NA)Adμ.. If QeR and M>0 is large, the function NM(P,Q) =

min (N(P, Q\ M) is a piecewise smooth Dirichlet finite SHS function and
(NA)A=((NM)A)A. By Theorem 19 we see that ((NM)A)A=(NM)A=NA. Therefore
it suffices to prove UA<,(UA)A for any HS function U.

First we prove

(4) (UA(m) - UA)K ̂  UAw -UA in R - K

for any regular compact set K in R. We shall set Ai^=A{m)r\{Rn\JdRri\
Let p (p>m) be a large number so that A(p)r\K= 0. Set Af = max Z7. We
consider

C/̂ (m) — UA(P) + MωA(P) — (UA(m) — UA(P))K
n n n n n

as a function in R'—K—Ac

n

p\ This is bounded superharmonic and takes the
non-negative boundary values. Therefore, the function is non-negative in
R-K-Acf so that

(UA(m) — UA(p))K<;UA(m) — UA(P)

n n n n

We let ?*->oo and have

(UA(m) — UA(p))κ<^ UA(m) — UA(P)in R—K—A(p\ Next we let p->°o and derive (4).
We use (4) for K=Af} with k<m, and obtain

(UA(m) - UA)Aψ ^ uAim) - UA in R-A(k\

As/^oo, (UA(m))Aφ-+(UA(m))A(k) and (UA)A(k)->(UA)Aw. Therefore,

— (UA)A(k) ^ U7A(»») — C/̂  in R — A(k\ We apply Theorem 9 and have
= {7A (n.). Thus ΪTA ̂  ( J7A)Λ (*) in R - ^ w , whence C/Λ <; (C/"Λ)Λ.

Now we proceed to classify the points of ΔN. We set

THEOREM 21. For Q^^Λ^, a(Q) = 0 or 1.

PROOF. By Theorem 16, iV{Q> = a(Q)N. If
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= (N{Q}\Q} = a(Q)N{Q} = a\Q)N

on account of Theorem 20. Thus a(Q)(l-a(Q))N=0. Therefore a(Q) = 0 or
1.

If ^ { Q > > 0 5 ω{Q}=cN with c>0 by Theorem 16. Using the Corollary of
Theorem 19 we have

N{Q} = c " 1

Since NiQ} = a(Q)N, N=a(Q)N follows. Thus α(Q)=l.

COROLLARY. According as a(Q) = 0 or 1, (ΛΓ( , Q)){Q}(P) = 0 or N(P, Q).

A point QeJN with ω { Q >>0 is called singular by Kuramochi. The above
proof shows that α(Q) = l for every singular point Q.

Let us establish

THEOREM 22. The set Jo= {Qe JN; a(Q) = 0} is an Fσset

PROOF. Let m be a positive integer. Suppose that, for every closed set
F in R with analytic boundary whose closure Fa contains a neighborhood of

ΔN in Rr\J JN and is contained in the /^-neighborhood of Q, it holds that

2π W o dv " - 2 *

We shall show that the set δm of all such points Q is closed. This will prove
the theorem because J0 = \Jδm.

m

Let Qj eδm and Qj-^Q0. Take F at Qo such that the closure Fa is
contained in the m~^neighborhood of Qo. There is j0 with the property that,
for every i^yo, Fa is contained in the vι~^neighborhood of QJm By assumption

?y)^l/2 for every / ^ Ό. Given ε>0, we can take a large n such that

d(N(-9Q0))Fn ^
dv 5 '

where Fn=Fr\(Rn\JdRn). It follows that

1 -rfiS-tji Eft * 4 | Hm

dKo j ^ dv *π )dκQ dv

d(N( > , Qθ))F ^
o as—ε.

dκQ dv
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Since ε can be arbitrarily small, we have aF(Q0) <,l/2. This implies that
Qo £ δm. Thus dm is closed.

§ 9. Canonical representation

Throughout this section V(P) will mean an SHS function and F a closed
set in R with analytic boundary. We set ΔX = ΔN — ΔQ. It is equal to {Q€ Δχ;

First we prove

LEMMA 5. Let {Ap} be a sequence of closed subsets of ΔN increasing to a
closed set A, and assume VAp=0 for each p. Then VA = 0.

PROOF. Let PoeR and take ε>0. For each p we choose a closed set Fp

with analytic boundary in R such that its closure F% in R\JΔN is a closed
neighboorhood of APi PO$FP and VFXPo)<ε/2p. It holds that \JFΐ^\JAp = A.

p
 P P

q

There are ί\, ••-, Fq such that \JF% is a closed neighobrhood of A. We take
P=l

{A(m)} as in §7. If m is large, A(m) C \JFP. We obtain

) ^ V ( U p ) ( n n )

p=l p=\

for each n. It follows that VA<,VAt»'*)i£ ^1 VF. and
P=l

p W
p=i p p=ι Δ

Since ε can be arbitrarily small, VA(P0) = 0.

THEOREM 23. Let V(P) be an SHS function. Then VE(P) = 0 for any closed
subset E of Δo.

PROOF. First we consider the case where (VE)E= VE for any closed subset
E of Δo. Consider δm defined in the proof of Theorem 22, and let A be a closed
subset of δm with diameter less than (2m)~ι. Let F be a closed set with
analytic boundary in R such that the closure Fa of F in R\j ΔN is a closed
neighborhood of A and Fa is contained in the (2mY^neighborhood of A. Since
the diameter of A is less than (2m)~ι and Fa is contained in the (2m)~1-
neighborhood of A, Fa is contained in the m"^neighborhood of any point of A.
Hence aF(Q)^l/2 for every QeACδm. By Theorem 16 VA is represented as
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the potential Nμ of a measure μ supported by A. Using Theorem 15 we have

l r dNμ i f dvA i r d(vA)A

There follows μ(A) = 0 and hence VA=0.

Since δm can be divided into a finite number of closed sets with diameter
less than (2m)~1, VSm=0 by Lemma 5. Let E be any closed subset of Jo. Each
Er\δm is closed and E=\J(Er\δm). On account of Lemma 5 VE = 0.

m

Now we recall that ((oA)A = ωA for any closed subset A of ΔN (Corollary
of Theorem 19), and derive ωE = 0 for ECΛ0. Consequently we can apply
Theorem 20 and conclude VE = 0 for any SHS function V.

We need some preparations for Theorem 24. Let F b e a closed set with
analytic boundary in R and A be a closed subset of ΛN. We take {A(m)} as
before. The closure (A(m))a in R'\j AN decreases to A as m-> oo. By Theorem

16 we represent VAw by ^ ( M ) = ί AW^(W) i n K-A{m\ We may assume
J(Aθ))«

that yi6
(w) converges vaguely to a measure μ, whose potential Nμ = \ iVϋ/A is

equal to F A in R. We set A(

n

m)=A(m)ίΛ(Rn\JdRn). We know that ^ w ) supports
a measure /4w) such that VAn(m)=Nμ(fι\ We may assume that /4w) converges
vaguely to /^(w) as n -+ oo for each 7?z. Let v^w) be the restriction of /4w) to F.
We may assume that v^ converges vaguely to a measure i/w) as /z -• oo for
each 77z, and furthermore that v{m) converges vaguely to a measure v as m->oo.

Let us prove

LEMMA 6. Let F' be a similar dosed set in R such that FCFr and Fr\dF' =
0. Then Nv^VF, in R-F'.

PROOF. It holds that Nv{^<,Nμ^ = VA{m). Since F contains Svo») in its

i n t e r i o r , (Nvcf>)F,= lim(N^)F,mR udR) = N^ b y T h e o r e m 5. T h e r e f o r e Nv(^

<^(VA(m))F,<, VF, in R—F. By letting n-^ oo and then m-^°° we conclude the
n

lemma.

Now we can establish
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THEOREM 24. Let V be an SHS function and A be a closed subset of ΔN.
c

Then VA can be represented in the form \ Ndμ .

PROOF. Take {A(m)} and {μ(m)} as above. We shall show that μ(J0) = 0.
Let ε>0 be given and fix PoeR. Since V8k = 0 by Theorem 23, there is a
closed neighborhood Έ of δk in R\JΔN such that F'=EΓ\R is a closed set in
R with analytic boundary and satisfying VF'(PO)<S. Let E be a similar
closed set such that F=Er\R 'CF and Fr\dF = 0. We take K w ) } 5 {v{m)} and
v as above. Let us see μ(δk) = v(δk) L e t / b e a continuous function in R\J AN

such that 0 < Ξ / < ί l , / = l on δk, its support SfCE and \fdμ and l^iv are close

to μ(δk) and v(ίΛ) respectively. We have \fdμ'™ =\fdv(

n

m). As 71^00 they tend

to [fdμ™ and f/dv(w). Then by letting TTZ-* 00 we obtain [fdμ=[fdv. It

follows that μ(δk) = v(δk).

We apply Lemma 6 and have

\ 7V(Po, Q)dι>(Q)^Nv(Po)^VF,(Po) < ε in R- F,

whence I Ndv = 0. This shows V(?Λ) = AC ( ^ ) = O This is true for each A; and

accordingly μ(J0) = μ(\Jδk) = 0.
k

Since VΔN — V for any HS0 function V, we obtain

COROLLARY. Any HS0 function is represented as I iVd/z .
J Δλ

We shall call this measure μ canonical, and the representation a canonical
representation. The uniqueness will be shown later.

We shall apply Theorem 24 to obtain a result which generalizes Theorems
19 and 20.

THEOREM 25. For any SHS function V in R and closed subsets A, A of AN

such that ACA\ it holds that (VA)A'=VA> If Fr is a closed set with analytic
boundary in R and the closure of Fr in R\J ΔN is a closed neighborhood of A,
then (VA)F>=VA.

PROOF. By Theorem 24 there is a measure μ such that VA = Nμ —

I Ndμ. Theorem 17 implies that (VA)A, = (Nμ)A, = NA,μ. If QeAr\Ju

J Aς\Δ1

(N( - , Q))AQ)=N(P, Q) because (N( - , Q))m(P)^(N( - , Q))A>(P)^N(P, Q) and
, Q))m(P)=N(P, Q) by the Corollary of Theorem 21. Thus (yA)A>=NA,μ
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=Nμ=VAm The equality (VA)F'=VA is established similarly.

§ 10. Minimal functions

Let U be an HS0 function. It will be called minimal if V=cll whenever
V and U— V are HS0 functions.

We prove a lemma which will be used below.

LEMMA 7. Let a minimal HS0 function U(P) be expressed by \ N(P, Q)
JB

dμ(Q) with a Borel subset B of ΔN. Then μ is a point measure at some

with mass c — (2π)~τ\ dU/dv ds.
JdK0

PROOF. Let A\ be a closed subset of B with diameter less than 1 such
that μ(Aι) > 0. Next let A2 be a closed subset of Aλ with diameter less than
1/2 such that μ(A2)>0. In this way we obtain a sequence {Aj} of closed
subsets of B such that μ(Aj) > 0 for each j and ί\Aj is a point Q0€B. Since

3

U is minimal and U — \ Ndμ = \ Ndμ is an HS0 function, there is cj ̂  1
: Aj j β - A j

f Γ
satisfying U—cλ Ndμ. Thus U can be written as \Ndμj> where SμjCAj.

J Aj J

We see that the total mass of μΊ is equal to c = (2πyι\ dU/dvds. Let μ0

be the vague limit of a subsequence of {μΊ}. It follows that μ0 is a point
measure at Qo and

U(P) - J7V(P, Q) dμ0 (Q) = cN(P, Qo) in R'.

If μ is not the point measure at Qo, there is a closed set A CB such that Qo
and /*C4) > 0. By the above reasoning we find a point Qi G A such that
= cN(P, Qι). This is equal to cN(P, Qo\ and there follows Qo = Qi which is a
contradiction.

We shall establish

THEOREM 26. 1) Lei U be minimal and A a closed subset of ΔN. If UA>0
and U — UA is an HS0 function, there is a point QoζAr\Jι such that

U{P) = cN(P, Qo) with c = A- ( ψ- ds.

2) Any minimal function is a constant multiple of N(P, Qo) for some
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3) N(P, Qo) is minimal if and only if Qo €Ξ Aλ.

PROOF. 1) We express UA as a potential \ Ndμ by Theorem 24. Since
JAΠΔi

U is minimal and both UA and U— UA are HS0 functions by assumption, UA =

cU. The condition UA>0 implies that c>0. Thus U=c~1UA = c~ι\ Ndμ.

By Lemma 7 we find a point Qo € Ar\Δλ such that U(P) = cN(P, ρ0).

2) Take z/̂  for A in 1).

3) Let QoβJi and suppose that both V{P) and JF(P) = i\Γ(P, Qo)-V(P)
are HS0 functions. By the Corollary of Theorem 21 (iV( , ρ o ) W ( P ) =
N(P, Qo). Hence V{QQ} + W{QQ} = iV{Qo> = 7V= F + W. Since Γ{ζ?0> ̂  F and W{Qoy

= V and JΓ{Qo> = W. By Theorem 16 again we have V(P) = Γ {

Conversely, if iV(P, Qo) is minimal, there are QiβJi and a constant c by
2) such that iV(P, ρ0) = cN(P, ρθ . It holds that iV(P, ρ0) = 7V(P, Qx). Thus Qo

§11. Uniqueness of canonical representation

For the sake of completeness we shall prove the uniqueness, although
the method is entirely due to Constantinescu-Cornea Q3], 12. First let us see
that any feC3 (i.e. / is three times continuously differentiable) with compact

support 5/ in R is equal to (27r)~1\ \ NAzf dxdy, where Az is the Laplacian with

respect to a local variable z — x-\-ίy and (2π)~~1Azf dxdγ is conformally inva-
riant, thus defining a measure σ of general sign on Rr.

We assume that SfCRn- Let Nn be the function on Rf

n as defined in §3.
We know that N—Nn tends to 0 locally uniformly in R — (Ko — dKo) as 7z-> oo.

It is a classical result that Aζ(\ \\og\z — ζ\Azfdχdy) = —2πAζf. It follows that

the Laplacian of Nnσ—f vanishes everywhere in Rf

n and hence Nncr—f is
harmonic in Rr

n. It vanishes on dK0 and its normal derivative vanishes on
dRn. Therefore, it is equal to zero identically and Nncr =f follows in R'n. By
letting 7z—• oo we conclude Nσ- — f.

Let K be a regular compact subset of R! and ρ be a point of ΔN. By
Theorem 7 (iV( , Q))κ(P) extended by N(P, Q) over K is equal to the potential
of a measure on dK. We shall denote this measure by μQι κ. We shall show

that \fdμ Qfκ is a continuous function of Qξ.ΔN for any continuous function

/ on K. We may suppose that / is defined in R and has a compact support.
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First assume that / belongs to C3. We express it by N<r = Nv'f — Nv}, where
vr

f and v) are both non-negative. It holds that

From the inequality

sup I (N( , Q2)MQ') - 0V( , Qi)k(Q01 ^ max | N(Q'9 Q2) - iV(ρ', ρx) |
Q'SR'-K QΈdK

valid for any ρ l 5 ρ2G J v, it follows that \fdμQ>κ is a continuous function of

ρ e JN- Next, any continuous function / with compact support in R! can be
approximated uniformly by a sequence of functions of C3 which vanish outside

a fixed compact set in Rr. We infer that \fdμQ>κ is a continuous function of

ρ e ΛN generally.

We give

LEMMA 8. // ρ G Ji, μQ> dRn converges vaguely to the unit measure at Q as
rc->oo.

PROOF. For simplicity we shall write μξ for μQ> dRn. We note that the
total mass of μ% is one. Let μ0 be the vague limit of a subsequence {μQ

nk}.

On R'9 NμQ

nk tends to Nμo. Since N(P, Q) = \N(P, Q()dμξ(Q') in Rr

n, N(P, Q) =

fiV(P5 Q^dμoiQ') in Λ'. By Lemma 7 there is a point ρ 0 € JΛΓ such that iV(P, Q)

= ^ ( ^ J Qo) which implies ρ = ρ0. Thus μ0 is the unit measure at ρ and our
lemma is proved.

Now we prove

THEOREM 27. Canonical representation of any HS0 function is unique.

PROOF. Suppose that Nμ = \ Ndμ = \ Ndv = NP in jRr. We define a

measure μn on Λ' by \/<ί̂  » = \\fdμ%dμ,(Q). This is possible because \fdμξ is

a continuous function of ρ on AN- Similarly we define vn. We have
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', Q')dμn(Q')=^N(P, Q')dμ°(Q')dμ(Q)=\\N(Q, Q')dμξRn(Q')dμ(Q)

= (Nμ)dRn(P) if PeR'-dRn

and

', Q')dμn(Q') = \\N(P, Q')dμξ(Q')dμ(Q) = \N(P, Q)dμ(Q) = Nμ(P) if PedRn.

Similarly Nvn = (Np)dRn in B! — dRn and = Nv on &RΛ. Hence Nμn = iVvw in Λ'.
By the aid of Lemma 2 we conclude /*„ = vn.

Let / be a continuous function on R!\J ΔN. Since |/d/^? is bounded and

tends to f(Q) as ? -> oo by Lemma 8,

lim \fdμn = Hm \ (\fdμξ) dμ(Q) = \fdμ.

Thus μn converges vaguely to μ. Similarly vn converges vaguely to v and the
identity μ = v is concluded.

Taking Theorem 24 into consideration we derive

COROLLARY. Let Abe a closed subset of ΔN. The canonical measure for
VA is supported by A.
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