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1. Introduction and summary

In 1957, A. T. James [5] introduced first the suggestive notions of the
relationships and the relationship algebra defined on a set of experimental
units. He clarified the bearing of the direct decomposition of the relation-
ship algebra on the analysis of variance for a standard experimental design,
such as, for randomized block designs (RBD), for Latin square designs (LSD),
and, though not sufficiently, for balanced incomplete block designs (BIBD).
In 1959, R. C. Bose and D. M. Mesner [ 2] dealt with the association algebra
generated by the association matrices of an association scheme introduced
first by R. C. Bose and K. P. Nair [3]. In those days, J. Ogawa [7] dealt
with the analysis of the association algebra as well as the relationship
algebra of a partially balanced incomplete block design (PBIBD). H. B. Mann
[6] dealt with the algebra of the general linear hypothesis. S. Yamamoto
and Y. Fujii [9] treated the analysis of the relationship algebra of a PBIBD,
too, and clarified the meaning of orthogonality, partially confounding and
confounding of a component of treatment sum of squares to the block space.

During the course of our research for the analysis of a PBIBD, several
questions and ideas suggested themselves to us. Some of them will be
mentioned below.

i) What is an association scheme? What is an association algebra?
Can we consider an association algebra as a kind of the relationship algebra
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defined among a set of treatment parameters? If so, an association scheme
or an association algebra may be defined independently of the treatment-
block incidence matrix of an experimental design.

ii) An association algebra defined among a set of treatment parameters
determines uniquely the decomposition of the parameter sum of squares into
sum of several parameter quadratic forms. In view of the fact, can we
consider the algebra as an apparent structure defined among the working
parameters, and as being composed of several primitive relationship algebras
defined respectively among several sets of primitive parameters? If so, an
association algebra is a sort of apparent parameter structures being so
composed of several primitive relationship algebras that any one of the
primitive parameter sums of squares may correspond faithfully to one of the
component quadratic forms of the apparent parameter sum of squares.

iii) The notions of the relationships and the relationship algebra may
naturally be introduced not only into a set of relevant (or treatment) para-
meters but also into a set of nuisance (or block) parameters. In view of the
above, the nuisance parameter algebras for the so-called block designs, such
as, RBD, BIBD, PBIBD, etc., are primitive, and those for the two-way elimina-
tion designs, such as, LSD, Youden square designs (YSD), etc., are factorial.

iv) The steps of constructing an experimental design may be regarded
as, (1) to compose suitably the relevant (or treatment) parameter algebra
from several primitive relationships, (2) to compose suitably the nuisance
parameter algebra to be eliminated, and (8) to map suitably those algebras
over a set of experimental units and compose them into the relationship
algebra of the design in order to pick out the relevant relationships faithfully
after the elimination of the nuisance relationships.

v) Mappings and compositions of the relationship algebras might play
a fundamental role in the composition of a design. What are the implica-
tions of the phrases ‘to map suitably’ and ‘to compose suitably’?

To answer those questions and to formulate those ideas, we shall provide
some notions and several theorems which will be useful in the composition
of the relationship algebra of an experimental design.

Some notions and results concerning the semi-simple matrix algebras are
introduced in sections 2, 3 and 4. In particular, the notions of similar and
partially similar mappings are defined and a fundamental theorem is pre-
sented in section 2. In section 3, the notions of confounding and partially
confounding are defined in algebra-theoretic terminologies. In section 4, the
notion of orthogonality is introduced in algebra-theoretic terminologies.

The remaining sections of this paper are devoted to the composition of
particular relationship algebras of experimental designs. Specific features
of a relationship algebra are discussed in section 5. In view of those features
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of the relationship algebra, the notions of G-preserving mappings and G-
orthogonal compositions are introduced in section 6. In section 7, the com-
position of the parameters is discussed in relation to G-preserving map-
pings. The composition of the parameters in relation to G-orthogonal com-
positions is discussed in section 8.

Composition of the relationship algebras of the experimental designs
is treated in section 9. This section is divided into two parts, the one
devoted to the case where no nuisance parameter algebra exists in a set of
experimental units, and the other devoted to the case where a nuisance
parameter algebra is introduced in a set of experimental units.

2. Similar and partially similar mappings

Let R be a semi-simple matrix algebra (ring without radical) over the
real field [17] [8] generated by a finite number of real symmetric matrices of
order m. N is a set of linear transformations whose domain and range are
self-dual m-dimensional real vector spaces V,, respectively. According to the
theory of semi-simple algebra, R is completely reducible and can uniquely be
decomposed into the direct sum of minimum two-sided ideals, say,

(1) ER:ERlEBERz@-”@SRk

apart from the order of the ideals. Each component algebra %R; is isomorphic
to the complete matrix algebra of order m;, the multiplicity of which is «;.
Let E be the principal idempotent of R and E; be the principal idempotent of
N; G=1, ..., k), then the corresponding decomposition of principal idempotent
into mutually orthogonal principal idempotents of the ideals is,

2) E=E+E+...+E

The ranks of those idempotents are

k k

3) r(E) = B = mia;, r(k) = ET(E:'): Z{B"Sm

Let E,=I,—FE, then E}=E, E,E=FEE,=0 and for any E; (i=1, ..., k) EE;=
E.E,=0 hold. For convenience’ sake, denote r(E,)=RB¢=mo,.

Let F be an nxm real matrix which maps a column vector of V,, into a
column vector of V,, i.e., for any a€V,

@ F: a—»a*=FacV,
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Let R* be the image of R induced by the following linear mapping ¢ of
R which is defined by the matrix F; i.e., for any 4e R

5) 0: A—A*=FAF
or
6) 06: RoR*=FRF =c(RN)

where R*= {4*; A*=FAF, A€ R}

Derinition 1. A linear mapping ¢ of R defined by F is said to be
partially stmilar if it satisfies the following two conditions

) (D) o(E)(E)=0i¢0(E) (€i=>0,i,j=0,1, ..., k)
®) (i) If ¢>0, then r(@(E))=r(E)  G=0,1, ..,k

where 0;;=1 or 0 according as i=j or i5j. If ¢;>0 for some i a partially
similar mapping is said to be proper. In particular, ¢ is similar if c;=c,=
co=cp=c>0.

As to the matrix F which defines a linear mapping ¢ of R, the following
theorem holds.

TueoreM 1. A linear mapping ¢ of R defined by F is partially similar
if and only if

) FF=cE  (¢>0)
i=o

In this case, the image R* =0 (R) of N is also a semi-simple matriz algebra.
As we can assume c¢; >0, >0, ..., ¢, >0, ¢,1=---=c,=0 without loss of
generality, R* can be decomposed into the direct sum of minimum two-sided
ideals, such as,

(10) R*=0R)=a(R)Ds(R)B--- Do (R

Any one of the component algebra o(R;) 1is isomorphic to R; and the multiplicity
of the irreducible representations is also o;. The corresponding decomposition
of the principal idempotent into mutually orthogonal principal idempotents of
the ideals s,

(11) E=E +E,+...+E
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where

~ - !
(12) Ej—_—“%jFEjF/, E: 2

Proor. Assume first that F satisfies the condition (9), then we have
G(E,')(T(Ej):FE,‘F/FEjF/:6ijC[FE,'F/:6,~jCi0'<E,'), for i, ]:0, 1, ...k, and if c; >0,
r(0(E))=r(FE;F") =r(E;F'FE)=r(c:E;))=r(E;), for i=0,1, ..., k. The linear
mapping ¢ defined by F is, therefore, partially similar.

Conversely, assume that ¢ is partially similar, i.e., (7) and (8) hold. Since
we can assume that co=c;..-=c;.1=0, ¢,>0, ..., >0 (0 s <k) without loss
of generality, we have

(a) FE,F'FE,F'=0 for p=0,1,...,5—1
(b) FE,F'FE,F'=c,JFEF' for q=s, ...,k

4% (¢) FE;F'FE;F'=0 for i#j and i,;=0,1,..,k
@) r(FE,F)=r(E,) for g=s, .- k

Since E/s are mutually orthogonal symmetric idempotents, there exists
an orthogonal matrix P which transforms all E; diagonal simultaneously,
such as

(14) PEP=,

where B;=r(E;)=m;x;. If we denote FP=K the conditions (a), (b), (¢), (d) may
be expressed as,

(@) Ke,K'KeK' =0 for p=0,1,...,s—1
/ (b) KeKKeK =cKeK for qg=s,. ..,k
4 (¢) KeKKeK =0 for i+j, 4,j=0,1,..,k
@) r(KeK)=r(e) for g=s, ..,k

From (a’), we have Ke,(Ke,)=0 and Ke,=0 for p=0,1, ...,s—1. The
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latter shows that all elements of the first B,+8:+..-+B._; columns of K are
zero. Denote the matrix which consists of the remaining %= 8,4+ ...+ 5
columns of K by K, then we have

3

00
(15) K=[0:K), KK=RK, KK= - - .
‘\ 0 :K'K
Since (d’) and (¢) hold, we have
(16) H(R'R) =r(RR) = r(KK) = r(K( 3] e)K')
i=0

3 k
=>r(KeK)=>8,=1
q=s q=s

The #x# matrix K’K is, therefore, non-singular. Using (13") and (15)
we have

~ o~ k
RR'RR = KK'KK = K( 3 e)KK(S) e)K’
i=0 i=0

£

= >¢,KeK
amn -

Cs h

‘-.Cs}/o’s 0

R
0 . |

tes

..Ck J

Multiplying (17) by (K’K)'K’ from the left and by K(K'K)~! from the right
we have

i(
:KI
(

~
(o)
3
_/

IS . 0
| O ' Cr .

\ Cr

This implies
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and, therefore,

Thus we have
k
F'F= Z cE; (0520)
i=0

The remaining part of the theorem may be proved as follows.

Since ¢ is a linear mapping of R and c(R)oc(R)=a(RN) holds under (9),
d(RN) is an algebra. Moreover, since for any element A4* of ¢(R), there exists
an element 4 € N which satisfies the relation A*=FAF', ¢(R) may be generated
by symmetric matrices of order n. Thus, ¢(R) is semi-simple.

As N,=ERE;;, RN, =N;, and RRCSR; for i=1, ..., k, it is easy to see
that

c(M)a(R) S a(Ry), cRHe(R) S a(Ry)

for i=1, ..., k. The image ¢(R,)=FR;F’ of any two-sided ideal R; is also a
two-sided ideal of the image algebra ¢(R). If ¢;=0 for some i (i=1, ..., k), we
have ¢(R,)=FERE;F =0 as FE;=0. In this case, the image of the two-sided
ideal R; degenerates to a null ideal of ¢(R). If ¢;>0 for some i(Gi=1, -, k),
it can be seen that the image algebra ¢(R;) has no proper two-sided ideal

and is isomorphic to R; by the mapping % 0. The principal idempotent of
o(R,) is

—

E;=--FEF

Ci
Thus the proof is complete.

CoroLrLARY 1. A linear mapping ¢ of R defined by F is similar 1f and
only if

(18) FF= CQEO + cE (C > 0, Co_>_0)
When R contains the unit matrix I,,, we say that the semi-simple matrix

algebra R is full-rank. Under the terminology, we have the following corol-
lary to the Theorem 1.
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CoroLLARY 2. If R is full-rank, the condition (9) for ¢ to be partially
stmilar 1s reduced to

9) FF=3cEeR  (¢>0),
i=1
and the condition (18) for ¢ to be similar is reduced to

18" FF=cI, (c>0)

3. Mappings with confounding
Let R be the semi-simple mxm matrix algebra defined in the previous
section and let B be a semi-simple algebra generated by a finite number of

real symmetric matrices of order n. Assume that B is not full-rank and its
principal idempotent is £,.

Let F be an n x m real matrix and consider a mapping ¢ defined by F, i.e.,
(19 0: ROR*=FRF = {4*: A*=FAF, A€ R}

DerintTioN 2. Linear mapping ¢ of R is said to be

(i) partially confounded with B, if

(20) 7: RoN=U,— E)R*T,— Ey)
={4d: A=U,— E))FAF' (I, — E;), A€ R}

is a proper partially similar mapping of R and
ER*E, =0,
(ii) orthogonal to B, if
i: Ro>-N=U,— E)R*U,— Ey)
is a proper partially similar mapping of R and
ER*E, =0,
and

(iii) confounded with B, if
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E bER*E b= ?R*

The following theorem is an immediate consequence of the definition
and Theorem 1.

Tureorem 2. The necessary and sufficient conditions for

(1) o s partially confounded with B, are

@1) F@,—E)F= 3ok
i=o

(¢i=>0 and ¢; > 0 for some i+0)
and

EJFEF0

(ii) o 1s orthogonal to B, are

1) F,— E)F=3¢E
i=o
(ci>>0 and c; >0 for some i +0)
and
EbFE = 0

and

(iii) o is confounded with B, is
217 (I,—E)FE=0

Proor. Since ER*E,=E,FRFE,=0 or 0 if and only if E,FEFE,=0
or #+0, and if and only if E,FE=0 or 0, (i) and (ii) follow immediately
from Theorem 1. If ER*E,=R* it follows (I,—E,)FEF (I,—E;)=0. Then,
(I,—E,)FE=0. Conversely, if (I,—E,)FE=0, E,R*E ,= E,FEREF' E,=FRF
=R*,
4. Orthogonal compositions

Let 2, and A, be semi-simple matrix algebras of order » and v, respec-
tively. Assume that an nxu real matrix F, and an nxv real matrix F,
define respectively a partially similar mapping of %, and that of 2,. Assume,
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further, two image matrix algebras A¥=0,(;) and A¥=0,;) have a two-
sided ideal % in common.

DeriniTion 8. If two difference algebras %+ —% and A¥ —B are mutually
orthogonal, we say ¥ is orthogonal to F modulo B and vice versa. We say

that R=AFYA¥, the smallest algebra containing AF and AF, is the algebra
composed by the orthogonal composition of Ay and Ay modulo B.

In order to express more concretely, assume that the decompositions of
A, and U, to their minimum two-sided ideals be

(22) %[1 = QI11 @2[12 @ : ’@9/[110
(23) %Iz :%[21@?122@“'@%{21,

and the corresponding decompositions of the principal idempotents be

(24) Ei=E +Ey,+...+ Ey,

(25) E, =FEy + By + .-+ Eyy,

and let El():Iu—El, and Ez():L,—‘Ez.

Assume that
(26) FiF, = cioEy + }SjcuEu, €10>>0,¢;,>0 for i=1,...,s<k
=1

t
(27) FéFz = CzoEzo + ZCZjEZj 62020, Coj > 0 fOI' ]: 1, ceey lgl
i=1

and
(28) 01 . %1—>2I* :Fl?f[lFi —_—0‘1(2[1)
(29) Oy . 912—)91;(:172%2}75:0'2(%[2)

Since ¢, and g, are partially similar mappings of 2; and 2[,, the decomposi-
tions of ¥ and AF to their minimum two-sided ideals are

(30) WA =0,Q) =01 ) D01 Rl) B--- Do (Ass)

31) AT =0, QAz) = 02 Aa) D2 Ua2) P P72 (Usr)
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respectively. The corresponding decompositions of the idempotents are
(32) Ei=E +Eu+. .. +Ei
(33) Ey=FEy+Espy+ .. + Ex

where E1i=~—(—:1—F1E1,'F{ and Ezj=—c—1—F2Eszé for i‘—‘l, sy S and j=1,~-~,t.
17 27

If A¥ and 2AF have the same two-sided ideal B, the uniqueness of the
decomposition shows that it can be expressed, without loss of generality, as

(34) B=0)D-- - Do Ayy)
=0, ) D--- P2 Azyp) 0<p<min (s, ¢)

The principal idempotent of the ideal is,

- p 1

(35) Eb= glEli = §=_]1 Cli FlEliF]l_
b » 1

=>1k=2>] C,FzEZiFé
i=1 i=1 02

Let E\=E\+..-+E, and Ey=UFE,+..-+ E,;,, then we have the following
theorem.

TuroreM 3. Let 0, and ¢, defined by (28) and (29) be the partially similar
mappings of A, and As, respectively, and assume that the image algebras AF
and A of W, and A, have a common two-sided ideal B defined by (34). The
image algebras AT and AF are mutually orthogonal modulo B and AFYAF is an
algebra composed by the orthogonal composition of A and Ay if and only if

(36) (El - Elb)Fi Fz (Ez - Ez[,) - O

If A¥ and AF have no common two-sided ideal, i.e., B is a null algebra, the
condition may be simplified as

(36") EFiF:E, =0

and, moreover, if both A, and A, are full-rank matrixz algebras, the condition
may be simplified further as

(36") FiF,=0
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When the condition (36) holds, the direct decomposition of R=UFYAF into
minimum two-sided ideals is

37) R=0Q)D - D01 Qy)
+01Qip ) D Do)
+ 02 zp ) D D o2 Qar),

and the corresponding decomposition of the principal idempotent of R is

(38) Er=E+. 4+ E,+Epa+  +E+Epa+. +Ey
W L SR g
or =2, Fibu 1+,‘=%'+1 oz, Febasts
Proor. If
(39) QF—B)AF—B)=QWF—B WA —B)=0 mod B
it follows
(40) ( = iFEF/)( 3 L RE ‘F’>=0
it Cii 14147 153 Ca; 24251 2

Multiplying (40) by F; from the left and by F, from the right, we have,
s t
(41) ( >3 EW)FiF( > E)=0,
i=p+l i=p+1
or
(E1 - E1b>F{F2 (Ez - EZb) =0

Conversely, if (36) holds, then (41) follows. Multiplying (41) by E,; from the
left and by E,; from the right, we have

(42) E\FiFE,; =0
for any i=p+1,...,s and j=p+1,...,t. Thus we have

(43) —l‘FlEliFi'LFzEszé - 0
Cii C2j

for any i=p+1,...,s and j=p+1,...,z. This implies (40) and, therefore,
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(39).
The rest of the theorem is obvious and the proof is omitted.

5. Specific features of the relationship algebras

We shall define, after A. T. James [5], a basic relationship and a basic
relationship matrix among a set of objects.

Consider a set of objects and assume a basic relationship R between
objects as a set of ordered pairs (i, j) of them. If the ordered pair (7, j) of
objects belongs to R, we say that ; and j are in the relation R. A basic
relationship R among a set of n objects can be expressed as an nxn basic
relationship matrixz of 0’s and 1’s:

1 if i is related to j by the relationship R,
44)  R=[rjll, = {

0 otherwise.

In this paper we shall assume further, as James has done, that each of
the basic relationships is symmetrical for any pair of objects (;, j). Thus all
of the basic relationship matrices are assumed to be symmetric matrices of
0’s and 1’s.

Under the operations of matrix multiplication, matrix addition and scalar
multiplication, a family of basic relationship matrices generates a semi-
simple matrix algebra, which we call the relationship algebra defined among
a set of the objects.

If a basic relationship R among a set of » objects belongs to a family of
basic relationships, it is natural to assume that the family contains another
relationship R°, the negation of R, too. The negation of R can be expressed
by the matrix of 0’s and 1’s, as

(45) R=CG-—R

where G is an »xn matrix, all elements of which are unity. Hence, we may
naturally assume that a family of basic relationship matrices as well as a
relationship algebra contain the universal relationship matrix G.

Another special basic relationship, which James has assumed to be
included in a family of basic relationships is the identity relationship of
each object itself. The assumption of the existence of identity relationship
implies that the differentiation from one object to another in the set is
always possible. The assumption, however, seems to be too restrictive and
we shall assume that the family of basic relationship matrices as well as the
relationship algebra contain not necessarily the unit matrix.
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In this paper, the symbols G and I are used exclusively for the universal
relationship matrix and the identity relationship matrix, respectively. An
algebra generated by the linear closure of a set of matrices 4, B, ..., M, is
denoted by [4, B, ..., M ].

Although a relationship algebra always contains [G] as its subalgebra,
it contains not always [ G] as its two-sided ideal. Those algebras defined for
the association schemes and the plot relationship algebras of the standard
experimental designs eventually have [ G] as their one-dimensional two-sided
ideal. In this connection, we have the following theorem.

Tueorem 4. A relationship algebra contains [G] as its two-sided ideal if
and only if row (or colummn) sums of each basic relationship matrix are
constant. In other words, for each basic relationship R, the number of objects
related by R to a fixed object is independent of the object.

Proof of the theorem is easy and will be ommited.

An algebra generated by G only, i.e., [G], is the most trivial algebra
defined among a set of objects; the only basic relationship defined among them
is that they belong to the same set of objects. An algebra generated by I,
and G,, i.e., [I,, G, | is the most important primitive relationship algebra
defined among a set of m objects, say ry, ..., t». This can uniquely be decom-
posed into direct sum of two-sided ideals as

(46) Ly Go) = (GBI — G

The corresponding decomposition of the principal idempotent into the sum
of component principal idempotents is

1 1
(47 In="Gn+ (1,,, — 70,,,)

The algebra determines uniquely the decomposition of sum of squares as

, 1, , 1
(48) T mz':?‘t'cm‘z‘—i-?(]m——’;@m)f
or
(49) St =mE+ 3 (o — B

_ 1
where 7/'=(ry, 7y, .-, ) and T=—-2i1:
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Thus we are interested in a relationship algebra containing [G] as its
two-sided ideals. The (partially) similar mapping of such an algebra which
maps [ G ] to [G], and the orthogonal composition modulo [G] of two or more
algebras of such a type are of interest.

6. G-preserving mappings and G-orthogonal compositions

In this section we shall deal with some special types of partially similar
mappings treated in section 2. A special type of orthogonal compositions
treated in section 4 will also be discussed.

Let R be a relationship algebra defined over a set of m objects, and F be
an n X m real matrix which defines a partially similar mapping ¢ of . Assume,
further, N has [G, | as its two-sided ideal.

Derinrrion 4. A partially similar mapping ¢ of R defined by F is said
to be

(i) G-preserving, if the relation

(50) 7([6n]) =L6]

holds, where [ G, ] is an ideal of the image algebra R*=c(N), and

(i) G-eliminating, if the relation
(51) 5 ([6,7) =0

holds.
In connection with the definition, we have the following theorem.

THEOREM 5.

(i) If and only if

(52) nFG,, = mG,F50

holds, a (partially) similar mapping ¢ defined by F is G-preserving. The
condition (52) may be interpreted as that each row sum as well as the column
sum of the elements of F is constant.

(i) If and only if

(53) FG,=0

holds, a partially similar mapping ¢ defined by F is G-eliminating. The
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condition (B3) may be interpreted as that each row sum of the elements of F
18 gero.

Proor.

(i) If o is G-preserving (partially) similar, there exists a positive
constant g, such as,

1 v 2_, 1 /__i
(54) ( g—mFG,,,F) = o FOaF' =G,

Multiplying by mnF from the right, we obtain
(85) nFG,, = mG,F(30)

In this case, if we denote the element of F in the i-th row and the k-th column

as fij, and put f;.= ﬁlf;j, fi= }nfif,-j, we have
i= i=

fie fieo f1. foafoe -

o o fo) \fa fr e

m
m

)

LTV

Thus we have fi.=f,.=...=f,. (=a, say) and f.lzf.zz..‘zf.m(:b:%a, say).

Conversely, if (55) holds for a (partially) similar mapping ¢, we have

1

m

2
, 1
(57) FG,F = % Gi=ab-~ -G,  (ab>0)

and, therefore,
(ii) If ¢ is G-eliminating partially similar, we have

(58) S

The condition is equivalent to

The converse is obvious.
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Derintrion 5. When a (partially) similar mapping ¢ of a relationship
algebra R is G-preserving, the image algebra R*=¢(N) is said to be the
relationship algebra composed by G-preserving (partially) similar mapping of
R. The relationship algebra ¢(R)V[ I, G,.]=0d(R)"[I,] is said to be the full-
rank relationship algebra composed by G-preserving (partially) similar map-
ping of R.

Let R, and R, be relationship algebras defined respectively over the set
of s and ¢ objects. Assume that both R; and R, are full-rank and they have
[G.] and [G,] as their two-sided ideals, respectively. Assume that a »xs
matrix @, and a vx: matrix @, define G-preserving (partially) similar
mapping ¢; and ¢, of R; and R,, respectively.

DEerFintTiON 6. When ¢, and 7, give an orthogonal composition of R; and
R, modulo [G,], we say ¢, and 7, are G-orthogonal. The algebra d,(R,)V02(NR2)
is said to be the relationship algebra composed by G-orthogonal composition of
R, and R,. The algebra o, (R)Vo,(R)V[ L, G, =0, (R)Y0,(R,)V[ I, ] is said to
be the full-rank relationship algebra composed by G-orthogonal composition of
?Rl and ?Rz.

The following theorem is an immediate consequence of Theorems 3 and

Tueorem 6. Two G-preserving (partially) similar mappings 6, and ¢, of
R, and R, defined respectively by @, and 0, give a G-orthogonal composition of
R, and R, if and only if

(59) 00, =Gy, czz—tclcz,

where G.; 18 an s x t matrix whose elements are all unity. c; and c, are the row
sums of the elements of @, and @,, respectively.

7. G-preserving composition of parameter algebras

Consider a vector of s parameters z/=(ry, 71, ---, ) and assume that
among those parameters a relationship algebra 2 has been composed. Assume,
further, 2 is full-rank and has [G,] as its one dimensional two-sided ideals.

Let the direct decomposition of U to its minimum two-sided ideals be
(60) ?IZQTOEB?/II@"'@?Ik

where ;=[G,]. Let the corresponding decomposition of the unit matrix to
mutually orthogonal principal idempotents of the ideals be
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(61) I,=Ey+E +... +E

where E,=s"'G..

As the decomposition (61) is unique apart from the order of the com-
ponent idempotents, the relationship algebra determines uniquely the decom-
position of parameter sum of squares into its mutually orthogonal components,
ie.,

(62) i‘, ti=7lr=7Er+7cErc+...+7Er7
=1

Let @ be a vxs real matrix and assume that @ defines a G-preserving
(partially) similar mapping ¢ of 2[,

(63) 6 Ud A A* = OAT,

satisfying

(64) O0=S16E  (co>0,¢>0 for i=1, ..,k
i=0

Since the matrix ¢ is a linear mapping from V; to V,, = is mapped as
(65) 0: rvot*=07

Dermnirion 7. A v-dimensional parameter vector u' = (4, 4, .., &,) is
said to be a parameter vector composed of T by G-preserving composition if it
consists of the two components: a component z*, the image of z; and a
component 8 which may or may not be 0 and is orthogonal to z* for any =,
ie.,

(66) u=07+0

where @0 =0.

Among the v parameters, it is natural to assume that there exists the
primitive relationship algebra [ I, G,]. Thus, the relationship algebra among
the » parameters is composed of UA*, the image of 2, and [[,, G, ], i.e.,

R= %*U[Iva G,]= ?I*U':Iv:l

R is the full-rank relationship algebra composed of 2 by G-preserving com-
position.
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We may assume, without loss of generality, for (64) that ¢; >0 for i=
1,..,m and ¢;=0 for j=m+1, ..., k(1 <m<k) except a trivial case of all
¢;=0 for i=1, ..., k. In this case, Theorem 1 shows that R is decomposed
into its minimum two-sided ideals as

R=WY[L]=AWDUAT D - - DATDAY
and the corresponding decomposition of the principal idempotent is

67) L= —C%» OE,0 + Cil OE0 + . + - OF,0 + Ef

where

Fer—31 orw, -Clo—diEo(D’:—zl;—Gu

Ci

1=

o

The unique decomposition of parameter sum of squares for g4 into
mutually orthogonal components is, after some calculation,

(68) > 3= w L
@=1
=cyv' Byt + at’Eit + ...+ cut’EnT + 070

If, in particular, @ defines a similar mapping of 2,
(69) S = p = (Bt + .+ TET) + 08
a=1

It can be seen that a (partially) similar mapping of a parameter relation-
ship algebra will give a sort of weighted faithful mapping of each original
parameter sum of squares into sum of squares of the composed parameters.

A simple example of G-preserving composition is given below.

Example 1. [, G]— Group divisible assoctation algebra

Suppose that a primitive relationship algebra

_ _rt 1.9
(70) U=l Gl =[5y G| B[ In— 5, 6]
is defined over a parameter vector a’'=(ay, - -, an).

The algebra determines a unique decomposition of the unit matrix;
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L= L6, + (1,,,—%@,,,)

m

and corresponding decomposition of the parameter sum of squares,

’ ___1_ ! !/ _l_
(71) alx=— aG,a+ a (Im— - G,,,)a
or Siat=mat+ 3 (@i — @
i=1 i=1
where a= 13 a;
m ;=

i=1

Consider a linear mapping ¢ of ¥ defined by
(72) 0=I,j. (G,=1,1-.,1)
Since 0j,=jmum @ jmn=nj» and @0=nl, hold, ¢ is G-preserving similar.

It can be verified that the composed full-rank algebra ¢(Q)V[I,,] is a
group divisible association algebra and is decomposed as

(73) 0O L] = 0]~ 6a] 0 BO[1,— G, 0 D,

m

The corresponding decomposition of the unit matrix is

@) =2 6a®Cut (I = o Ca) DGt 1n® (1 —=-6,)

Let the composed parameter vector be
z = 0a + 0, 06=0,
then we have, after (68),

(75) Nitt =@ + 03 (o — @ + 08
i=1 i=1

If we denote {((—1)n+j}-th element of ¢ in a usual way as «;;, the restriction
for & may be expressed as

(76) S10;,=0  forall i.
i=1
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Each component of the sum of squares of working parameters (1, -5 Tmn)
corresponds respectively to the sum of squares for general mean « of the
primitive parameters, to the sum of squares of «; about the mean, and to the
residual sum of squares. Those components are sums of squares for general
mean, for between groups and for within groups, respectively.

Repeated application of such G-preserving similar compositions will give
a series of nested type association algebras. Another series of G-preserving
partially similar compositions will give a series of triangular type association
algebras. Details of those and their applications will be seen in the forth-
comming paper.

8. G-orthogonal composition of parameter algebras

Consider two vectors of s and z parameters a’'= (a4, ---, &) and B’ =
(B1, -+, B:) and assume that two relationship algebras 20, and 2, have been
composed among the sets of parameters, respectively. Assume further, both
A; and A, are full-rank and have [G,] and [G;] as their two-sided ideals,
respectively.

Let the direct decompositions of those algebras be

A = %10 @2[11 EB' "@alb 9110 = [Gs]

W
%22%20@%{21 @---@%{21, %202 [Gt]

and the corresponding decompositions of the unit matrices be

1

S

(78) I;=FEy+E;+---+ En, Ey,= G,

-

L =Ey+ Ey + ...+ Ey, Ey=-—""-G;

o~

respectively.

Those relationship algebras determine uniquely the decompositions of
parameter sums of squares into mutually orthogonal components, i.e.,

)] S a?=adla=aEyw+aEa+ ...+ adEa
1

z 8= B'IB= BEnB + BEnB+. .+ BEyB

Let avxs matrix @, and a v x ¢ matrix @, define respectively G-preserving
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(partially) similar mappings ¢; and g, of 2; and 2[,, and assume that ¢, and
0, give G-orthogonal composition of ; and 2A,. We can assume, without
loss of generality, that

(80) 00, = S ey Ey, en>0 for i=0,1, .., p<k
i=o

q
wémZZZCZJ'EZJ') 62f>0 fOI' ]:0> 1> ) (Jﬁla
7i=0
D10; = cGyyy
The parameter vectors & and 8 are mapped respectively by @, and @, as,
(81) 0,: a—-a*=0«a
0,: B—>B*=0,8
DeriniTioN 8. A v-dimensional parameter vector u' = (4, U, ---, #,) is
said to be a parameter vector composed of a and B by G-orthogonal composi-
tion if it consists of the three components: a component a*, the image of «;
a component B* the image of 8; and a component & which may or may not
be 0 and is orthogonal to both a* and 8* for any @ and B, i.e.,

(82) u=0a+0,8+798

where #;0=0 and 0;6=0.

The full-rank relationship algebra 9 composed of 2; and 2, by ¢; and ¢
is decomposed into direct sum of minimum two-sided ideals as

(83) A = 7, Q) Yo, ) [ 1,]
=[G, )P i) Do) P - Po1(Asp)
Do) D Az2) D D72 (Az,) DA

and the corresponding decomposition of the unit matrix is

(84) Iv:Eo+E11+~--+E~1p+E21+-~+E2q+Ee

where E,= %~ G,
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- 1
Ey=-_-0.E0, =12 .,p
. 1 , .
Ez;':E@zEz;@z, ]=1, 2, e q
- 1 r. 1 , 08 1 ,
EQZI,,—gG,,— Z lel,-@l— Z_szijz
v i=1 C1i j=1 C2j

The corresponding decomposition of the sum of squares for the composed
parameters is

2 =ulp= LEp+ pE u+ . + Wk
+ U Enp+ .+ WEp+ WE.p

and may be expressed after some calculations as

(85) T ui= Lepu+cnad’Ena+ ..+ e Eppa

+ B EnB + -+ 2,8’ Es B + 00

This shows an important implication of the orthogonal composition.
A simple example of G-orthogonal composition is given below.

Example 2. [, G, [ I}, G ]— Two-way factorial association algebra.

Suppose two primitive algebras

1

(86) W=[1, 6=~ 6@~ 1 ¢.]

A = []t, Gt] = ["1-‘ Gt] @ [It - % Gt]

are defined over two vectors of parameters &' =(«y, .-, ;) and 8'=(By, ---, Be),
respectively.

Those algebras determine the decompositions of the sums of squares for
parameters:

1
a'la= % aGa+ a (Is - Gs>a

B/It = %_B/Gtﬁ + B/<It - ‘1-—Gt>ﬁ
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or

@87 Sa?=sa’ + > (i — @),
i=1 i=1
! A2 ! A\2

1312:"'3 + p 1(B/_B)>

i=1 i=1

where c‘z:L s‘a,, B":‘l t"B]-.

S i=1 t j=1

Consider a linear mapping ¢, of %, and a linear mapping ¢, of 2, defined
respectively by

(88) m1:Is®jh mzzjs®lt~

Since @1]'3:]'5;, @{js;ths, mzjt :jst, 05]‘5;:8].; and w{QIZtIS, @é@gZSI,, 0]’_@2
=G,y hold, both ¢, and ¢, are similar and give a G-orthogonal composition of
A; and A;. The composed full-rank relationship algebra o; ()Vo, ()Y I ]
may be called the two-way factorial association algebra. The generators of
the algebra are
(89) Is®lts (Gs - Is)®1h Is®(Gt - It) and (Gs - Is)®(Gt - It)

The decomposition of the composed algebra is

(90) 0 @)1 = 0,[ 6] 01 0 [ 1.~ - ¢.] 0

@mz[lt—%c,]m;@ile

The corresponding decomposition of the unit matrix is

1 1 1 1
OV L=y 686+ (L= €)@6+ - 6.8(L——6)

+ (Is—%0s>®(lx —”%‘Gt>

Let the composed parameter vector be
(92) T =0, + &8 + 0, 00=0, 0,0=0,

then we have, after some calculation,
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(93) >

k=1

i~

I

s t
ti=st(@+ B’ + D (i— @)’ +s> (B, — B’ + 078
i=1 ji=1
If we denote {(G—1):+ j}-th element of & in a traditional way as 7;;, the
restrictions for 8 may be expressed as

(94) 00=0 < >7,;=0 forany i
J

0,0=0 & >7,;=0 forany j.

Each component of the sum of squares of working parameters =’ = (zy,
..., Tsy) corresponds respectively to the sum of squares for pooled mean @+ g,
the sum of squares of «; about the mean @, the sum of squares of 3; about
the mean g, and the sum of squares for the residuals. Statistical meanings
of those components are obvious.

The procedure may be extended to the general p-way factorial associa-
tion algebra. Another example of G-orthogonal compositions is a series of
the Graeco-Latin square compositions. Details will be seen in the forth-
comming paper. It should also be noted that L, type algebra, cubic type
algebra, etc.,, may be obtained as the subalgebras of special type factorial
association algebras, respectively.

9. Composition of relationship algebras for experimental designs

Suppose that an experimenter has composed a relationship algebra A
among a set of » treatment parameters =z’ = (¢, ..., v,) of one or more
primitive parameter relationship algebras. He naturally wishes to know
something about those primitive relationships through an exprimentation.
Assume that 2 is full-rank and has [ G, ] as its two-sided ideal. Let the direct
decomposition 2 be

(95) gl[-_—%[o@%[l@m@%{k, 2[0=|:Gu]
and the corresponding decomposition of the unit matrix be

1
(96) I,=E+ E +. ...+ E, EO——_TGU

As was seen in section 7 and 8, the unique decomposition of the para-
meter sum of squares is

97 vlr=7vETr+ ... +7E"
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and some of these component parameter sums of squares can be reduced to
the sums of squares among the sets of primitive parameters.

Suppose that the experimenter wishes to design an experiment which
will be conducted on n experimental units or plots.

(a) The case without nuisance parameter algebra.

Suppose that no nuisance parameter algebra except the trivial algebra
[G.] is defined among the n plots, and suppose that a linear mapping ¢ of A
defined by & (a linear mapping from the parameter vector space V, to the
observation vector space V,) is G-preserving (partially) similar, i.e.,

(98) O: rvo*¥=0r
6: AU->UY*=0QA) = oA’

O0=ciby+cEy+.--+cE;, (¢;>0,i=0,1, ...,5, 1 <s<k)
Suppose further, the observation vector
(99) x/ - (xl, X2y + vy xn)

is normally distributed with mean &(x) =@z and covariance matrix V(x)=
6°I,.

The relationship algebra composed for the design is

(100) R=0Q) Ly, Gn]=0QO[ L]

R may be decomposed uniquely into direct sum of minimum two-sided ideals
as

(101) R=0@) DD - Do) DR,
The corresponding decomposition of the unit matrix is

(102) ot E 4 E,

&~
I
S
+
5
..+_

where

and
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Jm

BE,=1,—SE.

i=0
The unique decomposition of the sum of squares is
(103) xx=xEx+.. +xEx+xEx

and the analysis of variance is

(104) x <In- LG,,)x: ﬁ (%; — 7_6)2
n i=1
=x'Ex+.. . +xFEx+xE,x
The distributions of the component sums of squares are independent of
each other and any one of them divided by 6% except the last one is distributed

with non-central chi-square (X'?) distribution. The non-centrality parameters
of those are

(105) A= Eé—zéa(x/)Ei &(x)= '%f ct'Eir for i=1,2,...,s.

The last component divided by 62, %x’E}x, is distributed with X2-distribu-

tion, as its non-centrality parameter 4, is
1 N
(106) e = Wé”(x YE,&(x)=0

The degrees of freedom of those components are r(E;) for i=1, ...,s, and
rE)y=n—1— ir(Ei), respectively.
i=1
Thus we have the following analysis of variance table.

Table 1. Analysis of Variance (without nuisance parameters)

Source of variation Sum of squares Degrees of freedom  |Non-centrality parameter
Component of 1 xFx r (&) c;t’Ei7/(26%)
treatment 2 x'Ex r(Es) | cyt’Eyr/(20%)
sum of squares : : :

s xEx r(Ey) ( ¢t EsT/(20%)
Error x’Ex n—1— i’: r(E;) 0

Total o (1,. b G,,) x ; n—1 |
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The simplest design may be composed by r(>1) times replications of all
working treatments. In this case, as 0=1,j, and 0'@=rl,, ¢ is similar. A
factorial experiment with replication is an example of the design. The
treatment relationship algebra of the design is a factorial association algebra.

It should be added that when ¢ in (82) of section 8 is assumed to be
normally distributed with mean vector 0 and covariance matrix 6%I;, we have
a design for two-way classification.

(b) The case with nuisance parameter algebra.

Suppose that there has been composed a nuisance parameter relationship
algebra B among a set of n plots. B has been composed by mappings and
compositions of several sets of nuisance parameters among which some
primitive nuisance algebras are defined. Suppose that 8 is not full-rank and
the principal idempotent of B is £,. Suppose, further, G, € B.

Suppose that there exists an nxv matrix @ which defines a partially
confounded mapping of 2[, i.e., @ satisfies,

(107) O I, — £)0 = ;icE (;>0fori=1, ..., s<k)
Eo+0
The full-rank relationship algebra induced among the plots is
(108) R =A*IBY[1,], A* = oA’
The component algebra of 20* orthogonal to B and defined by
(109) =T, — E)U* I, — Ey) = (I, — E) 00’ (I, — Ey)

is the image of 2 of a partially similar mapping ¢ defined by nxv matrix
F=(I,—E)0, because FFF=0'(I,—E)®. Thus 9 may be decomposed as

(110) A= FAF PFAF B...PFAF
and the corresponding decomposition of the idempotent is

1

(&1

(111) E= FEF' + ...+ %*FESF’

The unique decomposition of the principal idempotent I,— £, of V[ I,—E,] is

~ 1 =
112) I”—E,,:%IFEIF’—FW—}- o FEF + E,
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where

Bo=I,—E— 3 ——clf FEF'.

i=1
Suppose further the observation vector
113) x = (%1, -, %n)
is normally distributed with mean
(114) E(x)=0r+ 8
and covariance matrix
(115) V(x) = 6%,

where B is the nuisance parameter vector and subjects to the restriction
EB= 49 .
The analysis of variance corresponding to the decomposition (112) is

1 xFEF x + x'E.x

Cs

(116) (I, — Ep)x= ~61Tx’FE1F’x +--+

The distributions of the component sums of squares are independent of
each other and any one of them divided by 6., except the last one, is distri-
buted with non-central chi-square (X'?) distribution. The non-centrality
parameters of them are

1 1
arn i= 507 Ti(r’ﬁ/ + B)FEF (0t + B)
= *ééT C,"I."E,"l.'

for i=1,2, ..., s. The last component divided by 6* is distributed with X*-
distribution, as its non-centrality parameter 1, is

(118) 2= ?},2— &(x)E,E(x)=0

The degrees of freedom of those components are r(E;) for i=1, ..., s and
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r(E)=n—r(E;)— ir(Ei), respectively.
=1

The sum of squares «'E,x/6° is also distributed with X’? distribution, the
non-centrality parameter i1z of which is

lo= gz (20 + B)E,(0x + )

1
= 5p2 (¢'H'Hr + 27'HB + B'B)

where H=E,0.
The analysis of variance is given in Table 2.

Table 2. Analysis of Variance (with nuisance parameters)

Source of Variation Sum of squares Degrees of freedom  |Non-centrality parameter
Component of 1 x'FE\F'x/c; r(E) v’ E v /(20%)
treatment sum 2 x'FE,F'x/c, r(Ey) ¢, Eyr/(20%)
of squares : : : :

s x’FEJF'x/cg r(E) et Egr/(20%)
Error xEx | n—r(Ey)— i‘, r(Ey) 0
| i=1
Sub-total x (I, — Epx n—r(Ep)

Nuisance parameters s 2 {z’'H’Hr + 2-"H'8

ignoring treatments x by r(E) + B’B}/(26%)
Total x'x n

The way to compose an experimental design so as to preserve the
similarity or partial similarity of the plot relationship algebra to the treat-
ment relationship algebra after the elimination of the nuisance parameters,
is to seek for an incidence matrix @, satisfying (107), from treatment para-
meter space V, to the plot space V,.

The simplest design of this type is an RBD. The most typical design of
this type is a PBIBD. In a PBIBD, ¥ is a similar image of [ I, G; | defined
among b block parameters. A PBIBD has a treatment association algebra
defined by the treatment-block incidence matrix. As far as the composed
treatment relationship algebra contains the association algebra of the PBIBD
as its subalgebra, the treatment-plot incidence matrix satisfies (107) and the
(partial) similarity of the treatment relationships may be preserved. As the
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association algebra of a BIBD is [, G,], all full-rank relationship algebras
for treatments containing an ideal [G,] have [I,, G, ] as their subalgebra. In
this sense, a BIBD is the best in such incomplete block designs.

The nuisance parameter algebra of a standard design for two-way
elimination of heterogeneity, such as an LSD, a YSD, etc., is a factorial type
association with no interactions.

There may exist many possibilities of composing new designs for the
elimination of nuisance parameters.
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