. Scr. HirosaiMA Univ. SEr. A-I
28 (1964), 133-158

Derivations of Lie Algebras

Shigeaki T6c6
(Received September 20, 1964)

Introduction

Let L be a Lie algebra over a field of characteristic 0 and let D(L) be the
Lie algebra of all derivations of L. The problems concerning the structure
of D(L) and its relations with the structure of L have been investigated by
several authors in [5], [7],[8],[9],[117],[14],[167],[17] ete. In a recent
paper [10] G. Leger has studied the structural properties of Lie algebras L
such that D(L)=1I(L), where I(L) is the set of all inner derivations of L, and
proved the following results:

(1) If the center of L is not (0) and if D(L)=1I(L), then L is not solvable
and the radical of L is nilpotent.

(2) If the center of L is not (0) and if the nilpotent radical is quasi-
cyclic, then D(L)==1(L).

Here a nilpotent Lie algebra N is called quasi-cyclic provided N has a sub-
space U such that N=U+ [N, N] with UN[N, N]=(0) and such that N is
the direct sum of the subspaces U’ where U'=U and U'=[U, U'~'] for i>>2.

We denote by C(L) the set of all central derivations of L, that is, the set
of all derivations of L mapping L into the center. It is the purpose of this
paper to investigate the properties of Lie algebras L such that C(L)CI(L),
Lie algebras L such that I(L) CC(L) and Lie algebras L such that D(L)=1I(L)+
C(L), and to generalize Leger’s results above.

There actually exist the Lie algebras satisfying each of these three
conditions as shown in Remarks 1, 2 and 3.

In Section 2 we shall give the forms of the derivations which are at the
same time inner and central. In Section 3 we shall study the Lie algebras
whose central derivations are all inner. We shall show that if the center Z
of L is not (0) and if C(L)CI(L)*, the algebraic hull of I(L), then for the
radical R of L ad;R contains no non-zero semisimple elements (Theorem 1),
and that if Z+(0) and if C(L)CI(L) and I(L) is splittable, then the radical R
is nilpotent (Theorem 2). The essential part of (1) above is to assert the
nilpotency of the radical and we shall show that this is a special case of our
results above (Corollary to Theorem 2 and Remark 1).

In Section 4 we shall show that, when Z=~(0), I(L)=C(L) if and only if
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L*=(0), L?’=Z and dim Z=1 (Theorem 3).

In Section 5 we shall study the Lie algebras L such that D(L)=I(L)+
C(L), that is, which have as few derivations as possible. We shall prove that
if D(L)=1I(L)+C(L), then the radical R is either non-quasi-cyclic or an abelian
direct summand of L (Theorem 5). Taking account of (1), (2) is equivalent
to the statement that if D(L)=I(L) then R is not quasi-cyclic, and this is a
special case of our result except when R is an abelian direct summand
(Corollary to Theorem 5 and Remark 3).

In Section 6 we shall study the Lie algebras L whose radicals R satisfy
the conditions considered in Sections 2—5. We can not generally expect
that L satisfies the corresponding conditions. We shall show that if C(R)C
I(R) (resp. C(R) CI(R)*) then C(L)CI(L) (resp. C(L)CI(L)*) (Theorem 6). We
shall also prove that D(R)=I(R)+C(R) if and only if L is the direct sum of
an ideal L;, which is the direct sum of a semisimple ideal, a characteristically
solvable ideal R; with D(R;)=I(R;)+C(R,) and a central ideal, and of an ideal
L;, whose radical is abelian, whose center is (0) and such that L,=[L,, Ls ],
and that in this case D(L,)=I1(L)+C(L,) and D(L;)==1(Ly)+C(L;) (Theorem
7.

1. Preliminaries

Let L be a Lie algebra over a field K of characteristic 0 and let D(L) be
the derivation algebra of L, that is, the Lie algebra of all derivations of L.
For any element x of L, the adjoint mapping adx:y—[x, y] is a derivation
of L which is called inner. We denote by I(L) the ideal of all inner deriva-
tions of L.

A derivation of L is called central provided that it maps L into the center
of L. We denote by C(L) the set of all central derivations of L. Then an
endomorphism of L is a central derivation if and only if it maps L into the
center of L and [ L, L] into (0). C(L) is a subalgebra of D(L).

D(L) necessarily contains I(L) and C(L). Therefore when D(L)=I(L)+
C(L), we may say that L has as few derivations as possible.

Let L be the direct sum of the ideals L;(i=1,2, ..., ») and let D(L;, L;)
be the set of all derivations of L; into L;, Then D(L;, L;)=D(L;). We denote
by p: the projection of L onto L; and identify an element D;; of D(L;, L;) with
an element D;;p; of D(L). Thus we have D(L;, L;) CD(L). It is easy to see
the following fact (177, p. 202):

(1) If L is the direct sum of the ideals L;(i=1, 2, ..., n), then

D)= >} D(Ls, L)

1,]=
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and, for i=~j, D(L;, L;) consists of all the linear mappings of L; into L; which
map L; into the center of L; and [L;, L; ] into (0).

Let 7V be a finite dimensional vector space over K. Let gl(V) be the
algebra of all endomorphisms of 7 and let GL(V) be the group of all automor-
phisms of V. Following Chevalley ((27], p. 171), a Lie subalgebra L of gl(¥)
is called algebraic provided that L is the Lie algebra of an algebraic subgroup
of GL(V). For an element x of gl(V) let g(x) be the smallest algebraic Lie
subalgebra of gl(¥) containing x, that is, the set of all replicas of x ([2], p.
180). Then L is algebraic if and only if g(x) CL for any element x of L ([2],
p. 181). We denote by L* the algebraic hull of L, that is, the smallest
algebraic Lie subalgebra of gl(V) containing L.

It is known that the derivation algebra D(H) of any Lie algebra H is an
algebraic Lie subalgebra of gl(H) ([2], p. 179).

For an element x of gl(¥) such that [x, L]CL, the endomorphism of
L:y—[x,y] is a derivation of L, which we denote by ad;x. For a subset M
of gl(V) such that [ M, L]CL, we denote by ad M the set of all ad;x with
x in M. By the fact that the set of all elements 5 of gl(}/) such that [y, L]JCL
is an algebraic Lie algebra, we have

ad;g(x) CD(L) and ad;L* CD(L).

1(L) is ad;L which will sometimes be denoted by ad L simply.

In [157] we have shown the following facts. Let L be a Lie subalgebra
of gl(V). Then:

(2) For any element x of gl(¥) such that [x, L]CL,

ad;g(x) = g(adx)

([157, p. 303).
(8) L* is the linear space spanned by all g(x) with x in L ([157, p. 297).
By using these facts we can prove

Lemma 1. Let L be a Lie subalgebra of gl(V) and let H be a subalgebra of
L. Then

(3dLH)* = adLH*.

Proor. By (38) (ad H)* is spanned by all g(ad;») with » in H. It follows
from (2) that (ad;H)* is spanned by all ad; g(x) with x in H. By using (3)
and the linearity of ad;, we see that (ad H)* is equal to ad,H*.

We finally recall some properties of linear Lie algebras:
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(4) For a Lie subalgebra L of gl(V), the radical of L* is the algebraic
hull of the radical of L. L is algebraic if and only if the radical is algebraic

(3], p. 129).

(5) Let L be a solvable algebraic Lie subalgebra of g{(¥) and let N be
the ideal consisting of all nilpotent elements of L. Then for any maximal
abelian subalgebra 4 of semisimple elements of L,

L=A4+N, ANN=(0)

(3], p. 130).

(6) Let L be a Lie subalgebra of gl(V) with radical R. For any maximal
abelian subalgebra 4 of semisimple elements of L, there exists a maximal
semisimple subalgebra S of L such that

A=ANS+ANR

where ANS is a Cartan subalgebra of S, ANR is a maximal abelian sub-
algebra of semisimple elements of R and [ S, ANR]=(0) ([13], p. 211).

2. Derivations which are inner and central

In this section we study the derivations of a Lie algebra which are at
the same time inner and central. We shall prove

Lemma 2. Let L be a Lie algebra over K. Let R be the radical and Z be
the center of L. Then:

1) IL)NCL)=ad;Z,, where Z, is the set of all elements x of L such that
[x, L]CZ.

2) 1IL)NCL)ILY*NCL)CNR, where N 1s the ideal of all nilpotent
elements of (ad R)*. In particular, if L is a Lie subalgebra of gl(V), N=ad, N
with N the ideal of all nilpotent elements of R*.

Proor. (1): If Z=(0), then C(L)=(0) and Z,=2Z=(0). If L=[L, L], then
C(L)=(0) and

[Zy, L]=[Z2, [L, L1]=(0),

that is, Z;=Z. Therefore in these cases, I(L)NC(L)=ad;Z,=(0).
When Z-~(0) and L=~[L, L], for an element x of L ad;x is in C(L) if and
only if [, L]1CZ, that is, » is in Z;. Therefore I(L)NC(L)=ad;Z;.

(2): By Ado’s theorem, any Lie algebra over K has a faithful representa-
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tion. Hence we may assume that L is a Lie subalgebra of gl(¥).

By (4) in §1, R* is the radical of L*. Let A4 be a maximal abelian sub-
algebra of semisimple elements of R*. Then, by (56) and (6) in §1, there exists
a maximal semisimple subalgebra S of L* such that

L* =S+ R*, R*=A4+N,

SN R*=(0), ANN=(0), LS, 4]1=(0).

From the facts that [L*, L* ]=[L, L] and that S=[S, S, it follows that S is
a maximal semisimple subalgebra of L. Consequently we have L=S+R and
therefore

(L, L]=S+[L, R].

Now let D be any element of I(L)*\C(L). Since I(L)*=ad;L* by Lemma
1, we have

D=ad;(s+a+n) with sin S, ¢ in 4 and n in N.

Since D is central, D[ L, L ]=(0) and therefore
DS = (0) and D[L, R]=(0).
It follows that

(ad;s)S = —ad.(a +r)S TSN R*=(0),

whence [s5, S]=(0) and therefore s=0. Thus D=ad.(a+n).

Since the set of all elements x of gl(V) such that [x, R]C[L, R] is an
algebraic Lie subalgebra of gl(V), we have [L*, R]=[L, R]. Hence for any
element y of L*

(adry) (L, R]JC[L*, R]=[L, R].

Thus we see that [ L, R] is stable under ad;a and ad;n. Since D[L, R]=(0),
if follows that

adu, R]G = — ad[L, RITT.

It is known that ad;; z-a is semisimple with ¢ and that adr; zin is nilpotent
with n. Consequently we have ad-; z1a=0. It follows that
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(adLa)zL C (adLa’) I:La L] = [aa S+ [L) R:D = (O>

But ad;e¢ is semisimple with « and therefore ad;«=0. It follows that D=
ad;n. Thus I(L)*NC(L)Cad.N,

By Lemma 1, we see that (ad;R)*=ad;R*. Suppose that ad;x with » in
R* is nilpotent. «x is decomposed into the Jordan sum, that is, » is uniquely
expressed in such a way that

X = %5 + X, (%5 2, ] =0

where x, is semisimple and x, is nilpotent ([27], p. 71). The components x;
and x, of x are contained in g(x) ((2], p. 184) and therefore in R*. It is
evident that

ade = ades + ade,,
is the Jordan sum decomposition of ad;x. Therefore

ade = ade,, C adLN.

Hence 9t Cad;N. Since for any element » of N ad;n is nilpotent with », we
have ad;NCN, whence Nt=ad;N.

Thus the proof is complete.

As a consequence of the lemma we have

CororLLARY. Let L be a non-abelian nilpotent Lie algebra. Then I(L)N

C(IL)+#(0).

Proor. For a non-abelian nilpotent Lie algebra L, we have Z,=Z with
the set Z, defined in the lemma above. Hence the assertion of Corollary
follows from the lemma.

3. Lie algebras whose central derivations are inner

In this section we shall study the Lie algebras L such that C(L)CI(L)
and more generally the Lie algebras L such that C(L)CI(L)*.
We start with

LemmA 8. Let L be a Lee algebra whose radical is abelian. If C(L) CI(L)*,
then either the center of L is (0) or L=[L, L].

Proor. Any Lie algebra over K has a faithful representation and there-
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fore we may assume that L is a Lie subalgebra of g{(¥). Let R be the radical
of L and let S be a maximal semisimple subalgebra of L. Then, since S is
algebraic, by (4) in §1 we have

L=S+R and L* =S+ R*.

Suppose that the center Z of L is not (0) and L=~[L,L]. Since [L, L]=
S+[L, R, it follows that R=~[L, R]. Choose a subspace U of R such that

R=U+[L, R], UN[L, R]=(0).
Define a non-zero endomorphism D of L such that
DucCz and D(S+[L, R]))=(0).

Then D is a central derivation of L.
By Lemma 1 and our assumption, we have C(L)Cad;L*. Consequently

we have

D=ad;(s+r) with sin S and r in R*.

Since DS=(0), it immediately follows that s=0. Therefore D=ad;r and we
have

DU C[R*, R]=[R, R]=(0),

which contradicts our definition of D.
Therefore we see that Z=(0) or L=[L, L. Thus the proof of the lemma
is complete.

We can now prove the following

Tueorem 1. Let L be a Lie algebra over a field of characteristic 0. If the
center of L is not (0) and if C(L)CI(L)*, then the radical R of L contains no
elements x such that ad;x is semisimple and non-zero. If furthermore C(L)=~
(0), then R 1s mot abelian.

Proor. If L=[L, L], then C(L)=(0) and R=[L, R]. From the fact that
all derivations of L map R into the nilpotent radical, it follows that R is
nilpotent. For any element x of R, ad;x is nilpotent, for adzx is nilpotent
and

(ade)”L C (ade)”“lR.
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Therefore the assertion of the theorem is true in this case.

Now assume that L=~[L, L]. Since L has a faithful representation, we
may assume that L is a Lie subalgebra of gl(V). By Lemma 1 we have
I(LY* = ad,L*.

Suppose that there exists an element x of R such that ad;x is not 0 and
is semisimple. Decompose x into the Jordan sum x=x,+x,. Then x, and x,
are contained in R*. It is evident that

ad;x =ad;x, +ad;x,

is the Jordan sum decomposition of ad;x. Since ad;x is semisimple by our
supposition, it follows that ad;x,=0, which means that [x,, L]=(0). By the
fact that the set of all elements y of gl(¥) such that [(x,), y]=(0) is an
algebraic Lie subalgebra of gl(¥) containing L, we see that

[en, L* ] = (0).

Take a maximal abelian subalgebra 4 of semisimple elements of the
radical R* of L* containing x,. Then by (5) and (6) in §1, there exists a semi-
simple subalgebra S of L* such that

L* =S+ R*, R*=A4+ N,

SN R*=(0), ANN=(0), [S, A]=(0),

where N is the ideal of all nilpotent elements of R*. S is really a subalgebra
of L since [L*, L*]=[L, L] and S=[S, S]. It follows that

ad,(S+ Dx=[S+ 4, x|+ [S+ 4, x, ] = (0).

% is not contained in [L, R, since for any element y of [L, R] adry is
nilpotent. ad;(S+ A) is completely reducible and maps respectively R and
[L, R] into themselves. Therefore there exists a subspace R, of R containing
[L, R] such that

R= (.’XJ) + Rl, (x) N Rl = (0), adL (S + A)Rl C Rl.

R, is obviously a subalgebra of R.

Choosing a non-zero element z of the center Z of L, we define an endo-
morphism D of L in the following way:

Dx =z, D(S + Ry) = (0).
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From the facts that L=S+R and that [L, L]CS+R,, it follows that D is a
central derivation of L. Taking account of the assumption that C(L)CI(L)*,
by Lemma 2 we see that

D=ad;n with » in N.

Let Z be the center of L*. Then ZCZ and NNZ is stable under ad;-4.
Since ad;-A4 is completely reducible, there exists a subspace U of N such that

N=U+(NN2Z), UNn(NNZ)=(0), (adpA)U C U.
It follows that
n=u-+z with » in U and zin NN Z.
We now have on the one hand
Dx=[n,x]=[nx]€[A4, NINZCNNZ
and on the other hand
Dx=[n, s, ]=[u+z %= u, v, ] € U.

Consequently Dx=0, which contradicts the definition of D.

Thus we conclude that R contains no elements x such that ad;x is not 0
and is semisimple.

To prove the second assertion of the theorem, assume that the center
Z==(0) and C(L)CI(L)*. If R is abelian, then by Lemma 3 we see that L=
[L,L]. Therefore C(L)=(0).

The proof of the theorem is complete.

A Lie subalgebra L of gl(V) is called splittable provided that for any
element x of L the semisimple component x, is always contained in L [12].
Then any algebraic Lie subalgebra of gl(V) is splittable ([137], p. 184).

By using Theorem 1 we can show the following

Tueorem 2. Let L be a Lie algebra over a field of characteristic 0 such
that I(L) 1s splittable. If the center of L is mot (0) and if C(L)CI(L), the
radical of L is nilpotent.

Proor. Let R be the radical of L. Then ad;R is the radical of I(L).
From our assumption that I(L) is splittable, it follows that ad;R is also
splittable ([157], p. 292). Theorem 1 tells us that ad;R contains no non-zero
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semisimple elements. Therefore ad;R consists of nilpotent elements. Thus
R is nilpotent and the proof is complete.

As a consequence of Theorem 2 we have the following corollary which
was proved by Leger ([107], p. 642).

CorOLLARY. If the center of L is not (0) and 1f D(L)=I(L), then L is not
solvable and the radical of L is nilpotent.

Proor. Since D(L) is algebraic, I(L) is algebraic and therefore splittable.
By Theorem 2 the radical is nilpotent.

If L is solvable, then L is nilpotent and therefore it has an outer deriva-
tion by Schenkman’s theorem (see [8]). Thus L is not solvable, completing
the proof.

It is to be noted that, if I(L) is splittable and if the center of L is not (0)
and C(L) CI(L)*, then I(L) is algebraic. In fact, by using Theorem 1 and the
splittability of I(L), we see that ad;R consists of nilpotent elements and
therefore it is algebraic. From (4) in §1, it follows that I(L) is algebraic.

Remark 1. There exists a Lie algebra which satisfies the assumption in
Theorem 2, but which does not satisfy the assumption in its corollary. Let
L be the Lie algebra over K described in terms of a basis xi, x,, ---, x5 by the
following table:

[xla xzj = X3, [xl) x3:| = X4, [xls x4] = Xs, [xla x5:| = X6,
I:xla xﬁ] = Xg, [xla x7j = %3, [xZ, x3] = X5, ExZ) x4] = X6,
[, w5 ] = w7, [z, %6 | = 2w, [0, 4] = — 27 + x5, [203, %5 ] = — 3,

[xi, x,]z() for Z+]>8

This was given in [17], p. 123, as an example of characteristically nilpotent
Lie algebras. The center is (x3). I(L) is splittable since ad;x; is nilpotent for
each ;. Let D be a derivation of L and put

Dri=S\lm (=12 ..., 8)
i=1

Then after calculation we obtain
l,‘j = O fOI' L2], 112 = 1124 = 135 = 167 = 0,

— iz = /135 = }\46 = /157> Au= 125 == —Ayg = ]\58,
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/115 = - /137, 123 = /134 =5 = /156 = 178,
Asg = — 26 + Ao + o7, Aeg = A2z — 2/13.

Therefore the matrix of D is

0 Aas  —Ais 0 —2i5 —26+ A+ Aor
0 Azs  —Ais Ay —Aus

0 s —Ais A4

i 0 0 0 123 — 2&13
g 0 sy
K 0

From this the matrix of an inner derivation is obtained by putting
Aoe = 415, A27 = A6, liz=0
and the matrix of a central derivation is obtained by putting
all 2;=0 except ;3 and 2.
Thus D(L) is 10 dimensional, I(L) is 7 dimensional, and C(L) is 2 dimensional
and contained in I(L).
4. Lie algebras whose inner derivations are central

In this section we shall study the Lie algebras whose inner derivations
are all inner. We shall prove the following

Tueorem 3. Let L be a Lie algebra over a field of characteristic 0. Then:

Q) IIL)CCW) if and only of 1(L)* CC(L), and if and only if L*=(0).

(2) Assume that the center Z of L is mot (0). Then I(L)=C(L) if and only
if 1I(L)*=C(L), and if and only 1f L*=Z and dim Z=1.

(8) DL)=C(L) tf and only +f L 1s abelian.

Proor. (1): I(L)C C(L) means that L*C Z, that is, that L*=(0). If
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L3=(0), I(L) consists of nilpotent elements and therefore I(L) is algebraic,
whenece I(L)* CC(L).

(2): If I(L)=C(L) (resp. I(L)*=C(L)), then by (1) L*=(0). It follows
that I(L) is algebraic. Hence the first two conditions are equivalent.

Now suppose that I(L)=C(L). Then L*CZ. If L2=~Z, then L is the direct
sum of a non-zero central ideal Z, and an ideal L, containing L% The identity
mapping of Z; can be trivially extended to the derivation of I which we
denote by D. Then D is central, but not inner. This contradicts our supposi-
tion. Thus we see that L?=Z. By the facts that

dim I(L)=dim L/Z and dim C(L) = dim L/L? x dim Z,

we have dim Z=1.

Conversely suppose that L?=Z7 and dim Z=1. Then I(L)CC(L). By
using the formulas given above on the dimensions of I(L) and C(L), it is
immediate that dim I(L)=dim C(L). Therefore we have I(L)=C(L).

(8): Suppose that D(L)=C(L). If Z=(0), we have C(L)=(0) and there-
fore D(I)=(0), whence L=(0). Therefore we may assume that Z=~(0). Then
by (1) it follows that L}*=(0). If L?=£(0), we take a subspace U=(0) such
that

L=U+ L% UNL?*=(0).

The identity mapping of U can be extended to an endomorphism D of L.
Then D is a non-central derivation of L, which contradicts our supposition.
Therefore L?=(0). The converse is evident.

Thus the proof of the theorem is complete.

Remark 2. There exists a Lie algebra satisfying the condition in the
statement (2) of Theorem 3. The three dimensional Lie algebra over K with
a basis x;, x,, x3 such that

[901, xz] = X3, [x1, xsj = [x2> %3] =0

is an example of such a Lie algebra.

5. Lie algebras with as few derivations as possible

In this section we are concerned with the Lie algebras which have as
few derivations as possible, that is, the Lie algebras L such that D(IL)=1I(L)+
C(L).
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We first prove the following

Turorem 4. Let L be a Lie algebra which is the direct sum of the ideals
L;G=1,2, ..., n). Then D(L)=I(L)+C(L) if and only ©f D(L;) =I(L;) + C(L;)
for each i.

Proor. By (1) in §1 we see that
D(L)= ;2:]1D<Li) -+ %D<Li9 L))

and that for i<~j D(L;, L;) CC(L). Therefore if D(L;)=1I(L;)+C(L;) for each
i, it follows that D(L)=I(L)+ C(L).

Conversely suppose that D(L)=I(L)+C(L). Any derivation D; of L; is
trivially extended to a derivation D of L. Therefore we have

D:ade+l_)

where x= ﬁx] with x; in L; and D is in C(L). Denote by D; the restriction
i=1

of D to L;, Then
D; =ady;x; + D..
It follows that
D;Li = (D; — adp,x)L; C Li N Z = Zi,

where Z and Z; are the centers of L and L; respectively. Hence D; is in C(L;)
and therefore D(L;)=I(L;))+C(L;).

Thus the proof is complete.

Following Leger ([10], p. 643), a nilpotent Lie algebra L is called quasi-
cyclic provided that L has a subspace U such that L=U+[L, L] with Un
[L, L]=(0) and such that L is the direct sum of the spaces U’ where U'=U
and U'=[U, U"'] for i>>2. We remark that any Lie algebra I such that
I3=(0) is quasi-cyclic.

We shall prove the following

Taeorem 5. Let L be a Lie algebra over a field of characteristic 0. If
D(L)=I(L)+C(L), then the radical ts either non-quasi-cyclic or an abelian
direct summand of L.

To prove the theorem, we begin with recalling some known facts. Let
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R be the radical of L and let L=S-+ R be a Levi decomposition of L. Let A(S)
be the set of all derivations of L which map S into (0). Then A(S) is a
subalgebra of D(L) and it is known ([77], p. 692) that

D(L) =I(L) + A(S).

Since R is stable under all derivations of L, for any derivation D of L its
restriction to R is the derivation of R, which we denote by 0(D). Then 0 is a
homomorphism of D(L) into D(R) and induces an isomorphism of A(S) onto

0(A(S)).

We here consider the set of all derivations of 2((S) which map R into the
center of R. We denote the set by 2,(S). Then A,(S) is a subalgebra of
A(S) such that

C(L) CTA(S) TAS).
We now show the following

Lemma 4. (1) 0(A(S)) s the centralizer of adrS in D(R).
@ (UG NIL) =0(AE) NIR.
(3 o(AS)NILY*) = o(AS) N IR .

(4) 0(Ao(S)) is the intersection of 0(A(S)) and the centralizer of I(R) in
D(R).

Proor. (1): If Disin A(S), for any elements s of S and r of R we have
Lo(D), adgs]r =0(D) [s, r]—Ls, 0(D)r]

=[Ds,r]=0.

Hence 0(D) is contained in the centralizer of adzS in D(R).

Conversely, let D be any element of the centralizer of adiS in D(R).
Define an endomorphism D of L in the following way:

Ds=0 forsin$S and Dr=Dr forrinR.
Then D is a derivation of L, for

D[s,r]=D(adgs)r = (adgs)Dr

=[s, Dr]=[Ds,r]+ s, Dr].
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Since D=0(D), D is contained in 0(2(S)).
(2): This has been proved in [97] (p. 513). So we omit the proof.

(8): By considering a faithful representation of L, we may assume that
L is a Lie subalgebra of gl(¥). Then by (4) in §1 R* is the radical of L* and
L*=S+R* is a Levi decomposition of L*. By Lemma 1 we have

I(L)* =ad;L* and I(R)* = adzR*.

Let ad;x be any element of A(S)NI(L)*. Since x is an element of L*, x
is expressed as the sum

x=s+r with sin S and r in R*.

Since (ad;x)S =(0), if follows that

(ad;s)S= —(ad;r)SCSNR* = 0).

Hence [5, S]=(0) and s=0. Therefore x is in R* and ¢(ad;x) is contained
in I(R)*. Thus o(AWS)NIL)*) Co(AS)NI(R)*.

Conversely, let adzx be any element of 0(2A(S))N\I(R)*. Then adzx=0(D)
with some D in A(S). Since R* and the center Z, of R* are stable under
adz-S and since adz.S is completely reducible, there exists a subspace U such
that

R*=U+ 7, Unz,=(0), (adz«S)U C U.
Since x is an element of R*, x is expressed as the sum
x=u+z with » in U and z in Z;.
Since D is in A(S), for any sin S and r in R we have
Dlr,s]=1[Dr,s]
and therefore [u, [r, s]]=[[u,r], s]. It follows that [r, [s, z]]=0. Therefore

(R, [s, u]]=(0), from which it follows that [R*, (s, u]]=(0). Thus [s, »] is
contained in Z; so that

[s,u] € UN Z, = (0).

Thus [s, u =0, which shows that ad,u is in 2(S). Hence
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adgx = adgu = 0(ad,u) € 0(A(S) N IL)Y).

Thus we see that 0(A(S)NIR)* Co(AS)NI(L)*).
(4): Let D be any derivation in 2,(S). Since A, (S)CA(S), (D) is in
0(2(S)). Since 0(D) maps R into the center of R,

Lo(D), adrR] = adr0(D)R = (0).

Therefore 0(D) is contained in the centralizer of I(R) in D(R).

Conversely, let D be any element of the intersection of 0(2(S)) and the
centralizer of I(R) in D(R). From the fact that D is in 0(2(S)), it follows
that there exists a derivation D in 2(S) such that 0(D)=D. By the fact that
D is in the centralizer of I(R) in D(R), we see that D maps R into the center
of R. Thus D is contained in 2,(S) and therefore D is in 0(2,(S)).

Thus the lemma is proved.

By making use of Lemma 4 we can prove the following

LemMA 5. Let R be a solvable Lie algebra. Let &, and &, be semisimple
subalgebras of D(R) which are conjugate under an automorphism t of D(R)
mapping I(R) into itself. Let L,=S,+R and L,=S,+R be the semi-direct
sums. Then D(L)=I(L)+Uo(S,) of and only 1f D(Ly)=1(L2)+We(Sy).

Proor. Let 0, and 0, be respectively the restriction homomorphisms of
D(L;) and D(L;) into D(R). By the definition of the semi-direct sum, adz&,
and adzS, are identified with &; and &, as subalgebras of D(R). From the
facts that D(L;)=I(L,))+UA(S;) and that A, (&;) CA(S,), it follows that D(L,)=
I(L)+Ue(S)) if and only if

A =AG@HINIL)+ A (&)  (GE=1,2).
Therefore it is the case if and only if
0;(A(@)) = 0:(A@)NIL)) + 0:(Ae (&)  (G=1,2).
Since r maps adzS; onto adzx€&, and I(R) onto itself, by using Lemma 4 we
see that ¢ maps 0;(A(S))), 0:1(A(S,)NI(L1)) and 0,(Ae(S1)) onto 0,(A(Sy)),
02(A(S,)NI(Ly)) and 0,(Ay(S;)) respectively. Thus we can conclude that

D(L,) =I(L,) + WAe(Sy) if and only if D(L,) = I(Ly) + Ao (&;), completing the
proof.

In virtue of Lemmas 4 and 5, we can now prove the following

Lemma 6. Let R be the radical of a Lie algebra L and let L=S+R be a
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Levi decomposition of L. If R s quasi-cyclic and mon-abelian, then D(L)=~
I(L) + A (S).

Proor. If L has a semisimple ideal, we denote by L, the largest semi-
simple ideal of L. Then L is the direct sum of L, and an ideal L, whose
radical is R. From the fact that maximal semisimple subalgebras of L are
conjugate to each other by Malcev’s theorem, it follows that L, is contained
in S. Therefore there exists a semisimple subalgebra S, such that

S:L1+Sz and Lz‘—‘Sg'i‘R
Since the center of L, is (0) and L,=[L,, L, ], by using (1) in §1 we see that
D(Ly, Lz) =D (L, L) =(0)

and therefore that D(L)=D(L,)+D(L,). Since D(L,)=1(L,), it is sufficient to
prove the assertion of the lemma for L,. Thus we assume that L has no
semisimple ideals.

Suppose that R is quasi-cyclic and non-abelian. Then there exists a
subspace U such that

R=>U" with U'nl/=(0) for i#j.

We agsume that U”=4(0) and U"'*=(0). Then »>1 since R is not abelian.

The identity mapping of U extends to the derivation of R, which we denote

by D. Then it is easy to see that U is the only subspace of R such that
R=U+ R? UNR*=(0) and DU CU.

Take a maximal abelian subalgebra 2, consisting of semisimple elements
of D(R) which contains D. Then, by (6) in §1, there exists a maximal semi-
simple subalgebra & of D(R) such that

Ww=@nNA)+AU
where 2 is a maximal abelian subalgebra of semisimple elements of the

radical of D(R), and such that [&, A ]=(0). Hence &+ is completely
reducible and therefore there exists a subspace U’ of R such that

R=U +R?, U NR=(0) and E@+MU Cu.

Since D is contained in &+, it follows that DU C U’ and therefore that



150 Shigeaki T660

U =U. Thus we see that D is a scalar mapping on each U’ and U’ is stable
under &+, from which it follows that [ D, ©]=(0). Therefore D is contained
in the centralizer of any subalgebra &; of & in D(R).

We now assert that, for the semi-direct sum L,=©;+R,

D(Ly) #1(L1) + Ao (Sy).
In fact, suppose that D(L,)=I(L;)+Uo(S;). Then
A(S) =AS ) NI(Ly) + Ao (S))
and therefore
0, (A(S)) = 01 (A(S) N I(L) + 01 (Ao (S)),

where 0, is the restriction homomorphism of D(L;) into D(R). By Lemma 4
(1), 0,(A(S))) is the centralizer of &, in D(R), where &; is identified with
adz®;. Hence D is contained in 0,(20(&,)). By Lemma 4 (2) D is expressed
in the form

D:adRT+D

where r is in R and D is a derivation of R mapping R into the center Z of R.
For any element u of U,

u=Du=[r,u]+DueR*+ Z,
whence
[0, U] C LR, U] C U = (0,

Therefore we see that U”=(0), which is a contradiction. Thus we have
D(L)=£I(L,) + Ap(S,), as was asserted.

For a given Levi decomposition L=S+ R, we see that adpS is a semi-
simple subalgebra of D(R). Let & be a maximal semisimple subalgebra of
D(R) containing adpS. Then by Malcev-Harish-Chandra’s theorem, there
exists an automorphism ¢ of D(R) which maps & onto & and I(R) onto itself.
Let &, be the image of adzS under r and let L, be the semi-direct sum &;+
R. Then, as shown above,

D(Ly) #I(Ly) + Ao (S)).

Since L has no semisimple ideals, L can be considered as the semi-direct sum
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adzS+R. Hence we can use Lemma 5 to see that D(L)==1(L)+Uy(S).
Thus the proof of the lemma is complete.

Proor or THeEOrREM 5. Suppose that the radical R of L is quasi-cyclic
and not abelian. Take a Levi decomposition L=S+R. Then by Lemma 6
we see that

D(L)=I(L) + Ao (S).

Since C(L)CAy(S), it follows that D(L)=~I(L)+C(L).

We next suppose that R is abelian and not a direct summand of L. Then
the center Z of L is a proper subalgebra of R. Let R; be the complementary
subspace of Z in R. Then R,=~(0). The identity mapping of R can be
trivially extended to a derivation of L, which we denote by D. We assert
that D is not contained in I(L)+ C(L). In fact, let L=S+ R be a Levi
decomposition of L. If D is contained in I(L)+C(L), then

D=ad;(s+r)+ D with sin S, r in R, and D in C(L).

Since DS=(0), it follows that [s, S]=(0) and therefore that s=0. Then for
any element ' of R, we have

=D =Dr' e Ry Z=(0),

which is a contradiction. Therefore D is not contained in I(L)+C(L), as was
asserted. Hence we have D(L)==I(L)+C(L).

Thus we conclude that if D(L)=I(L)+C(L) then either R is not quasi-
cyclic or R is abelian and a direct summand of L. The proof of Theorem 5 is
complete.

As an immediate consequence of Theorem 5 we have the following
corollary, which was proved by Leger ([107], p. 643).

CoroLLARY 1. If the center of L is not (0) and ©f the nilpotent radical is
quast-cyclic, then D(L)=~I1(L).

Proor. Suppose that the center Z=~(0) and D(L)=1I1(L). It is evident
that L is not the direct sum of a semisimple ideal and a central ideal. Hence
by Theorem 5 the radical R is not quasi-cyclic. But by Corollary to Theorem
2 R is nilpotent. Thus the nilpotent radical is not quasi-cyclic, completing
the proof.

Before giving another consequence of Theorems 4 and 5, we recall a
notion of Lie algebras introduced in [17]. A Lie algebra L is called char-
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acteristically solvable provided that D(L) is solvable and the center of L is
contained in [L, L.

CoROLLARY 2. Let L be a solvable Lie algebra such that D(L)=I(L)+C(L).
Then L 1is the direct sum of a central ideal and a characteristically solvable
ideal which 1s not quasi-cyclic.

Proor. Let Z be the center of L. Put Z,=ZN[L,L] and choose a
complementary subspace Z, of Z, in Z. Take a subspace L; of L containing
[ L, L] such that

L:L1+Z2, Llf\Zzz(O)

Then L, is an ideal of L, the center of L, is Z, and Z, C[ Ly, L, ].

By Theorem 4 we see that D(L,)=1I(L,;)+C(L,). For any derivations D, D’
in C(L;) and for any element x of L;, we have

[D, D' ]x= (DD — D'D)x € DZ, — D'Z,
C DLy, L] — D'[Ly, I, ] = (0)

and
[D, ad, x]=ad; Dx€ad; Z; = (0).

Hence C(L,) is a central ideal of D(L;). It follows that D(L,) is solvable.
Thus L, is characteristically solvable. By Theorem 5 we also see that L, is
not quasi-cyclic. Thus L is the direct sum of a characteristically solvable
and non-quasi-cyclic ideal L; and of a central ideal Z,. The proof is complete.

Remark 3. Let L be a Lie algebra whose radical R is not an abelian
direct summand. Then Theorem 5 states:

(a) If D(L)=I(L)+C(L), then R is not quasi-cyclic.

Corollary 1 to Theorem 5, Leger’s result, is an easy consequence of Corollary
to Theorem 2 and the following statement:

(b) If D(L)=I(L), then R is not quasi-cyclic.

(b) is a special case of (a). We shall here note that there exists a nilpotent
Lie algebra which is not quasi-cyclic, which satisfies the assumption of (a)
and which does not satisfy the assumption of (b). Dixmier-Lister [5] gave
the following nilpotent Lie algebra as an example of a characteristically
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nilpotent Lie algebra. Let H be the 8 dimensional Lie algebra over a field

of characteristic 0 described in terms of a basis x;, x,, ---, x5 by the following
table:
[21, %2 ] = s, [x1, %3] = e, (21, 24 ] = 27,
(%1, %5 ] = — xg, (%, x3 | =28, [ %2, %4 = %,
[%2, %6 ] = — 27, [x3, %4 ] = — x5, [x3, x5 ] = — 27,
[x4, 26 | = — xs.

In addition [x;, %;]=—[=;, /] and for i<j [, x; ]=0 if it is not in the table
above. It has been shown that D(H)=I(H)+C(H), C(H) is 8 dimensional and
intersects I(H) in a 2 dimensional space. Hence D(H)=~I(H). Since H has
no semisimple derivations, H is not quasi-cyclic.

Remark 4. If L is a Lie algebra over K whose radical is an abelian direct
summand, L is the direct sum of a semisimple ideal S and a central ideal.
Therefore D(L)=~I(L). Since the center of S is (0) and S=[S, S|, by using
(1) in §1 we see that D(L)=I(L)+C(L).

Remark 5. We shall give an example of a Lie algebra L such that
D(L)=+1(L)+C(L). Let L be the Lie algebra over a field of characteristic 0

described in terms of a basis x;, x», ---, x5 by the following table:
[901, Xy | = 2x2, [xla x5 | = — 2x3, [x2, %3] = x1,
Exla x4j = Xy, [xb xS] = X5, [x2> x4] = — X5,

Ex3, X5 | = — X, [x2, x5 | = [x3, x4 | = x4, x5 ] = 0.

In addition [x;, x; |= —[aj, ;). S=(x1, x5, x3) is a semisimple subalgebra and
R=(xy4, x5) is the radical of L. After calculation we see that C(L)=(0) and
D(L) contains a 1 dimensional space of outer derivations. Therefore D(L)=~
I(L)+C(L). For an example of a Lie algebra such that D(L)=~I(L)+C(L)
and C(L)=(0), it suffices to take the direct sum of the Lie algebra above and
of another abelian Lie algebra.

6. Lie algebras with radicals whose central derivations are inner
and with radicals which have as few derivations as possible

In this section we are concerned with the Lie algebras I whose radicals
R satisfy the conditions considered in the preceding sections. We can not
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always expect that L satisfies the corresponding conditions.

We shall first study the Lie algebras whose radicals R satisfy each of
the conditions C(R) CI(R), C(R) CI(R)*, C(R)YNI(R)=(0) and C(R)NI(R)*=(0).
Namely, we shall prove the following

Tueorem 6. Let L be a Lie algebra over a field of characteristic 0 and let
R be the radical of L. Then:

1) If C(R)CI(R), them C(L)CI(L).

@) If CRYCIR)*, then C(L)CI(L)*.

3) If C(RINI(R)=(0), then CL)NI(L)=(0).

@) If CRNIR)*=(0), then C(L)YNIL)*=(0).

Proor. Let 0 be the restriction homomorphism of D(L) into D(R) and
let L=S+ R be a Levi decomposition of L.

(1): Since C(L)CA(S), we have 0(C(L))Co(A(S)). From the fact that
the center of L is contained in that of R, it follows that 0(C(L))CC(R).
Therefore by the assumption we have

o(C(L)) Co(AWS)NI(R).
Using Lemma 4 (2) we see that

0(C(L) C 0(AS) NI(L)).

Since the restriction of 0 to (S) is an isomorphism, we obtain that C(L)C
AS)NI(L) and therefore C(L)CI(L).

(3): By using Lemma 4 (2), we have
o(CLYNI(L)) Co(AS)NIL) =0(AS) NIR).
From the fact that o(C(L))CC(R), it follows that
o(C(L) NI(L)) T C(R)NI(R)=(0).
Since 0 is an isomorphism on 2(S), we have C(L)NI(L)=(0).
The proofs of (2) and (4) can be given in a similar way as in the proofs
of (1) and (3), by using Lemma 4 (3) instead of Lemma 4 (2). Therefore we

omit the proofs.

Remark 6. The converse of the statement (1) in Theorem 6 is not
generally true. For example, let L be the Lie algebra given in Remark 5.
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Since the center of L is (0) and since the radical R is abelian, we have C(L)=
(0) and I(R)=(0). Hence C(L)CI(L), but C(R) I(R).

Remark 7. We shall show, by example, that the converse of the state-
ment (3) in Theorem 6 does not hold generally. Let L be the Lie algebra
over a field of characteristic 0 described in terms of a basis xy, x2, ---, x5 DY
the following table:

[:xl, xz] = 2u,, Exl; xs] = — 2u3, [x27 xs] = X1,
(21, %4 | = — 4, [21, x5 | = x5, (%2, x4 | = — x5,
[xf)‘a xS] = T X4, I:x4> xﬁ:l = Xg-

In addition [x;, x;]=—[=;, ;] and for < [w;, x,]=0 if it is not in the table
above. R=(x4, s, x5) is the radical of L. Since L=[L, L], we have C(L)=(0)
and therefore C(L)YNI(L)=(0). However C(R)=1I(R) and it is a 2 dimensional
space, whence C(R)NI(R)=(0).

Remark 8. We remark that if H is a Cartan subalgebra of L and if
C(H)CI(H), then L is solvable. In fact, there exists a Levi decomposition
L=S+R of L such that H is the sum of a Cartan subalgebra H; of S and a
subalgebra HNR and H, is a central ideal of H (4], p. 18). If H,=~(0), we
have I(H)H,=(0). However there exists a central derivation of H which is
the idendity mapping on H,. Hence C(H)( I(H), contradicting the assump-
tion. Therefore we have H;=(0), whence S=(0), that is, L is solvable.

D(R)=I(R) if and only if D(L)=I(L) and L is the direct sum of a semi-
simple ideal and the radical ((167, p. 74). If I(R)CC(R) (resp. D(R)=C(R)),
we can not assert that I(L)CC(L) (resp. D(L)=C(L)), since ad;S with S a
semisimple subalgebra of L is not contained in C(L).

In the rest of this section, we shall study the Lie algebras whose radicals
have as few derivations as possible. Such Lie algebras do not necessarily
have the same property. Let L be the Lie algebra given in Remark 5. Then
D(R) =C(R) for the radical R, but D(L)=~I(L)+ C(L). L has further the
properties that the center is (0) and that L=[L, L.

However, for a Lie algebra L with radical R we can generally show that
if D(R)=I(R)+C(R), then L is the direct sum of an ideal L, with D(L,)=
I(L)+C(Ly) and of an ideal L, with D(L.,)=*I1(L,)+C(L,), and L, is a Lie
algebra of such a type as noted above. It is the aim of this section to prove
this fact.

We begin with the following

Lemma 7. Let L be a Lie algebra and let R be the radical of L. If D(R)=
I(R)+C(R), then L 1s the direct sum of a characteristically solvable ideal I,
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with D(L,)=I(L,)4+C(L,) and of an ideal L, whose radical is abelian.

Proor. Let L=S+R be a Levi decompocition of L and let Z be the
center of R. Put Z,=ZN[R, R]. Then Z and Z, are stable under all deriva-
tions of R. Since adzS is completely reducible, there exists a subspace Z, of
Z such that

Z =71+ Z, Zy N\ Zy = (0), (adrS)Z, C Z,.

Since R and [ R, R] are stable under adzS, there exists a subspace R, of R
containing [ R, R] such that

R=R, + Z,, RiNZ,=(0), (adgS)R; CR,.

It follows that R, is an ideal of L.

We assert that R, is characteristically solvable. In fact, the center of
R; contains Z; and is contained in Z. Hence it is equal to Z; and therefore
contained in [R), R,]. Therefore R; has no abelian direct summands. Since
R is the direct sum of the ideals R, and Z,, from our assumption and Theorem
4 it follows that D(R,)=I(R,)+C(R;). Therefore we can use Corollary 2 to
Theorem 5 to see that R, is characteristically solvable, as was asserted.

Since adzS maps R, into R, adg S is a semisimple subalgebra of D(R;).
By the fact that R, is characteristically solvable, we see that adz S=(0).
That is, [S, R, ]=(0).

Now we put L,=S+Z,. Then taking account of the fact that [S, Z,]C
Z,, we see that L, is an ideal of L. Thus L is the direct sum of the ideals R,
and L, satisfying the conditions in the statement of the lemma.

In virtue of Lemma 7 we can now prove the following

Tueorem 7. Let L be a Lie algebra over a field of characteristic 0 and let
R be the radical of L. Then D(R)=I(R)+C(R) if and only 1f L is the direct
sum of the ideals L, and L, satisfying the following conditions:

(1) L, s the direct sum of a semisimple tdeal, a central ideal and a char-
acteristically solvable ideal R, with D(R1)=I1(R,)+ C(R)).

(2) The radical of L, is abelian, the center of L, is (0) and Ly=[Ls, L;].

And then L, and L, are characteristic ideals of L and
D(Ly) = I(Ly) + C(Ly), D(Ly) #1(Ls) + C(Ly).

Proor. Suppose that D(R)=I(R)+ C(R). Let S; be the largest semi-
simple ideal of L. Then it is a direct summand of L. Hence L is the direct



Derivations of Lie Algebras 157

sum of S; and an ideal H whose radical is R. Using Lemma 7, we see that H
is the direct sum of a characteristically solvable ideal R, with D(R,)=I(R,)+
C(R)) and of an ideal H, whose radical A4 is abelian. Let H,=S+ 4 be a Levi
decomposition of H;. We denote by Z the center of H,. Since Z is stable
under completely reducible mappings ad.S, there exists a subspace R, of 4
such that

A=7+ Rz, ZNR;, = (O), (adAS)Rz C R..

We see that S+ R, is an ideal of H; and therefore that H, is the direct sum
of the ideals Z and S+ R;. Now we put

L1281+Z+R1 and L2:S+R2

Then L, is an ideal of L and is the direct sum of ideals S;, Z and R;,. L; is an
ideal of L whose radical is abelian and whose center is (0).

We assert that L,=[L,, L, ]. In fact, if L,~[L,, L, ], then from the fact
that { L., L, |=S+[Ls, R, ] it follows that R,=~[L,, R, ]. Both R, and [ L,, R, |
are stable under the derivations of L,. Hence there exists a subspace U==(0)
of R, such that

R, =U+ I:Lz, Rz], Uf\[Lz, Rz___) = (0), (adRZS) UcCUuU.
It follows that

[S, UJCUN[ Ly, Ry ]=(0).

Therefore U is contained in the center of L,. This is a contradiction since
the center of L, is (0). Hence we see that L,=[L., L, ], as was asserted.

Thus L is the direct sum of the ideals L, and L, satisfying the conditions
(1) and (2).

Conversely, if L is such a direct sum of ideals, then R is the direct sum
of a solvable ideal R; with D(R))=I(R,)+C(R,) and of a central ideal. By
using Theorem 3 (3) and Theorem 4 we see that D(R)=I(R)+C(R).

Since the center of L, is (0) and since L,=[L,, L, ], by using (1) in §1 we
see that

D(Lb LZ) = D<L27 Ll) = (0)

and therefore that D(L)=D(L,)+D(L;). It follows that L, and L, are stable
under all derivations of L.

Since D(S,)=1I(S;) and since D(Z)=C(Z), by Theorem 4 we obtain that
D(L)=I(L,)+C(L,). As for L, the radical R, is abelian and not a direct
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summand. Therefore we can use Theorem 5 to see that D(L,)=~1(L.)+ C(Ly).
The proof of the theorem is complete.

It is to be noted that the Lie alget;ra referred to in Remark 3 gives an
example of characteristically solvable Lie algebras L such that D(L)=I(L)+
c(L).
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