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Introduction

Let L be a Lie algebra over a field of characteristic 0 and let D(L) be the
Lie algebra of all derivations of L. The problems concerning the structure
of D(L) and its relations with the structure of L have been investigated by
several authors in [5], [7], [8], [9], [11], [14], [16], [17] etc. In a recent
paper [10] G. Leger has studied the structural properties of Lie algebras L
such that D(L) = I(L), where /(L) is the set of all inner derivations of L, and
proved the following results:

(1) If the center of L is not (0) and if D(L) = I(L\ then L is not solvable
and the radical of L is nilpotent.

(2) If the center of L is not (0) and if the nilpotent radical is quasi-
cyclic, then D(L)φl(L).

Here a nilpotent Lie algebra N is called quasi-cyclic provided N has a sub-
space U such that N=U+ [JV, iV] with £/Ά[iV, ΛΓ| = (0) and such that N is
the direct sum of the subspaces U* where Uι = U and U* = [_U, Ui~1~] for ί>2.

We denote by C(L) the set of all central derivations of L, that is, the set
of all derivations of L mapping L into the center. It is the purpose of this
paper to investigate the properties of Lie algebras L such that C(L)CI(L\
Lie algebras L such that /(L)CC(L) and Lie algebras L such that D(L) = I(L) +
C(L\ and to generalize Leger's results above.

There actually exist the Lie algebras satisfying each of these three
conditions as shown in Remarks 1, 2 and 3.

In Section 2 we shall give the forms of the derivations which are at the
same time inner and central. In Section 3 we shall study the Lie algebras
whose central derivations are all inner. We shall show that if the center Z
of L is not (0) and if C(L)C/(L)*, the algebraic hull of /(L), then for the
radical R of L &dLR contains no non-zero semisimple elements (Theorem 1),
and that if Zφ(0) and if C(L)CI(L) and I(L) is splittable, then the radical R
is nilpotent (Theorem 2). The essential part of (1) above is to assert the
nilpotency of the radical and we shall show that this is a special case of our
results above (Corollary to Theorem 2 and Remark 1).

In Section 4 we shall show that, when Zφ(0), 1(L) = C(L) if and only if
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L3 = (0), L2 = Z and d i m Z = l (Theorem 3).

In Section 5 we shall study the Lie algebras L such that D(L)=I(L) +
C(L), that is, which have as few derivations as possible. We shall prove that
if D(L)=I(L) + C(L\ then the radical R is either non-quasi-cyclic or an abelian
direct summand of L (Theorem 5). Taking account of (1), (2) is equivalent
to the statement that if D(L)=I(L) then R is not quasi-cyclic, and this is a
special case of our result except when R is an abelian direct summand
(Corollary to Theorem 5 and Remark 3).

In Section 6 we shall study the Lie algebras L whose radicals R satisfy
the conditions considered in Sections 2 — 5. We can not generally expect
that L satisfies the corresponding conditions. We shall show that if C(R) C
I(R) (resp. C(Λ)C/(#)*) then C(L)CI(L) (resp. C(L)C/(L)*) (Theorem 6). We
shall also prove that D(R)=I(R) + C(R) if and only if L is the direct sum of
an ideal Li, which is the direct sum of a semisimple ideal, a characteristically
solvable ideal Rι with D(Ri) = I(Rι) + C(Rι) and a central ideal, and of an ideal
Z/2, whose radical is abelian, whose center is (0) and such that L2 = [_L2, L2U,
and that in this case D(L1)=I(L1) + C(L1) and Z)(L2)^/(L2) + C(L2) (Theorem

1. Preliminaries

Let L be a Lie algebra over a field K of characteristic 0 and let D(L) be
the derivation algebra of L, that is, the Lie algebra of all derivations of L.
For any element x of L, the adjoint mapping ad# :y-»O, y} is a derivation
of L which is called inner. We denote by /(L) the ideal of all inner deriva-
tions of L.

A derivation of L is called central provided that it maps L into the center
of L. We denote by C(L) the set of all central derivations of L. Then an
endomorphism of L is a central derivation if and only if it maps L into the
center of L and [L, L] into (0). C(L) is a subalgebra of D(L).

D(L) necessarily contains I(L) and C(L). Therefore when D(L) = I(L) +
C(L\ we may say that L has as few derivations as possible.

Let L be the direct sum of the ideals Li(i = l, 2, ..., ή) and let D(Li9 Lj)
be the set of all derivations of L( into L, . Then D(Lh L, )=J5(Li). We denote
by p, the projection of L onto L, and identify an element Av of D(L, , Lj) with
an element D̂ -p,- of D(L). Thus we have D(Lh Lj)CD(L). It is easy to see
the following fact ([17], p. 202):

(1) If L is the direct sum of the ideals L, (i = l 3 2, •••, n\ then

D(L)= i



Derivations of Lie Algebras 135

and, for ίφj9 D(Liy Lj) consists of all the linear mappings of L, into Lj which
map Li into the center of Lj and [Lί5 Lϊ} into (0).

Let V be a finite dimensional vector space over K. Let gl(F) be the
algebra of all endomorphisms of V and let GL(V) be the group of all automor-
phisms of V. Following Chevalley ([2]. p. 171), a Lie subalgebra L of gl(F)
is called algebraic provided that L is the Lie algebra of an algebraic subgroup
of GL(V). For an element x of gl(F) let Q(X) be the smallest algebraic Lie
subalgebra of gl(F) containing x9 that is, the set of all replicas of x ([2], p.
180). Then L is algebraic if and only if Q(X)CL for any element x of L ([2],
p. 181). We denote by £* the algebraic hull of L, that is, the smallest
algebraic Lie subalgebra of gl(F) containing L.

It is known that the derivation algebra D(H) of any Lie algebra H is an
algebraic Lie subalgebra of QΪ(H) ([2], p. 179).

For an element x of gϊ(F) such that [_x, LΓ\CL, the endomorphism of
L : y -> [>*, y] is a derivation of L, which we denote by adz#. For a subset M
of gl(F) such that [M, L^CL, we denote by ad^M the set of all &dLχ with
x in M. By the fact that the set of all elements y of gl(F) such that [_y, L~]CL
is Bn algebraic Lie algebra, we have

adzg (x) C D (L) and adLL* C D (L).

/(L) is adLL which will sometimes be denoted by ad L simply.

In H15] w e have shown the following facts. Let L be a Lie subalgebra
of gl(F). Then:

(2) For any element x of gl(F) such that [_x,LJCL,

([15], p. 303).

(3) L* is the linear space spanned by all Q(X) with x in L ([15], p. 297).

By using these facts we can prove

LEMMA 1. Let L be a Lie subalgebra of gl(F) and let H be a subalgebra of
L. Then

PROOF. By (3) (ad^ίΓ)* is spanned by all g(ad^) with x in H. It follows
from (2) that (adzi7)* is spanned by all adL g(#) with x in H. By using (3)
and the linearity of adi, we see that (&άLH)* is equal to ad^iΠ.

We finally recall some properties of linear Lie algebras:
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(4) For a Lie subalgebra L of gI(Γ), the radical of L* is the algebraic
hull of the radical of L. L is algebraic if and only if the radical is algebraic
([3], p. 129).

(5) Let L be a solvable algebraic Lie subalgebra of QΪ(V) and let N be
the ideal consisting of all nilpotent elements of L. Then for any maximal
abelian subalgebra A of semisimple elements of L,

L = A + N, Ar\N=(0)

([31 p. 130).

(6) Let L be a Lie subalgebra of gI(Γ) with radical R. For any maximal
abelian subalgebra A of semisimple elements of L, there exists a maximal
semisimple subalgebra S of L such that

where AίλS is a Cartan subalgebra of S, ^A,R is a maximal abelian sub-
algebra of semisimple elements of R and [S, Aί\K] = (0) ([13], p. 211).

2. Derivations which are inner and central

In this section we study the derivations of a Lie algebra which are at
the same time inner and central. We shall prove

LEMMA 2. Let L be a Lie algebra over K. Let R be the radical and Z be

the center of L. Then:

(1) /(L)AC(L) = adzZi, where Z\ is the set of all elements x of L such that

(2) I(L)r\C(L)CKL)*Γ\C(L)C% where 9ΐ is the ideal of all nilpotent
elements of (adzϋ)*. In particular, if L is a Lie subalgebra of gI(F), yi=aάLN
with N the ideal of all nilpotent elements of R*.

PROOF. (1): If Z=(0), then C(L) = (0) and Zλ = Z=(0). If L=[L9 L], then
C(L) = (0) and

that is, Zi = Z. Therefore in these cases, /(L)nC(L) = adjLZi = (0).
When Zφ(0) and LΦ[L, L], for an element x of L ad^ is in C(L) if and

only if [>, L]C^ ? that is, x is in Zx. Therefore /(L)AC(L) = adLZi.

(2): By Ado's theorem, any Lie algebra over K has a faithful representa-
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tion. Hence we may assume that L is a Lie subalgebra of ql(V).

By (4) in §1, .R* is the radical of L*. Let A be a maximal abelian sub-
algebra of semisimple elements of R*. Then, by (5) and (6) in §1, there exists
a maximal semisimple subalgebra S of L* such that

SΓΛR* = (0), A A N = (0), [5, ΛQ = (0).

From the facts that [L*, L*] = [L, L] and that 5 - [ 5 , 5], it follows that S is
a maximal semisimple subalgebra of L. Consequently we have L=S+R and
therefore

[L, LΊ = S + [L, 2Q.

Now let D be any element of I(L)* r\C(L). Since /(L)* = adzL* by Lemma
1, we have

D = adz,(s + α + n) with s in S5 a in t̂ and 7z in N.

Since D is central, D[L, LH = (0) and therefore

ZλS = (0) and Z) [L, Λ] = (0).

It follows that

- - adz(α + Λ)S C S A Λ* = (0),

whence C5

5^H = (0) and therefore 5 = 0. Thus D = aάL(a + 7i).

Since the set of all elements x of gl(F) such that [>, J R ] C [ L , Λ] is an
algebraic Lie subalgebra of gl(F), we have [X*, R~] = [L, RJ. Hence for any
element y of L*

Thus we see that [X, Λ] i s stable under ad^α and RdLn. Since DHL,
if follows that

ad ίLι Ria= — ad LLι m n.

It is known that SLd^L>R^a is semisimple with a and that adrz,i?j7z is nilpotent
with 7i. Consequently we have adrz^a^O. It follows that
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(adLa)2L C (ad z β) [L, L] = [>, S + [L, ΛJ] = (0).

But adz,« is semisimple with a and therefore a,dLa=0. It follows that D =
adLτz. Thus /(L)*AC(L)CadLiV,

By Lemma 1, we see that (adI.R)* = adI.R*. Suppose that adL# with x in
.R* is nilpotent. x is decomposed into the Jordan sum, that is, x is uniquely-
expressed in such a way that

X = XS + Xm [_XS, Xn~] = 0

where #s is semisimple and xn is nilpotent ([2], p. 71). The components xs

and xn of # are contained in g(#) ([]2], p. 184) and therefore in R*. It is
evident that

is the Jordan sum decomposition of ad/^. Therefore

adLx = a d z ^ C adziV.

Hence sJί C adiiV. Since for any element n of N a d ^ is nilpotent with n9 we

have ad^iVC^, whence 9^=adziV.

Thus the proof is complete.

As a consequence of the lemma we have

COROLLARY. Let L be a non-abelian nilpotent Lie algebra. Then I(L)r\

PROOF. For a non-abelian nilpotent Lie algebra L, we have ZiφZ with
the set Zi defined in the lemma above. Hence the assertion of Corollary
follows from the lemma.

3. Lie algebras whose central derivations are inner

In this section we shall study the Lie algebras L such that C(L)CI(L)
and more generally the Lie algebras L such that C(L)CI(L)*.

We start with

LEMMA 3. Let Lbe a Lie algebra whose radical is abelian. If 'C(L)C/(£)*>
then either the center of L is (0) or L=^L, V].

PROOF. Any Lie algebra over K has a faithful representation and there-
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fore we may assume that L is a Lie subalgebra of gϊ(F). Let R be the radical
of L and let 5 be a maximal semisimple subalgebra of L. Then, since 5 is
algebraic, by (4) in §1 we have

L = S + R and L * = S + #*.

Suppose that the center Z of L is not (0) and Lφ[_L, L~}. Since [X, IΓ\ —
S+[L, if], it follows that Rφ[L, K], Choose a subspace Uoί R such that

R=U+[_L, K], Ur\[X, 7Γ] = (0).

Define a non-zero endomorphism D oί L such that

and Z)(5 + [L, Λ]) = (0).

Then D is a central derivation of L.
By Lemma 1 and our assumption, we have C(L)CadiZ*. Consequently

we have

D = adz,(s + r) with 5 in S and r in .R*.

Since Z)5=(0), it immediately follows that 5=0. Therefore D—RάLr and we
have

which contradicts our definition of D.

Therefore we see that Z=(0) or L=[^L, IΓ\. Thus the proof of the lemma
is complete.

We can now prove the following

THEOREM 1. Let Lbe a Lie algebra over a field of characteristic 0. // the
center of L is not (0) and if C(L)CI(L)*9 then the radical R of L contains no
elements x such that &dLχ is semisimple and non-zero. If furthermore C(L) φ
(0), then R is not abelian.

PROOF. If L = [L, L], then C(L) = (0) and R=[_L, RJ From the fact that
all derivations of L map R into the nilpotent radical, it follows that R is
nilpotent. For any element x of R, a d ^ is nilpotent, for ad## is nilpotent
and
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Therefore the assertion of the theorem is true in this case.
Now assume that L φ QL, ZΓ|. Since L has a faithful representation, we

may assume that L is a Lie subalgebra of gl(F). By Lemma 1 we have

Suppose that there exists an element x of R such that ad^ is not 0 and
is semisimple. Decompose x into the Jordan sum x=xs-\-xn. Then xs and xn

are contained in .R*. It is evident that

is the Jordan sum decomposition of ad^. Since ad^ is semisimple by our
supposition, it follows that aάLxn=0:) which means that [_xn, ZΓ] = (O). By the
fact that the set of all elements y of gl(F) such that [_(χn), y] = (0) is an
algebraic Lie subalgebra of gl(F) containing L, we see that

Take a maximal abelian subalgebra A of semisimple elements of the
radical R* of L* containing xs. Then by (5) and (6) in §1, there exists a semi-
simple subalgebra 5 of L* such that

Z* = s + Λ*, Λ* - ^ + iV,

5 A R* = (0), J A ΛΓ - (0), [5, ΛQ - (0),

where N is the ideal of all nilpotent elements of Λ*. S is really a subalgebra
of L since [L*, L*] = [L, L] and S = [5, SJ It follows that

adL(S + il)* = [S + -4, Λ J + [5 + Λ Λ J - (0).

Λ is not contained in [L, IQ, since for any element y of [L, ΛH adLy is
nilpotent. adL(S + Ά) is completely reducible and maps respectively R and
[L, if] into themselves. Therefore there exists a subspace Rι of i? containing
[L, if] such that

Λ = (Λ) + Bi, (Λ) Λ ί i = (0), adL(S + A)RiC Λi

i?i is obviously a subalgebra of JR.

Choosing a non-zero element z of the center Z of L, we define an endo-
morphism D of L in the following way:
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From the facts that L=S + R and that [L, IΓ\CS + RU it follows that D is a
central derivation of L. Taking account of the assumption that C(L)C/(£)*>
by Lemma 2 we see that

D = &dLn with n in N.

Let Z be the center of L*. Then Z C ^ and iVnZ is stable under adL*A
Since &dL*A is completely reducible, there exists a subspace U of N such that

N=U+(Nr\2), UΓ\(NΓΛZ) = (0\ (adL*A)UC ϋ.

It follows that

n = uJrz with M in ί/ and 2 in Nί\Z.

We now have on the one hand

Dx = [>, a] = [Λ, xsl e [^ TV] A Z C Nί\ Z

and on the other hand

Dx = \jι, xs~2 = \jι + z, xs~2 = E"? #sH 6 Z7.

Consequently DΛ;=0, which contradicts the definition of D.

Thus we conclude that R contains no elements x such that ad^ is not 0
and is semisimple.

To prove the second assertion of the theorem, assume that the center
ZΦ(0) and C(L)C/(ί )* If R is abelian, then by Lemma 3 we see that L =
tL,LJ Therefore C(L) = (0).

The proof of the theorem is complete.

A Lie subalgebra L of gl(F) is called splittable provided that for any
element x of L the semisimple component xs is always contained in L C12J.
Then any algebraic Lie subalgebra of gl(F) is splittable (C13]5 p. 184).

By using Theorem 1 we can show the following

THEOREM 2. Let L be a Lie algebra over a field of characteristic 0 such
that I(L) is splittable. If the center of L is not (0) and if C(L)CI(L), the
radical of L is nilpotent.

PROOF. Let R be the radical of L. Then &dLR is the radical of /(L).
From our assumption that I(L) is splittable, it follows that adLR is also
splittable ([15], p. 292). Theorem 1 tells us that adLR contains no non-zero
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semisimple elements. Therefore adLR consists of nilpotent elements. Thus
R is nilpotent and the proof is complete.

As a consequence of Theorem 2 we have the following corollary which
was proved by Leger ([10], p. 642).

COROLLARY. // the center of L is not (0) and if D(L)=I(L), then L is not
solvable and the radical of L is nilpotent.

PROOF. Since D(L) is algebraic, I(L) is algebraic and therefore splittable.
By Theorem 2 the radical is nilpotent.

If L is solvable, then L is nilpotent and therefore it has an outer deriva-
tion by Schenkman's theorem (see [8]). Thus L is not solvable, completing
the proof.

It is to be noted that, if /(L) is splittable and if the center of L is not (0)
and C(L)C/(£)*, then I(L) is algebraic. In fact, by using Theorem 1 and the
splittability of /(L), we see that ad/,2̂  consists of nilpotent elements and
therefore it is algebraic. From (4) in §1, it follows that I(L) is algebraic.

REMARK 1. There exists a Lie algebra which satisfies the assumption in
Theorem 2, but which does not satisfy the assumption in its corollary. Let
L be the Lie algebra over K described in terms of a basis xu x2, •••,̂  by the
following table:

\jCU X2~] = X3, [ # i , x{\ = Xi, [ > i , Xi] = X5, [ > 1 , X$} = X6,

[_Xχ, X(Γ\ = XS, [ > i , X7J = X8, [>2 ? #3U = X5, [>2, X4J — X6,

[>2 5 #5J = X7, D&2, ΛfcU = 2^8, [>3, X4I = — X7 + Λ8, E^3, X5~} = — ΛJ8,

[_xh x s 2 = 0 f o r ί+j>8.

This was given in [ΊΓ], p. 123, as an example of characteristically nilpotent
Lie algebras. The center is (Λ8). I(L) is splittable since adχ^ is nilpotent for
each i. Let D be a derivation of L and put

Dxi^^λijxj (£ = 1,2, . . . , 8).
j = ι

Then after calculation we obtain

λij=O for £>/, ^12=^24 = ^36=^67=0,
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, ^23 — ^34 = Λ45 = A56 =

143

Therefore the matrix of D is

0

0

0

Λl3

^ 2 3

0

Λi4

0

^ 2 3

0

λu

-λu

λ23

0

^ 2 6

0

-λu

λ23

0

Al7

A27

-λ15

λu

-λu

0

0

λu

^ 2 8

-2λ16 + λ 2 6 + λ 2 7

-λu

λu

^23 2yli3

^ 2 3

0

From this the matrix of an inner derivation is obtained by putting

^26 = ^15? ^27 = ^16? ^17 = 0

and the matrix of a central derivation is obtained by putting

all λij = O except λϊ8 and λ2%.

Thus D(L) is 10 dimensional, I(L) is 7 dimensional, and C(L) is 2 dimensional
and contained in /(L).

4. Lie algebras whose inner derivations are central

In this section we shall study the Lie algebras whose inner derivations
are all inner. We shall prove the following

THEOREM 3. Let L be a Lie algebra over a field of characteristic 0. Then:

(1) /(L)CC(L) if and only if 7(L)* CC(L), and if and only if L3 = (0).

(2) Assume that the center Z of L is not (0). Then I(L) = C(L) if and only
if I(L)* =C(L), and if and only if L2 — Z and dimZ = l.

(3) D(L) — C(L) if and only if L is abelian.

PROOF. (1): /(L)CC(ί) means that L2 C Z, that is, that L3 = (0). If
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I,3Γ=(0)3 I(L) consists of nilpotent elements and therefore I(L) is algebraic,
whence 7(L)*CC(L).

(2): If 7(L) = C(L) (resp. 7(L)*=C(L)), then by (1) L3 = (0). It follows
that 7(L) is algebraic. Hence the first two conditions are equivalent.

Now suppose that I(L)=C(L). Then L2 C Z. If L2φZ, then L is the direct
sum of a non-zero central ideal Zι and an ideal L\ containing L2. The identity
mapping of Zγ can be trivially extended to the derivation of L which we
denote by D. Then D is central, but not inner. This contradicts our supposi-
tion. Thus we see that L2 = Z. By the facts that

dim I(L) = dim L/Z and dim C(L) = dim L/L2 x dim Z,

we have
Conversely suppose that L2 = Z and dimZ=l. Then /(L)CC(i). By

using the formulas given above on the dimensions of 7(L) and C(L), it is
immediate that dim/(L) = dim C(L). Therefore we have I(L)=C(L).

(3): Suppose that D(L)=C(L). If Z=(0), we have C(i) = (0) and there-
fore Z>(L) = (0), whence L = (0). Therefore we may assume that ZΦ(0). Then
by (1) it follows that L3 = (0). If L2φ(0\ we take a subspace Uφ(0) such
that

The identity mapping of U can be extended to an endomorphism D of L.
Then D is a non-central derivation of L, which contradicts our supposition.
Therefore L2 = (0). The converse is evident.

Thus the proof of the theorem is complete.

REMARK 2. There exists a Lie algebra satisfying the condition in the
statement (2) of Theorem 3. The three dimensional Lie algebra over K with
a basis xu x2, χ3 such that

[ > 1 , X2~} = X3, | > i , Λ3H = [^2, ΛJ3H = 0

is an example of such a Lie algebra.

5. Lie algebras with as few derivations as possible

In this section we are concerned with the Lie algebras which have as
few derivations as possible, that is, the Lie algebras L such that D(L)=I(L) +
C(L).
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We first prove the following

THEOREM 4. Let L be a Lie algebra which is the direct sum of the ideals
L& = 1, 2, , n). Then D(L)=I(L) + C(L) if and only if D(L{) = /(L, ) + C(L{)
for each ί.

PROOF. By (1) in §1 we see that

and that for iφj D(Lh L; )CC(L). Therefore if D(Ld=I(Li) + C(Ld for each
ί, it follows that D(L)=I(L) + C(L).

Conversely suppose that D(L)=I(L) + C(L). Any derivation Di of Li is
trivially extended to a derivation D of L. Therefore we have

D = aάLx + D

n

where x=*Σxj with %j in L; and D is in C(L). Denote by Di the restriction

of D to Li. Then

Di = B,άL.Xi + Di.

It follows that

ά = Zh

where Z and Z{ are the centers of L and Li respectively. Hence D{ is in C(L, )
and therefore

Thus the proof is complete.

Following Leger (E1OH? P 643), a nilpotent Lie algebra L is called quasi-
cyclic provided that L has a subspace C7 such that L=U+{^L, tΓ\ with Ur\
QL, i ] — (0) a n ( i such that L is the direct sum of the spaces Uι where C/1 = Z7
and Ul-=[U, t/'"1] for j > 2 . We remark that any Lie algebra L such that
£ 3 = (0) is quasi-cyclic.

We shall prove the following

THEOREM 5. Let L be a Lie algebra over a field of characteristic 0. //
D(L) = I(L) + C(L\ then the radical is either non-quasi-cyclic or an abelian
direct summand of L.

To prove the theorem, we begin with recalling some known facts. Let
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R be the radical of L and let L=S+R be a Levi decomposition of L. Let 51(5)
be the set of all derivations of L which map S into (0). Then 21 (S) is a
subalgebra of D(L) and it is known ([7], p. 692) that

Since R is stable under all derivations of L, for any derivation D of L its
restriction to J? is the derivation of R, which we denote by P(D). Then P is a
homomorphism of D(L) into D(R) and induces an isomorphism of 2Ϊ(S) onto

We here consider the set of all derivations of 21 (S) which map R into the
center of R. We denote the set by 2to(S). Then 2I0(S) is a subalgebra of
Si (5) such that

We now show the following

LEMMA 4. (1) p(2l(S)) is the centralizer of SLURS in D(R).

(2) p (21 (S)

(3)

(4) p(2I0(S)) is ίfee intersection of p(Sί(S)) and ίfee centralizer of I(R) in
D(R).

PROOF. (1): If D is in 21(5), for any elements 5 of S and r of R we have

= P(D) [5, r] - [s,

= tDs, r] - 0.

Hence P(D) is contained in the centralizer of ad^S in D(R).

Conversely, let D be any element of the centralizer of ad#S in D(R).
Define an endomorphism D of L in the following way:

Ds = 0 for s in 5 and Or = Dr for r in iϋ.

Then D is a derivation of L, for

= Ls, Dr-} = [Z)S, r ] + Is, DrJ
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Since D = P(D), D is contained in p(2ί(S)).

(2): This has been proved in [9] (p. 513). So we omit the proof.

(3): By considering a faithful representation of L, we may assume that
L is a Lie subalgebra of gϊ(F). Then by (4) in §1 jR* is the radical of L* and
L*=S + R* is a Levi decomposition of £*. By Lemma 1 we have

/(L)* = ad zL* and /(#)* = ad*.R*.

Let aάLx be any element of 2t(S)Λ/(!#)*. Since x is an element of L*, x
is expressed as the sum

x = s + r with s in S and r in #*.

Since (adz#)S = (0), if follows that

= (0).

Hence [s, S] = (0) and 5 = 0. Therefore x is in #* and P(adz#) is contained

in /(#)*. Thus p(SKS)A/(L)*)CP(Sl(S))Λ/(Λ)*.

Conversely, let ad** be any element of P ( S I ( S ) ) A / ( Λ ) * . Then ad^=P(Z))
with some D in 21 (S). Since .R* and the center Zλ of R* are stable under
ad#*S and since adR*S is completely reducible, there exists a subspace U such
that

Λ* = E/- + Zi, Ur\Zι = (0), (ad**S) J7 C ί7.

Since x is an element oΐ R*, x is expressed as the sum

x — u + z with Z4 in ί7 and z in Zi.

Since D is in 21 (S), for any 5 in S and r in .R we have

and therefore [M, [Γ, /Π = [I«, r], .s]. It follows that [r, [5, w]]==0. Therefore
[Λ, [5, i*]]=(0), from which it follows that [Λ*, [s, M]] = (0). Thus [5, w] is
contained in Zi so that

Thus [5, w] = 0, which shows that adiω is in 2ΐ(S). Hence
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aάRx = aάRu = P(adLw) e p(Sl(S) A/(L)*).

Thus we see that p(2l(S))n7(R)* CP(2I(S)n/(L)*).

(4): Let £ be any derivation in 3I0(S). Since 2to(S)C3t(S), P(D) is in
P(St(S)). Since P(Z>) maps i? into the center of R,

[P(B), ad*iq = ad*P(Z))# - (0).

Therefore P(D) is contained in the centralizer of I(R) in D(R).
Conversely, let D be any element of the intersection of p(2l(S)) and the

centralizer of I(R) in D(R). From the fact that D is in P(Sί(S))> it follows
that there exists a derivation D in Sί(S) such that P(D) = D. By the fact that
D is in the centralizer of I(R) in -D(.R), we see that D maps J? into the center
of R. Thus D is contained in 2to(S) and therefore 5 is in ρ(2I0(S)).

Thus the lemma is proved.

By making use of Lemma 4 we can prove the following

LEMMA 5. Let Rbe a solvable Lie algebra. Let @i and @2 be semisimple
subalgebras of D(R) which are conjugate under an automorphism r of D(R)
mapping I(R) into itself. Let Li — ̂ i+R and X2 = @2 + ̂  be the semi-direct
sums. Then fl(Ii)=/(ii) + 2to(@i) if and only if β(L2)=/(L2)

PROOF. Let px and P2 be respectively the restriction homomorphisms of
D(Lι) and D(L2) into D(R). By the definition of the semi-direct sum, ad#@i
and ad#@2 are identified with @x and @2 as subalgebras of D(R). From the
facts that D(Lt)=/(Lf ) + St(@f) and that Sί0(@0C3I(@/)? it follows that 0(L, ) =

ίo(@f) if and only if

SIC®,-) = St(®/) A7(Lf) + ao(@f ) G = 1, 2).

Therefore it is the case if and only if

P, (SI (©,-)) = P, (SK@f ) AI(Ld) + P/(Sro(@ί)) G = 1, 2).

Since r maps adR&1 onto ad#(22 and 7(Λ) onto itself, by using Lemma 4 we
see t h a t r maps Pi(3t(®i)), Pi(Sί(@i)n7(Li)) and Pi(Sto(@i)) onto P2(SI(@2)),
P2(2l(®2)/°v7(Zr2)) and P2(Sί0(@2)) respectively. Thus we can conclude that
JD(ii) = 7(Li) + Sto(®i) if and only if D(L2) = 7(L2) + 2Io(@2)5 completing the
proof.

In virtue of Lemmas 4 and 5, we can now prove the following

LEMMA 6. Let R be the radical of a Lie algebra L and let i = S + Λ be a
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Levi decomposition of L. If R is quasi-cyclic and non-abelian, then D(L)φ

PROOF. If L has a semisimple ideal, we denote by L\ the largest semi-
simple ideal of L. Then L is the direct sum of Lλ and an ideal L2 whose
radical is R. From the fact that maximal semisimple subalgebras of L are
conjugate to each other by Malcev's theorem, it follows that Li is contained
in S. Therefore there exists a semisimple subalgebra S2 such that

S = Li + S2 and L2 = S2 + R.

Since the center of Lλ is (0) and Lι — [_L^ LJ, by using (1) in §1 we see that

and therefore that D(L)=D(Lι) + D(L2). Since Z)(Li) = /(ii), it is sufficient to
prove the assertion of the lemma for L2. Thus we assume that L has no
εemisimple ideals.

Suppose that R is quasi-cyclic and non-abelian. Then there exists a
subspace U such that

R^YiU1 with U1r\UJ' = (0) for ίφj.
i

We assume that Unφ(0) and Un"l = (0). Then zz>l since R is not abelian.
The identity mapping of U extends to the derivation of R, which we denote
by D. Then it is easy to see that U is the only subspace of R such that

R=U + R2, UίΛR2 = (0) and DUCU.

Take a maximal abelian subalgebra 2Ii consisting of semisimple elements
of D(R) which contains D. Then, by (6) in §1, there exists a maximal semi-
simple subalgebra @ of D(K) such that

where 21 is a maximal abelian subalgebra of semisimple elements of the
radical of D(R\ and such that [@, 2ΐ] = (0). Hence @ + 2I is completely
reducible and therefore there exists a subspace U' of R such that

= (0) and (β + Sί)V C U'.

Since D is contained in @ + 2T, it follows that DU CUf and therefore that
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U' — U. Thus we see that D is a scalar mapping on each U* and U* is stable
under @ + Sί, from which it follows that QD, @] = (0). Therefore D is contained
in the centralizer of any subalgebra @i of @ in D(R).

We now assert that, for the semi-direct sum Li = @i + .R,

In fact, suppose that Z)(Li)=/(Li) + 2Io(@i). Then

21 (@i) = a (@i) A /(Li) + % (

and therefore

where Pi is the restriction homomorphism of D(L\) into D(R). By Lemma 4
(1), Pi(Sί(@i)) is the centralizer of @i in D(R), where @i is identified with
adΛ@i. Hence 5 is contained in Pi(§t(@i)). By Lemma 4 (2) 5 is expressed
in the form

where r is in .R and D is a derivation of R mapping R into the center Z of i?.
For any element u of ί7,

u = Du = [r, M] + 5w e 7?2 + Z,

whence

[C/, ί/"-1] C [i?2, ί/""1] C Un+ι = (0).

Therefore we see that £/w = (0), which is a contradiction. Thus we have

D(L)ΦI(Lι) + §Io(@i), as was asserted.

For a given Levi decomposition L=S + R, we see that ad^S is a semi-
simple subalgebra of D(R). Let & be a maximal semisimple subalgebra of
D(R) containing ad^S. Then by Malcev-Harish-Chandra's theorem, there
exists an automorphism r of D(R) which maps @; onto & and I(R) onto itself.
Let @i be the image of ad^S under r and let Lλ be the semi-direct sum
R. Then, as shown above,

Since L has no semisimple ideals, L can be considered as the semi-direct sum
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a,άRS + R. Hence we can use Lemma 5 to see that Z>(L)^/(L) + 3ίo(S).
Thus the proof of the lemma is complete.

PROOF OF THEOREM 5. Suppose that the radical R of L is quasi-cyclic
and not abelian. Take a Levi decomposition L=S+R. Then by Lemma 6
we see that

Since C(L)C2Io(S), it follows that D(L)φI(L) + C(L).

We next suppose that R is abelian and not a direct summand of L. Then
the center Z of L is a proper subalgebra of R. Let Rι be the complementary
subspace of Z in R. Then Ri^(O). The identity mapping of R can be
trivially extended to a derivation of Z, which we denote by Zλ We assert
that D is not contained in 1(L) + C(L). In fact, let L = S + R be a Levi
decomposition of L. If D is contained in 7(i) + C(I»), then

D = adL(s + r) + Z) with s in S, r in ^ and D in C(I).

Since ZλS = (O), it follows that [>, S] = (0) and therefore that 5 = 0. Then for
any element r of Rx we have

r> = Drf = ΰr' eRίr\Z = (0),

which is a contradiction. Therefore D is not contained in I(L) + C(L\ as was
asserted. Hence we have D(L)φI(L) + C(L).

Thus we conclude that if D(L)=I(L) + C(L) then either R is not quasi-
cyclic or R is abelian and a direct summand of L. The proof of Theorem 5 is
complete.

As an immediate consequence of Theorem 5 we have the following
corollary, which was proved by Leger (dlOJ, p. 643).

COROLLARY 1. If the center of L is not (0) and if the nilpotent radical is
quasi-cyclic, then D(L)ΦI(L).

PROOF. Suppose that the center Zφ(0) and D(L)=1(L). It is evident
that L is not the direct sum of a semisimple ideal and a central ideal. Hence
by Theorem 5 the radical R is not quasi-cyclic. But by Corollary to Theorem
2 R is nilpotent. Thus the nilpotent radical is not quasi-cyclic, completing
the proof.

Before giving another consequence of Theorems 4 and 5, we recall a
notion of Lie algebras introduced in [17]. A Lie algebra L is called char-
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acteristically solvable provided that D(L) is solvable and the center of L is
contained in [L, i ] .

COROLLARY 2. Let L be a solvable Lie algebra such that
Then L is the direct sum of a central ideal and a characteristically solvable
ideal which is not quasi-cyclic.

PROOF. Let Z be the center of L. Put Zι = Zr\[_L, IT] and choose a
complementary subspace Z2 of Z\ in Z. Take a subspace L\ of L containing
[X, X] such that

Then i i is an ideal of L, the center of Lλ is Zλ and Zi C[£i, LJ .

By Theorem 4 we see that O(Li)=/(Li) + C(Li). For any derivations D,
in C(Li) and for any element % of i i ? we have

[Z>, £ ' > = (DDr - ΰ'D)* e DZλ - Ώ'Zλ

and

[Z>, adZl.τ] = ad Z l fe 6 adL iZi = (0).

Hence C(Li) is a central ideal of D(Lι). It follows that fl(Li) is solvable.
Thus Li is characteristically solvable. By Theorem 5 we also see that L\ is
not quasi-cyclic. Thus L is the direct sum of a characteristically solvable
and non-quasi-cyclic ideal Lx and of a central ideal Z2. The proof is complete.

REMARK 3. Let L be a Lie algebra whose radical R is not an abelian
direct summand. Then Theorem 5 states:

(a) If D(L) = I(L) + C(L\ then R is not quasi-cyclic.

Corollary 1 to Theorem 5, Leger's result, is an easy consequence of Corollary
to Theorem 2 and the following statement:

(b) If D(L) = I(L), then R is not quasi-cyclic.

(b) is a special case of (a). We shall here note that there exists a nilpotent
Lie algebra which is not quasi-cyclic, which satisfies the assumption of (a)
and which does not satisfy the assumption of (b). Dixmier-Lister [5] gave
the following nilpotent Lie algebra as an example of a characteristically
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nilpotent Lie algebra. Let H be the 8 dimensional Lie algebra over a field
of characteristic 0 described in terms of a basis xu x2, ••••, xg by the following
table:

O l , X2~] = X5, [_XU X*} = χ6> \L%U xϊ} = χ7>

[ > 4 , χ{] = — X8.

In addition fe, ^ ] = — [_xh xi] and for ί<j [_xh xf] = 0 if it is not in the table
above. It has been shown that D(H)=I(H) + C(H), C(H) is 8 dimensional and
intersects I(H) in a 2 dimensional space. Hence D(H)φI(H). Since # h a s
no semisimple derivations, H is not quasi-cyclic.

REMARK 4. If L is a Lie algebra over K whose radical is an abelian direct
summand, L is the direct sum of a semisimple ideal S and a central ideal.
Therefore D(L)φI(L). Since the center of S is (0) and S = [S, 5], by using
(1) in §1 we see that D(L)=I(L) + C(L).

REMARK 5. We shall give an example of a Lie algebra L such that
D(L)φI(L) + C(L). Let L be the Lie algebra over a field of characteristic 0
described in terms of a basis xu x2, •••, χ5 by the following table:

[.τ3, ΛJ5] = — #4, [>2, Λ5] = [Λ;3, #4] = C^4, ΛJδll = 0.

In addition [j&/5 ^yH= — \iχj, χΓ\. S = (xu x2, χ3) is a semisimple subalgebra and
Λ = (Λ4, .τ5) is the radical of L. After calculation we see that C(L) = (0) and
D(L) contains a 1 dimensional space of outer derivations. Therefore D(L)Φ
I(L) + C(L). For an example of a Lie algebra such that D(L)φI(L) + C(L)
and C(L)φ(0\ it suffices to take the direct sum of the Lie algebra above and
of another abelian Lie algebra.

6. Lie algebras with radicals whose central derivations are inner
and with radicals which have as few derivations as possible

In this section we are concerned with the Lie algebras L whose radicals
R satisfy the conditions considered in the preceding sections. We can not



154 Shigeaki TOGO

always expect that L satisfies the corresponding conditions.
We shall first study the Lie algebras whose radicals R satisfy each of

the conditions C(R)CI(R\ C(R)CI(R)*> C(Λ)A/(Λ) = (0) and C(Λ)A/(Λ)*=(0).
Namely, we shall prove the following

THEOREM 6. Let L be a Lie algebra over a field of characteristic 0 and let
R be the radical of L. Then:

(1) // C(R)CI(R\ then C(L)CI(L).

(2) // C(R)C/(Λ)*, then C(L)C/(£)*•

(3) // C(Λ)A/(Λ) = (0), then C(L)A/(L) = (0).

(4) // C(Λ)A/(JR)*=(0), then C(L)A/(L)*=(0).

PROOF. Let P be the restriction homomorphism of D(L) into D(R) and
let L=S + R be a Levi decomposition of L.

(1): Since C(L)C2t(S), we have p(C(L))CP(Sί(S)). From the fact that
the center of L is contained in that of R, it follows that p(C(L))CC(R).
Therefore by the assumption we have

Using Lemma 4 (2) we see that

Since the restriction of P to 2ί(5) is an isomorphism, we obtain that C(L)C

3l(S)A/(L) and therefore C(L)C/(i).

(3): By using Lemma 4 (2), we have

From the fact that p(C(L))CC(Λ), it follows that

P(C(L) A /(D) CC(i?)Λ /(Λ) = (0).

Since P is an isomorphism on Sί(S), we have C(L)A/(L) = (0).

The proofs of (2) and (4) can be given in a similar way as in the proofs
of (1) and (3), by using Lemma 4 (3) instead of Lemma 4 (2). Therefore we
omit the proofs.

REMARK 6. The converse of the statement (1) in Theorem 6 is not
generally true. For example, let L be the Lie algebra given in Remark 5.
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Since the center of L is (0) and since the radical R is abelian, we have C(L) =
(0) and /(Λ) = (0). Hence C(L)C/(L), but C(Λ)c£/(Λ).

REMARK 7. We shall show, by example, that the converse of the state-
ment (3) in Theorem 6 does not hold generally. Let L be the Lie algebra
over a field of characteristic 0 described in terms of a basis xu x2, •••, xe by
the following table:

[>i, x2j = 2x2, Oi, x3j = — 2x3, [>2, x3~] = xu

In addition £#,-, #/] = — [%, %ij and for £</ (j^ , xj~] = 0 if it is not in the table
above. R=(x4, x5, x6) is the radical of L. Since L = [L, L], we have C(L) = (0)
and therefore C(L)A/(L) = (0). However C(Λ)=/(Λ) and it is a 2 dimensional
space, whence C(R)r\I(R)φ(0).

REMARK 8. We remark that if ϋΓ is a Cartan subalgebra of L and if
C(H)CI(H\ then L is solvable. In fact, there exists a Levi decomposition
L=S + R of L such that H is the sum of a Cartan subalgebra Hi of S and a
subalgebra Hr\R and £Γi is a central ideal of fl"(Q4]5 p. 18). If HχΦφ\ we
have I(H)Hι = (0). However there exists a central derivation of H which is
the idendity mapping on Hi. Hence C(H)c£I(H\ contradicting the assump-
tion. Therefore we have ίfi = (0), whence 5 = (0), that is, L is solvable.

D(R)=I(R) if and only if D(L)=I(L) and L is the direct sum of a semi-
simple ideal and the radical ([16], p. 74). If 7(Λ)CC(Λ) (resp. D(R) = C(R)),
we can not assert that I(L)CC(L) (resp. D(L) = C(L% since ad^S with S a
semisimple subalgebra of L is not contained in C(L).

In the rest of this section, we shall study the Lie algebras whose radicals
have as few derivations as possible. Such Lie algebras do not necessarily
have the same property. Let L be the Lie algebra given in Remark 5. Then
D(R) = C(R) for the radical Λ, but D(L)φI(L) + C(L). L has further the
properties that the center is (0) and that L = HL, IT].

However, for a Lie algebra L with radical R we can generally show that
if D(R)=I(R) + C(R\ then L is the direct sum of an ideal Lλ with D(Li) =
J(L) + C(Li) and of an ideal L2 with JD(L2)^=/(L2) + C(L2), and L2 is a Lie
algebra of such a type as noted above. It is the aim of this section to prove
this fact.

We begin with the following

LEMMA 7. Let L be a Lie algebra and let R be the radical of L. If D(R) =
I(R)JrC(R), then L is the direct sum of a characteristically solvable ideal hi
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with D(Lι) = I(Lι)-irC(Lι) and of an ideal L2 whose radical is abelian.

PROOF. Let L = SJrR be a Levi decomposition of L and let Z be the
center of R. Put Zι = Zr\\JR, RΓ\. Then Z and Zλ are stable under all deriva-
tions of R. Since ad#S is completely reducible, there exists a subspace Z2 of
Z such that

Z = Zλ + Z2, Zi A Z2 = (0), (ad*5) Z2 C Z2.

Since R and Qft, R] are stable under ad^S, there exists a subspace RΊ of R
containing [_R, R~] such that

R = Ri + Z2, R1 r\Z2 = (0), (ad*S)Λi C Λi.

It follows that i?i is an ideal of L.
We assert that Rx is characteristically solvable. In fact, the center of

Rι contains Zx and is contained in Z. Hence it is equal to Zx and therefore
contained in [_RU ΛJ. Therefore Rλ has no abelian direct summands. Since
R is the direct sum of the ideals jRx and Z2, from our assumption and Theorem
4 it follows that D(R1) = I(R1) + C(Rι). Therefore we can use Corollary 2 to
Theorem 5 to see that Rι is characteristically solvable, as was asserted.

Since ad^S maps Rι into Ru adRlS is a semisimple subalgebra of D(Rι).
By the fact that R1 is characteristically solvable, we see that adΛ lS = (0).
That is, [S, ΛJ = (0).

Now we put L2 = 5 + Z2. Then taking account of the fact that [_S, Zf]C
Z2, we see that L2 is an ideal of L. Thus L is the direct sum of the ideals Rx

and L2 satisfying the conditions in the statement of the lemma.

In virtue of Lemma 7 we can now prove the following

THEOREM 7. Let L be a Lie algebra over a field of characteristic 0 and let
R be the radical of L. Then D(R) = I(R)-\-C(R) if and only if L is the direct
sum of the ideals Lλ and L2 satisfying the following conditions:

(1) Li is the direct sum of a semisimple ideal, a central ideal and a char-
acteristically solvable ideal Rι with D(Ri) = I(Ri) + C(Rι).

(2) The radical of L2 is abelian, the center of L2 is (0) and L2 = [_L2, L{].

And then L\ and L2 are characteristic ideals of L and

Z>(L0 = I{LX) + CdO, D(L2)φI(L2) + C(L2).

PROOF. Suppose that D(R) = I(R) + C(R). Let Si be the largest semi-
simple ideal of L. Then it is a direct summand of L. Hence L is the direct
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sum of 5i and an ideal H whose radical is R. Using Lemma 7, we see that H
is the direct sum of a characteristically solvable ideal Rλ with D(Rι)=I(Ri) +
C(Rι) and of an ideal Hλ whose radical A is abelian. Let Fi = S+ A be a Levi
decomposition of Hλ. We denote by Z the center of Hi. Since Z is stable
under completely reducible mappings ad^S, there exists a subspace R2 of A
such that

A = Z + R2, Zr\R2 = (0), (adAS)# 2 C Λ2.

We see that S + i?2 is an ideal of Hx and therefore that Hλ is the direct sum
of the ideals Z and S + R2. Now we put

Li = Sι + Z + RX and L2 = S + Λ2.

Then i i is an ideal of L and is the direct sum of ideals Su Z and jRi. L2 is an
ideal of L whose radical is abelian and whose center is (0).

We assert that L2 = [X2, L2~]. In fact, if L2φ[_L2, L2J, then from the fact
that CL2, L 2 ] = S + [£ 2, R{] it follows that R2φ[_L2, R2J Both R2 and [L2, Rf\
are stable under the derivations of L2. Hence there exists a subspace UΦ(0)
of R2 such that

Λ2 - U + [L2, Λ2], f/A[L2? R2J = (0),

It follows that

Therefore ί/ is contained in the center of L2. This is a contradiction since
the center of L2 is (0). Hence we see that L2 = [L2, Lf\, as was asserted.

Thus L is the direct sum of the ideals Lλ and L2 satisfying the conditions
(1) and (2).

Conversely, if L is such a direct sum of ideals, then R is the direct sum
of a solvable ideal Rλ with Z)(Λi) = /(/ei) + C(JRi) and of a central ideal. By
using Theorem 3 (3) and Theorem 4 we see that D(R)=I(R) + C(R).

Since the center of L2 is (0) and since L2 — {_h2^ Lf\, by using (1) in §1 we
see that

and therefore that D(L)=D(Li) + D(L2). It follows that Lλ and L2 are stable
under all derivations of L.

Since D(Si)=J(Si) and since D(Z) = C(Z\ by Theorem 4 we obtain that
D(Lι)=I(Lι) + C(Li). As for i 2 , the radical R2 is abelian and not a direct
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summand. Therefore we can use Theorem 5 to see that D(L2)φI(L2) + C(L2).
The proof of the theorem is complete.

It is to be noted that the Lie algebra referred to in Remark 3 gives an
example of characteristically solvable Lie algebras L such that D(L)=I(L) +
C(L).
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