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Introduction. Let 2 be a Green space introduced by Brelot-Choquet
[2]. In general, there is no notion of “smooth” boundary of 2 and we cannot
define normal derivatives on “the boundary” in the usual way. Still, there
are notions of Laplacian and Dirichlet integrals on 2. Therefore, we may
define “generalized” normal derivatives so as to make Green’s formula valid.
To be more precise, let 2* be a compactification of 2 so that “an ideal
boundary” 4=2%*—8 is realized. If » is an HD-function (i.e., a harmonic
function with finite Dirichlet integral) and if a function ¢ on 4 is to be a
normal derivative of u, then Green’s formula

gb(grad u, grad f)dv = — S4<pfda

will be satisfied for any function f with finite Dirichlet integral on 2 which
is “properly” extended over £*. Here, we have two points to be cleared: 1)
What is the measure ¢, which is the surface element in the classical case? ii)
What is the “proper” extension of f?

Constantinescu-Cornea [ 3] defined a normal derivative on the Kuramochi
boundary as a measure, which corresponds to ¢-do in the above argument.
If we are to define a normal derivative as a function, we must specify the
measure ¢. Following Doob [4], we try with the harmonic measure #. In
order to assure its existence, we shall suppose that the compactification is
resolutive (§2).

As for the second point, Constantinescu-Cornea [3] defined a “quasi-
continuous” extension of BLD-functions over the Kuramochi compactification.
The definition requires a potential theory on the compactification and is
applicable only to the Kuramochi boundary. On the other hand, Doob [4]
used “fine” boundary functions of HD-functions, which required a theory of
fine limits. It also looks impossible to generalize the theory to an arbitrary
compactification.

Studying these two cases closely, however, it becomes clear that we don’t
need such sophisticated tools as “quasi-continuity” or “fine limits”. If we
consider a function f on 4 which has the Dirichlet solution H; on £, then the
pair (f, Hy) plays the role of a “properly” extended function. Thus, our
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definition will be: Given an HD-function uz on £, we say that u has a normal
derivative ¢ on 4 if

Sk(grad u, grad Hy)dv = — Sjﬂfdﬂ

for any function f on 4 such that it has the Dirichlet solution H; € HD.

We can extend our definition to functions harmonic only near the
boundary (§3). With this definition of normal derivatives, it is possible to
discuss boundary value problems involving normal derivatives (§4 and §5).
We shall obtain solutions of these problems under certain conditions, mostly
applying the methods given in Doob [4]. In order to obtain reasonable
results, it is often necessary that the compactification is large enough to
ensure that every HD-function is a2 Dirichlet solution. Such a compactification
will be called D-normal. Since the Martin and the Kuramochi compactifica-
tions are both D-normal, our theory includes some of Doob’s results [4] as
well as Constantinescu-Cornea’s [37].

Finally, one should remark that we may consider any locally compact
space on which there are notions of harmonic and superharmonic functions
and of Dirichlet integrals and we may treat the theory axiomatically. In this
treatise, however, we shall restrict ourselves to 2 Green space.

§ 1. Preliminaries

1.1 BLD-functions and Dirichlet integrals.

We refer to [1] for the definition and properties of BLD-functions on a
Green space 2. If » is an open set in 2 and if £, £, are BLD-functions on o,
then the mutual Dirichlet integral

<fr fr>u= g;(grad £, grad f)do

is defined, where & =w— {points of infinity} and dv is the volume element on

2. We denote | fllZ=<f, f>o The subscript will be omitted if w=2.

If fis a BLD-function on o, it is decomposed into f=#A+f, on w, where %
is harmonic on w and f; is a BLD-function of potential type on w (cf. [1], [4]
and [5]). This decomposition will be referred to as the Royden decomposi-

tion on w.

1.2 Classes of harmonic functions.

Let HP Dbe the space of all harmonic functions expressed as a difference
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of two non-negative harmonic functions on 2. The bounded harmonic func-
tions on 2 form a subspace HB and the BLD-harmonic functions form another
subspace HD. We denote HBD=HBNHD. '

A family YSHP is called monotone if, for any monotone sequence in Y
having its limit fe€ HP, we have fe¢Y. Given a family ¥ < HP, there is the
smallest monotone family M(Y) containing Y. It is known that HDS M (HB)
and M(HBD)=M(HD). (Cf.[3], §2 and §7).

If v is an open set in 2, let HD(w) be the space of all harmonic functions
u on » with finite Dirichlet norm ||ul.,.

1.3 Compactifications.

If 2* is a Hausdorff compact space and if there is a homeomorphism of
£ into 2* such that the image of £ is open and dense in 2%, then £2* is called
a compactification of £ and 4=0%*—2 is called an ideal boundary of 2.

Let Q be a family of bounded continuous functions on 2. If a compacti-

fication 2* satisfies:

a) every fe€Q can be continuously extended over 2%,
b) (Q separates points of 4=0%—Q,

then 2* is called a Q-compactification of £. It is known (cf. [3]) that a Q-
compactification always exists and is unique up to a homeomorphism. Thus,
it will be denoted by 2% and its ideal boundary by 4.

Given a compactification 2% let C(4) be the space of all continuous
(bounded) functions on 4.

§ 2. Dirichlet problem

2.1 Resolutive functions.

Let 2* be a compactification of 2 and let 4=2*—2. Given a function f
(extended real valued) on 4, we consider the following classes:

~ s; superharmonic, bounded below on 2,
dr= { . } U {eo}
lims(a)>f(¢) forany &eA

C_‘Sf = {S, — S € Sﬁf}.

Let H;(a)=inf {s(a); s € I;} and H;(e) =sup {s(a); s € I;}. It is known
(Perron-Brelot) that H; (resp. Hy) is either harmonic, =+ o0 or = —co. If
H;=H; and are harmonic, then we say that f is resolutive and H;=H,=H;
ig called the Dirichlet solution of £ (with respect to £%).
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Lemma 1. If f is resolutive, then there exists a positive superharmonic
function s such that
Hf‘l‘&SEESf and Hf—esEng

Jor any &>0.
(Cf. [3], Hilfssatz 8.1)

2.2  Resolutive compactification.
If any f e C(4) is resolutive, then we say that 2* is a resolutive compacti-
fication. In this case, we introduce the following classes of functions:
R(4) = all resolutive functions on 4,
Rp(4)={fe€R(4); Hy € HD},
Cp(4) =Rp(HNC(D).
H(Q*)= {Hy; f € R(D)},
Hp(2*) = {Hy; f € Rp(4)} = H(2*) N HD,
Hc (%)= {H;; f € C(D)}.
It is known that H(Q*)= M(H:(2*)) (cf. [3]). Therefore, if 2F and 25 are two
resolutive compactifications such that H (27)=H.(2}), then H(Q)=H(£2})
and Hp(27)=Hp(27).
2.3 D-normal compactification and regular compactification.
DerFinmTiON. A resolutive compactification £* is said to be D-normal if

Hp(2*)=HD.

DeriniTiON. A resolutive compactification 2* is said to be regular if
Cp(4) is dense in C(4) in the uniform convergence topology.

Examples.

1. Wiener’s compactification (cf. [37, §9) is the largest resolutive com-
pactification. It is D-normal.

2. Royden’s compactification (ef. [37], §9) is D-normal and regular.

3. If Q consists of BLD-functions, then the Q-compactification is regular.

4. The HB-compactification is D-normal; the HBD-compactification is D-
normal and regular.

5. The Martin compactification is D-normal. It is not known if it is
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regular or not.

6. The Kuramochi compactification is D-normal and regular.

7. The Alexandroff compactification is D-normal if and only if there are
no non-constant functions in HD.

1, 2, 8, 4, 7 and the regularity of the Kuramochi compactification are
immediate from the definitions. (Wiener’s and Royden’s compactifications
were defined for Riemann surfaces in [37]. Analogous definitions can be given
for Green spaces.) The D-normalities of the Martin and Kuramochi compacti-
fications are less obvious.

By Doob [4], we see that every v € HB has a “fine” boundary value f on
the Martin boundary and that » is the Dirichlet solution of 7 with respect to
the Martin compactification 23;. It follows then that H(23)=M(HB). Hence
the Martin compactification is D-normal.

Constantinescu-Cornea proved (Hilfssats 16.1 in [37]) that H(2%)= M(HD)
for the Kuramochi compactification 2% of a Riemann surface 2. The same
proof is applicable for a Green space. Thus, the Kuramochi compactification
is also D-normal.

Remark. It can be seen by examples that the notions of D-normality
and regularity are independent.

2.4 Harmonic measure.

If ©* is a resolutive compactification, then f— H;(«) is a positive linear
form on C(4) for each « € 2. Therefore, there is a Radon measure #, on 4
such that H;(a)= S fdu, for all fe C(4). 4, is called the harmonic measure on

4 with respect to a. #,-measurability and #,-summability are independent of
a. We know that

f__[f(a)ﬁgfdﬂaggfdﬂagﬁf(a)

for any fon 4. The functions ¢— g fd#, and a— g fd#, are harmonic when-

ever they are finite. If 2* is metrizable, then H;(c) = g fdts and Hy(a)=

gf dtt,. From these facts, we see that R(4)ZL'(#); the equality holds if 2%

is metrizable; H(2*)= {u(e) = | fdss; f € 1} (1)}

2.5 Lemmas (cf. Doob [4]).
Lemma 2. Let fe R(4), u=H; and p=>1. feL*(#) if and only if |ul|? is



118 Fumi-Yuki MAepa

magorized by a harmonic function. In this case, H; r(a) =S | f1?dt, s the
least harmonic majorant of |u|?. (If £2* is metrizable, then |f|? € R(4) and

H () = S \flde.)

Proor. “Only if”: Since feL?(4), h(a) =g |f1?d#, is a harmonic func-

tion. By Holder’s inequality, we have
u@l? = 1| fam|* < |71 ds, =@,

“If”: Since f is #-summable, |f|” is #-measurable. Hence, it is enough to

show that S |fl?d1t< oo or that H,sp is finite.

By Lemma 1, there is a positive superharmonic function s such that
u+es €y and u—es €y

for any ¢>0. Let &, be the least harmonic majorant of |u|?. We shall show
that ho+es€ J» for any e>0. Then H ;» is finite and H,;r <ho.
Suppose %y+eosEJ s » for some g >0. Then there is & € 4 such that

lim (o (@) + eos (@] < | ().

a—§

Since ho+es>>0, [(6)#+0. Hence, we can choose a positive number £ such
that

lim [79(@) + eos(@)] < B < | f(E)]".

s

Then, there is a net {a,} of points in £ such that a,—¢& and h(a,)+ ges(as) <B.
Let W:p_lﬂ(l'/p)vl and let &1 ="7+€p.
If £(¢)>0, then we consider u+es. We have

u(aq) + e15(aq) = ulas) + 7e¢s(aq)
<ulay) + 1(8 — ho(aa))
<ulaa) + 1(8 — |u(aa)|?).

The function F(x)=—7(|x|?—/3)+~ assumes its maximum at x=p4"?, where
F(x)=p"?. Hence
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u(ay) + e1s(aqe) < BY? for all «, or
ng [u(a) + e1s(a) ] <R ? < [(8),

a—s

which contradicts the choice of s.
If f(&)<0, then we consider z—e¢;s and we obtain a similar contradiction.

In the proof of the “only if” part, we have shown that h(a)= S |f12dr, is

a harmonic majorant of |u|?. Hence hy,< h, so that we have

V1 pan < i pe@<no@=<{ 17 12an.

Therefore, ho(a) = H ;r(a) = g Lf|?du,.
Lemma 3. If fe€ Rp(4), then feL*(#) and

szdﬂagﬂla(”Hfﬁ -+ |Hf(([,)l)2’

where M,>0 1is independent of f.

Proor. We can apply the methods of the proofs of Theorem 3.1, 4.1 and
4.2 in Doob [4] and we see that »* is majorized by a harmonic function, so
that fe L?(#) by the above lemma, and also that

g( [ = Hy (@) drt, < M || Hyl|*

for some M, >0. Then, taking M, =max(M,, 1), we have the inequality in
the lemma.

2.6 Closedness of Hp(2%).

Let @, € 2 be fixed. The space HD is a Banach space with respect to the
norm |jul + |u(a)|. Lemma 3 shows that the mapping H;— f is continuous
from Hp(2*) into L?(#,). We see furthermore:

Tueorem 1. Hp(2*) s closed in HD.

Proor. It is enough to show that u, € Hp(2*), u € HD, |lu,—u|— 0(n— o)
and u,(ao) =u(a) =0 imply ue Hp(2*). Let u,=H; with f,eRp(4). By
Lemma 3, {f,} is a Cauchy sequence in L*(%). Since L*(%) is complete, there



120 Fumi-Yuki MAEDA

is f, € L*(#) such that [, — f; in L*(#). We may assume f, is resolutive. Hence,
for each a € 2,

Hy, ()= g fodit, = lim g fuditta = lim H; (@) = lim u,(a) = u(a).
Thus, /o€ Rp(4) and u € Hp(2%).

2.7.  Dirichlet problem on a subdomain.

Let £2* be a resolutive compactification of 2 and let » be an open set in
2. We denote the boundary of o in 2* by 0*w and the relative boundary of
o by 0w. Given a real function f on 0*w, we can discuss the Dirichlet
problem. If fis resolutive with respect to w, then we denote the solution by
H¢*. If g is a real function on the relative boundary 0w, then let g* be equal
to g on 0w and to zero on 9*wN4. If g* is resolutive then we say that g on
0w is resolutive and we denote the solution by H¢=H?Y".

Lemma 4. If feR(4) and g is a resolutive function on 0w, then

S on 0*wnNd
|

g on Ow
18 resolutive.

Proor. Let gi=g—H; on dw. Since H; is continuous, it is resolutive
as a function on 0w. Now it is easy to see that H¢ +H; is the Dirichlet
solution of f; with respect to .

Lemma 5. Let K be a compact set in 2. For a real function f on 4, let

f on 4
fg= {
0 on 0K.

Then, fe€Rp(4) if and only if HF 5" ¢ HD(2 — K).
In this case,
HE 50" on 2—K
Vf K —
0 on K
1s @ BLD-function on .
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Proor. If fe€Rp(4), then H; e HD. On the other hand, H( X" =H;+
H$ K, where gi=—H; on 0K. (See the proof of the above lemma.) Let ¢ be
a BLD-function having compact support in £ and ¢=—H; on K. Then it is
easy to see that H X is the harmonic part of the Royden decomposition of
¢ on 2—K. Hence Hj ¥ € HD(2—K), so that H}, %" ¢ HD(2—K). Further-
more, it can be seen that v; x is a BLD-function (cf. Brelot [17).

Conversely, if H{ %" € HD(2—K), then there exists a BLD-function ¢
on £ such that ¢=H{, %" outside a compact set. Then, we see that H; is
the harmonic part of the Royden decomposition of ¢, so that H; € HD.

§ 3. Normal derivatives

In this and the following sections, we always assume that 2* is a resolu-
tive compactification.

3.1 Definition.

We fix a, € 2 once for all and let «=z, .

Derintrion.  Let uw e HD(2—K) for some compact set K (may be empty)
in 2. We say that » has a normal derivative ¢ on 4 (relative to ay), or ¢ is a
normal derivative of u on 4 (relative to ao), if ¢f € L'(#) and

-

<u, V5, k> 9K = — E(ﬂf au

for any fe Rp(4), where v g is the function defined in Lemma 5.
By virtue of the following lemma, we see that the definition above is
independent of the choice of K:

Lemma 6. If K and K’ are compact sets such that KSK' and if v € HD(—
K), then

<u, v, >0 k= <U, V5 K> 0 K/
Jor any f€ Rp(4).

Proor. We see that H }%;K ’* is the harmonic part of the Royden decom-
position of v;x, on 2—K. Hence,

<u, vi g > gk = <uy Vp g o = <u, H " >0 g = <u, vr,x >0 k-
fk

The following properties are immediate consequences of the definition:
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a) If ¢;(i=1, 2) is a normal derivative of u;(i=1, 2), then a1¢,+ a,9, is
a normal derivative of aju;+ aqu, for any real numbers a;, ..

b) If u=const., then it has a normal derivative zero.

¢) If ¢ is a normal derivative of u and ¢ is a function on 4 such that
¢=¢ u-almost everywhere, then ¢ is also a normal derivative of w.

Turorem 2. If 2% is a regular compactification, then the normal deriva-
tive of a function ue€ HD(2—K) 1s, if it exists, uniquely determined /-almost
everywhere.

Proor. If ¢, and ¢, are normal derivatives of u, then g% fdun= S @, fdu

for all feCp(4). If £* is regular, then this equation holds for any f € C(4).
Hence ¢,=¢, u#-almost everywhere.

3.2 Normal derivatives of Green functions.

The harmonic measure 4, with respect to a € 2 is #-absolutely continuous.
Hence, there is a #-measurable function x, on 4 such that du,=x,d¢. We
may assume (by Harnack’s principle) that %, are bounded functions.

Proposition 1. The Green function G, of 2 has a normal derivative gx,”
on 4.

Proor. Obviously, fx, € L'(#) for any fe R(4). For a large a>0, the
set K= 1{b; G,(b)>>a} is compact and its boundary oK is a smooth surface in
2. Then, HS ©"=H;+ H& X" on 2—K, where g=— H; on 0K. *Hence, for
any f€ Rp(4),

<Go HF K" > g k= <Goy Hi>o g+ <Goy Hy ¥>4 k.

Now,
<Gy Hy> o g = <min Gy, @), Hy> =0
and
oG
<Gy Hy7 E>g g=— gaKHfTww— —qH(a)
Hence

1) ¢ is a constant depending only on the dimension of 2. “See [4]. It is denoted by ¢, in [2].
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<Gy, H}%{Kﬂ >o k= — q Sfxadﬂ.

Therefore, gx, is a normal derivative of G, on 4.

CoROLLARY. If a measure m on £ has a compact support, then its Green
potential p™(b) = SGa (b) dm (a) has a normal derivative quadm(a) on 4.

Proor. If K is a compact set containing the support of m in its interior,
then p” € HD(2 — K) and

<pt,v>eg = g <Goy v> ok dm (a)

for any v € HD(2—K). Hence the corollary follows from the proposition and
the definition of normal derivatives.

3.3 Taeorem 3. If K is a compact set in 2 and if [ is a resolutive
Sfunction on 0K with respect to 2—K, then H} X has a normal derivative

on 4.

Proor. (i) First, let f be non-negative constant =c. Let

H$ K on £—-K
S1 =
c on K

and let s be the regularization of s, (i.e., s(b)=lims;(a)). Then, s is a Green

a=b
potential whose associated measure is supported on K. Hence, by the above
corollary, s, hence H? X, has a normal derivative on 4.
(ii) Next, let / be a non-negative bounded function on 9K. For a

sufficiently large n,
K={4ec2—-K;H{;kKb)>n—1} VK
is compact in 2. Then the regularization of
H$ K on 2—K
Sy =
n—1 on K

is a Green potential whose associated measure is supported on K. Hence,
H$ X=H$ X+ H, ¥ has a normal derivative on 4. Since H; ¥ has a normal

fin
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derivative on 4 by (i), so does H$ ¥.

(iii) If fis any resolutive non-negative function, we consider a compact
set K’ containing K in its interior. The restriction f; of H7 % on 90K’ is a
non-negative bounded function and we have H X =H} %" on 2—K'. Hence,
by (ii), H$ % has a normal derivative on 4.

(iv) If f is arbitrary, then H} ¥=H K \,+ HanXo, and each term of
the right hand side has a normal derivative on 4. Hence, so does H} X.

CoroLLARY. Suppose u=H; has a normal derivative on 4 for an f € Rp(4).
Let g be any resolutive function on 0K for a compact set K and let

f on 4
-]
g on 0K.

Then HSF° has a normal derivative on 4.

Proor. This is immediate from the theorem, since H;"X"=H,+H$ X
with gi=g—H; on K.

3.4 Reproducing functions.

The space HDy= {u € HD; u(a,)=0} is a Hilbert space with respect to the
inner product <ui, u,>. The mapping v —u(s) is linear and bounded on HD,
for each ¢ € 2. Hence there exists u, € HD, such that <u,, u>=u(a) for all
u€ HDy. Then <u, u>=u(a)—u(a) for any u € HD.

Prorosition 2. The reproducing function u, has a mormal derivative
1—x%, on 4.

Proor. If fe Rp(4), then
gy Hy> = Hy (@) — Hy(ao) = — S FA—)dn.

CororrLARY. 1n,=(1/q)G.+ u, has a normal derivative =1 on 4. y,=
1/q) (Ga—G,)+us has a normal derivative =0 on 4.

§ 4. The Neumann problem and the third boundary value problem

4.1 The Neumann problem.

If u € HD has a normal derivative ¢ on 4, then it must satisfy Q(ﬂ dr=0.
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We seek the converse problem, i.e., the Neumann problem. We have the
following (cf. [4]):
Turorem 4. If ¢ € L*(%) and g¢7 du=0, then there exists a unique function

u € Hp(2%) such that u(a)=0 (or=any given real number) and ¢ is a normal
derivative of u.

Proor. Let Hy,=Hp(Q*)NHD,. By Theorem 1, H, is a Hilbert space as
a closed subspace of HD,. For any v € H,, there is f € Rp(4) such that v=H,.

Then g(ﬂf du is finite. We see that v—»—!(ﬂf du is a well-defined mapping

on H, (i.e., the value gcﬂf ds is independent of the choice of f for a fixed v)

and is linear. By Lemma 3, we have

Hence the mapping above is bounded on H,. Therefore, there is u € H, such

that <wv,u>=— gfﬂfd/l. Now, for any fe€ Rp(d), Hy — Hs(ao) € Hy. Hence

<U, Hf> = <u, Hf—Hf(ao)> - g(ﬂ(f—Hf(ao))d/l = — S¢fdﬂ.

If w, € Hy(2*%) is another solution, then <uw—u;, H;> =0 for every
feRp(f). Hence, in particular, <u—u;, u—u,>=0, which implies v=u,.

4.2 Uniqueness of the Neumann problem in HD.

In general, we don’t have uniqueness of the solution in HD (up to an
additive constant) for the Neumann problem.

Tueorem 5. There exists no non-constant HD-function with a mormal
derivative zero if and only if 2% is a D-normal compactification.

Proor. If u € HD has a normal derivative zero, then <u, H;> =0 for all
f€Rp(4). Hence, if Hp(2*)=HD, then v is a constant. If Hp(2*) is not equal
to HD, then there exists a non-constant HD-function u, such that <u,, H;> =
0 for all fe€ Rp(4).

By this theorem, we have the uniqueness for the Neumann problem in
HD if and only if £* is a D-normal compactification.

4.3 Tureorem 6. If 2* is a D-normal compactification, then the family
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{u € HD; u has a normal derivative ¢ € L2(%)} is dense in HD.
Proor. Let ND be the family. Suppose ND is not dense in HD. Then

there is v € HD such that v(a)=0, v=0 and <v, u>=0 for all x € ND. Since
£* is D-normal, v=H; for some f € Rp(4). Lemma 3 implies f € L*(#) and since

v0, S f?d#+0. On the other hand, S fdt#=H;(ap)=0. Hence, by Theorem

4, there is u € ND such that f is a normal derivative of u. Then
0= <w o> = <u, B> = = | P anro,

which is a contradiction. Hence, ND is dense in HD.

4.4 The operator B.

Lemma 7. If f€Rp(d), u=H; has a normal derivative ¢ € L*(#) and
u(ao)=0, then
Hqu_<_MS(02 an,

sz d/ngZSW ar.

(M=M,, in Lemma 3.)
Proor. By Lemma 3, S Fdu<Mul? Hence, |[u|?= <u, Hy>=— S¢fdﬂ

</ fean-y/{2an <Vt )/ (e an.

Hence we have the first inequality. Applying the above inequality again,
we have the second inequality.

Now, let 2* be a D-normal compactification. Let
L= {9 e 12(1); g¢ dn =0},

We identify functions which are equal #-almost everywhere. Then L becomes
a Hilbert space with respect to the inner product (f, g)zgfg du#. For any

¢ € L, there is a unique u, € HD (Theorems 4 and 5) such that ¢ is a normal
derivative of u, and u,(a)=0. Since we have assumed that 2* is D-normal,
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u,=Hy for some f € Rp(4). Then f €L, so that ¢ — f is a mapping from L into
itself. It is clear that this mapping is linear. The above lemma implies that
this mapping is bounded.

Prorosition 3. The mapping B:¢ —f is a symmetric, negative definite
bounded operator of L into itself.

Proor. We have seen that B is a bounded operator. For any ¢,, ¢, €L,
(B(ﬂh %) — S<B¢1)¢zdﬂ = — <u(,,1, u,,,2>.
Hence, B is symmetric and (B¢, ¢)= —||u,!|2<C0, so that B is negative definite.

4.5 The third boundary value problem.

Turorem 7. Let 2* be a D-normal compactification of 2. Let o be a
positive real number. Given ¢ € L*(4), there exists f € Rp(d), uniquely deter-
mained U-almost everywhere, such that af+¢ 1is a normal derivative of Hj.

Proor. Let ¢y=¢— S(ﬂ d#. Then ¢, € L, so that —(1/a)B¢, € L. By the
above proposition, B— (1/a)I is an invertible operator on L. Hence, there
exists fp € L such that <B — —i—) fo=— -;—B%. There exists a resolutive

function which is equal to f; #-almost everywhere. Hence, we may assume
that f, is resolutive. By definition, B¢, (resp. Bf) is resolutive and ¢, (resp.

1 Sfﬂd/z. Then

fo) is a normal derivative of Hp,, (resp. Hp; ). Now, let f= fo—7

f is resolutive, fe L*(#) and
H;=H L d
r=Hp, = \¥al
1
:Hfﬂ_s%-i-HB%—_&‘S(”dﬂ

1
zaHBfU +HB¢U —7S¢dﬂ € HD.

Furthermore, af,+ %= (af+ g(ﬂ an)+ (¢ — g¢7 d#)=af+¢ is a normal deriva-
tive of H;.
If f1 is another function such that afi+¢ is a normal derivative of H; ,
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then f; +%S<ﬁ de €L and B(afi+¢)=f1 (in L). Hence

Since B— (1/a)I is one-to-one on L, we have
) 1 .
Jo=fit+ \¢dr or f=fi(inL)

Remark. We may be able to extend this theorem to the case « is a #-
measurable positive function on 4. Cf. Doob [4].

§ 5. Functions with normal derivative zero

5.1 Function f~.

Let f be a BLD-function on £ and K be a non-polar compact set in £.
Then there exists a uniquely determined BLD-function f* which minimizes
gl among BLD-functions g such that f=g q.p. on K (Cf. [3] and [5]). f¥is
harmonic outside K. Let D¥= {f; BLD-function on £ such that f=0 q.p. on
K}. Then f=/% if and only if f is orthogonal to D*.

Tueorem 8.  Let 2* be a resolutive compactification of 2 and let u e HD(L
—K,) for some compact set K.

Q) If u=u" for some mon-polar compact set K containing K, in its
interior, then u has a normal derivative zero on 4.

(ii) If £* is D-normal and u has a normal derivative zero on 2, then
u=uX for any mon-polar compact set K containing K, in its interior.

Proor. (i) Forany [ € Rp(4), vs,x € DX (Lemma 5). Hence, u=u" implies
<u, v5 x> o-x=0, so that zero is a normal derivative of u.

(ii) Suppose z has a normal derivative zero on 4 and let K be any non-
polar compact set containing K in its interior. Let g € D* and let g=h+g,
be the Royden decomposition of g. £2* being D-normal, there is fe Rp(4)
such that 2=H;. Then H{} %" is the harmonic part of g on 2—K. Hence
<g,u>o x=<vsx u>e x=0. Hence, u is orthogonal to D¥, so that u=u*.

5.2 A mizxed boundary value problem.

TueoreM 9. Let K be a compact set in 2 with non-empty interior. Suppose
a BLD-function f on 2 and ¢ € L*(#) are given. Then, there exists u € HD(2—
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K) such that ¢ is a normal derivative of u on 4 and

{u on £—K
k=
f on K

18 & BLD-function on 2.2 u is unique if £* is D-normal.

Proor. Let a; be an interior point of K. Then the Green function G,,
is bounded on 2—K. Let «a= sup G,,(b) and let go=min (a, G,,). Then, go
bEQ-K

is a BLD-function on £ and go|¢-x € HD(2—K).
Let czgwdﬂ and ¢=¢—cx,,. Then, ¢ € L*(#) and Sgbd/«tzo. By Theorem
4, there is u, € HD such that ¢ is a normal derivative of u,. Now, let v=

K
<f — Uy — 7;—g0> . Then v|,_x € HD(2—K) and v has a normal derivative zero
on 4 by Theorem 8, (i). Hence ulzuw—I—-qc—go—l-v is a BLD-function such that

1] e-x € HD(2—K) and gb—i—%(qxal)——-(o is a normal derivative of u;. Further-

more, u;=f q.p. on K. Hence if we take u=u;|o_g, then it is the required
function.

If % is another solution, then »*—#* € DX and it has a normal derivative
zero on 4. Hence, if 2* is D-normal, then *=#* by Theorem 8, (ii), or u=1ii.

5.3 An application.

We have seen that the Kuramochi compactification 2% is D-normal. On
the other hand, we have seen that vazl(G,,—G%)—kua has a normal derivative

zero on 4y for each « € 2. By Theorem 8, (ii) and by the definition of the
Kuramochi boundary (cf. [8] and [5]), v, can be continuously extended over
4dy. We denote the extended function on 4y by vr.

Lemma 8. {v¥; a € 2} separates points of dy.

Proor. Let &, & €4y and & &, Then there exists a continuous
function f on 2% such that

1) fis a twice continuously differentiable BLD-function on 2,
2) f=/% for some non-polar compact set K in £,

2) If f is continuous on 9K, then the condition that u* is a BLD-function is equivalent to the
condition that limg—p,sea—gu(a)=F(b) for any regular boundary point b of 2—K.
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3) fEDFf(6)

Since we may assume 0K does not contain points of infinity, we can choose f
in such a way that f=const. on a neighborhood of each point of infinity in
the interior of K and also on a neighborhood of @,. Then 450 only on a
compact set 4 of finite volume. From property 2) of £, it follows that

SAAf(a)dU (@)=0. We can see that the function

) = F) + SA”“ ) 4f(a)dv (@)

is harmonic on £ and has a normal derivative zero on 4y. (Cf.[3], p. 170)
Hence, h=const. =c by Theorem 5. Thus,

f® == b s@dv@ +e.
As b—>& € dy, v,(b)—>v¥ (&) uniformly for o € A. Hence,
r©=-| nes@nw-e.

Since f(£1)+f(&2), there exists a € 4 such that v} (&)} (&)

CoroLLARY. The {y,; a € 2}-compactification coincides with the Kura-
mochi compactification.

Tueorem 10. Let U= {u,; a € 2}, where u, is the reproducing function
defined in 3.4. Then UZHc(2%) and Hc(2%) is the smallest subspace of HB
with the properties that it contains constants and U, it is closed under \/ and
N operations® and closed under uniform comvergence.

Proor. Since v, is bounded outside a compact set, u, is a bounded func-
tion on 2 for each ¢ € 2. Thus, it is obvious that

and ug + %'G,, €d,;.

Hence,

Yo — Gy < He <uat ica,
q q

0 — —

3) If u,ve HP,uVvis the least harmonic majorant of max (u, v). Similar for uAv.
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so that u,=H,; € Hc(2%).

Let © be the smallest subspace of HB with the properties given in the
theorem. Since H:(2%) satisfies the properties, we have 9= Hc(2%).

Let C= {feC(dy); H; € D}. Then the properties of © imply that C
contains constants, {v*;a € 2} =C, C is closed under max. and min. operations
and under uniform convergence. Since {v}; a € 2} separates points of 4y (by
the previous lemma), we conclude that C=C(4y) by the Stone-Weierstrass
theorem. Hence, =H(2%).

CoroLLAry. The U-compactification 27 is regular and D-normal.

Proor. Since UCHD, 2} is regular. It follows from the theorem that
H:(2%)=Hc(2%). Hence Hp(2})=Hp(2%)=HD, i.e., 2 is D-normal.

RemMARrk. It can be seen that 2 is also metrizable.
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