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Introduction. Let Ω be a Green space introduced by Brelot-Choquet
In general, there is no notion of "smooth" boundary of Ω and we cannot

define normal derivatives on "the boundary" in the usual way. Still, there
are notions of Laplacian and Dirichlet integrals on Ω. Therefore, we may
define "generalized" normal derivatives so as to make Green's formula valid.
To be more precise, let Ω* be a compactification of Ω so that "an ideal
boundary" J = Ω* — Ω is realized. If u is an HD-function (i.e., a harmonic
function with finite Dirichlet integral) and if a function φ on Δ is to be a
normal derivative of w, then Green's formula

I _ (grad u, grad f)dv = — \ φfdσ

will be satisfied for any function / with finite Dirichlet integral on Ω which
is "properly" extended over Ω*. Here, we have two points to be cleared: i)
What is the measure tf, which is the surface element in the classical case? ii)
What is the "proper" extension of /?

Constantinescu-Cornea [3] defined a normal derivative on the Kuramochi
boundary as a measure, which corresponds to φ dσ in the above argument.
If we are to define a normal derivative as a function, we must specify the
measure σ. Following Doob Q4Γ], we try with the harmonic measure β. In
order to assure its existence, we shall suppose that the compactification is
resolutive (§2).

As for the second point, Constantinescu-Cornea [β~] defined a "quasi-
continuous" extension of BLD-functions over the Kuramochi compactification.
The definition requires a potential theory on the compactification and is
applicable only to the Kuramochi boundary. On the other hand, Doob [4]
used "fine" boundary functions of ϋΓD-functions, which required a theory of
fine limits. It also looks impossible to generalize the theory to an arbitrary
compactification.

Studying these two cases closely, however, it becomes clear that we don't
need such sophisticated tools as "quasi-continuity" or "fine limits". If we
consider a function / on A which has the Dirichlet solution Hf on Ω, then the
pair (/, Hf) plays the role of a "properly" extended function. Thus, our
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definition will be: Given an HD-f unction u on Ω, we say that u has a normal
derivative φ on Δ if

\ „ (grad u, grad #/)cfo = - I φfdβ

for any function f on Δ such that it has the Dirichlet solution Hf e HD.
We can extend our definition to functions harmonic only near the

boundary (§3). With this definition of normal derivatives, it is possible to
discuss boundary value problems involving normal derivatives (§4 and §5).
We shall obtain solutions of these problems under certain conditions, mostly
applying the methods given in Doob \jf\. In order to obtain reasonable
results, it is often necessary that the compactification is large enough to
ensure that every HD-ΐunction is a Dirichlet solution. Such a compactification
will be called D-normal. Since the Martin and the Kuramochi compactifica-
tions are both D-normal, our theory includes some of Doob's results [jQ as
well as Constantinescu-Cornea's pΓ].

Finally, one should remark that we may consider any locally compact
space on which there are notions of harmonic and superharmonic functions
and of Dirichlet integrals and we may treat the theory axiomatically. In this
treatise, however, we shall restrict ourselves to a Green space.

§ 1. Preliminaries

1.1 BLD-f unctions and Dirichlet integrals.

We refer to [1] for the definition and properties of BLD-f unctions on a
Green space Ω. If ω is an open set in Ω and if /i, f2 are BLD-functions on ω,
then the mutual Dirichlet integral

Jω
, grad/2)dι;

is defined, where ω — ω — {points of infinity} and dv is the volume element on

Ω. We denote 11/112= </, f>ω. The subscript will be omitted if ω = Ω.
If/is a BLD-f unction on α>, it is decomposed into f=h+f0 on ω, where h

is harmonic on ω and f0 is a BLD-f unction of potential type on ω (cf. Q1H, [4Γ\
and [5]). This decomposition will be referred to as the Royden decomposi-
tion on ω.

1.2 Classes of harmonic functions.

Let HP be the space of all harmonic functions expressed as a difference
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of two non-negative harmonic functions on Ω. The bounded harmonic func-
tions on Ω form a subspace HB and the BLD-harmonic functions form another
subspace HD. We denote HBD=HBr\HD.

A family Y^HP is called monotone if, for any monotone sequence in Y
having its limit / e HP, we have / e Y. Given a family Y £Ξ HP, there is the
smallest monotone family M(Y) containing Y. It is known that HD^M(HB)
and M(HBD)=M(HD). (Cf. [3], §2 and §7).

If ω is an open set in Ω, let HD(ω) be the space of all harmonic functions
u on ω with finite Dirichlet norm \\u\\ω.

1.3 Compactifications.

If Ω* is a Hausdorff compact space and if there is a homeomorphism of
Ω into Ω* such that the image of Ω is open and dense in Ω*, then i2* is called
a compactification of Ω and J = i?* —i2 is called an ideal boundary of Ω.

Let Q be a family of bounded continuous functions on Ω. If a compacti-
fication Ω* satisfies:

a) every / e Q can be continuously extended over Ω*,
b) Q separates points of J = i2* — i2,

then 42* is called a Q-compactification of i2. It is known (cf. [3]) that a Q-
compactification always exists and is unique up to a homeomorphism. Thus,
it will be denoted by Ω% and its ideal boundary by ΔQ.

Given a compactification £*, let C(Δ) be the space of all continuous
(bounded) functions on Δ.

§ 2. Dirichlet problem

2.1 Resolutive functions.

Let ώ* be a compactification of Ω and let J = Ω* — Ω. Given a function /
(extended real valued) on Δ, we consider the following classes:

(s superharmonic, bounded below on Ω
βf = \

I Jim .s(α)>/(^) for any f 6 Δ

d / = {.s ; — 5 6 3-/} .

Let jff/(α) = inf {s(a); s e 3/} and Hf(a) = sup {s(α); 5 6 d/}. It is known
(Perron-Brelot) that Hf (resp. fl}) is either harmonic, = + oo or ΞΞ — OO, If
Hf=Hf and are harmonic, then we say that / is resolutive and Hf=Hf=Hf

i$ called the Dirichlet solution of / (with respect to ώ*).
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LEMMA 1. If f is resolutive > then there exists a positive superharmonίc
function s such that

Hf + εs e 3/ and Hf — εs e d/

for any ε>0.

(Cf. [3], Hilfssatz 8.1)

2.2 Resolutive compactification.

If any fe C(J) is resolutive, then we say that Ω* is a resolutive compacti-
fication. In this case, we introduce the following classes of functions:

R(Δ) — all resolutive functions on J,

RD(J)={feR(J);HfeHD},

H(Ω*)={Hf;feR(J)},

HD (fi*) ={Hf;feRD (A)} = H(Ω*) n HD,

Hc(Ω*)={Hf;feC(J)}.

It is known that H(Ω*) = M(HC(Ω*)) (cf. [3]). Therefore, if Ω* and i2J are two
resolutive compactifications such that Hc(β*)=Hc(β%\ then H(Ωf)=H(Ω*)
and HD(Ω*)=HD(Ω*).

2.3 D-normal compactification and regular compactification.

DEFINITION. A resolutive compactification i2* is said to be D-normal if

DEFINITION. A resolutive compactification Ω* is said to be regular if
CD(J) is dense in C(Δ) in the uniform convergence topology.

Examples.

1. Wiener's compactification (cf. [3], §9) is the largest resolutive com-
pactification. It is D-normal.

2. Royden's compactification (cf. [3], §9) is Z)-normal and regular.
3. If Q consists of BLD-f unctions, then the Q-compactification is regular.
4. The ϋB-compactification is D-normal the HRD-compactification is D-

normal and regular.
5. The Martin compactification is .D-normal. It is not known if it is
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regular or not.
6. The Kuramochi compactification is Z)-normal and regular.
7. The Alexandroff compactification is D-normal if and only if there are

no non-constant functions in HD.
1, 2, 3, 4, 7 and the regularity of the Kuramochi compactification are

immediate from the definitions. (Wiener's and Royden's compactifications
were defined for Riemann surfaces in [ΊΓ]. Analogous definitions can be given
for Green spaces.) The D-normalities of the Martin and Kuramochi compacti-
fications are less obvious.

By Doob [_4Γ\, we see that every u e HB has a "fine" boundary value / on
the Martin boundary and that u is the Dirichlet solution of / with respect to
the Martin compactification Ω%. It follows then that H(Ω%) = M(HB). Hence
the Martin compactification is D-normal.

Constantinescu-Cornea proved (Hilfssats 16.1 in [3]) that H(Ω%) = M(HD)
for the Kuramochi compactification Ω% of a Riemann surface Ω. The same
proof is applicable for a Green space. Thus, the Kuramochi compactification
is also D-normal.

REMARK. It can be seen by examples that the notions of Z)-normality
and regularity are independent.

2.4 Harmonic measure.

If Ω* is a resolutive compactification, then f-^H/(ά) is a positive linear
form on C(Δ) for each a e Ω. Therefore, there is a Radon measure βa on A

such that Hf(a)— \fdβa for all f e C(Δ). βa is called the harmonic measure on

Δ with respect to a. /vmeasurability and /vsummability are independent of
a. We know that

Γ Γ
for any/on A. The functions α-> \fdβa and a-> \fdβa are harmonic when-

r

ever they are finite. If Ω* is metrizable, then Hf(a) = \fdβa and Hf(a) =

\fdβa. From these facts, we see that R(Δ)^L\β); the equality holds if Ω*

is metrizable H(Ω*) = {u(a) = [fdβa;feL1 (β)}.
2.5 Lemmas (cf. Doob [4]).
L E M M A 2. Let feR(Δ), u=Hf and p > l . feLp(β) if and only if \u\p is
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majorized by a harmonic function. In this case, Hιfιp(a)= \ \f\pdβa is the

least harmonic majorant of \u\p. (If i2* is metrizable, then \f\p e ί ( J ) and

PROOF. " Only if " : Since feLp (u\ h (a) = \\f\ pdβa is a harmonic func-

tion. By Holder's inequality, we have

u(a)\p =

"If": Since / is A-summable, \f\p is A-measurable. Hence, it is enough to

show t h a t \ \f\pdβ<°° or t h a t H]f]P is finite.

By Lemma 1, there is a positive superharmonic function s such t h a t

u + εs e 8/ and u — εs 6 c$/

for any ε > 0 . Let/z0 be the least harmonic majorant of |w|^. We shall show

t h a t ho + εs e dι/ιp for any ε > 0 . Then S"ι/u« is finite and #,/,/> < 3 0 .

Suppose /zo + ε os$dι/ |P for some ε o>O. Then there is ξeΔ such t h a t

Since /zo + εos>O, f(ξ)φθ. Hence, we can choose a positive number β such

that

Hm [ho(μ) + εos(a)J <β< \f(ξ)\p.

Then, there is a net {aa} of points in Ω such that αα->? and

Let η=p-ψ1ιp)-1 and let εi = ^ε 0 .

If / ( f ) > 0 , then we consider w + εis. We have

u(aa)

- \u(aa)\p).

The function F(x)=—y(\x\p — β) + x assumes its maximum at x=β1!P, where

F(x) = βllP. Hence
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u(aa) + £is(aa) < βιlP for all α, or

lim [u(a)

which contradicts the choice of s.

If /(f)<0, then we consider u — sis and we obtain a similar contradiction.

In the proof of the "only if" part, we have shown that h(a)=\ \f\pdβa is

a harmonic majorant of \u\p. Hence /zo<^? so that we have

^ \f\pdβa.

Therefore, ho(a) = Hιnp(a)=[ \f\pdβa.

LEMMA 3. // f e RD{Δ\ then feL2(β) and

\f2dβa<Ma(\\Hf\\+ \Hf(a)\)\

where Ma > 0 is independent of f.

PROOF. We can apply the methods of the proofs of Theorem 3.1, 4.1 and
4.2 in Doob [4] and we see that u2 is majorized by a harmonic function, so
that / 6 L2 (β) by the above lemma, and also that

{(f-Hf(a))2dβa<M'jHf\\

for some M'a > 0. Then, taking Ma — max(M^, 1), we have the inequality in
the lemma.

2.6 Closedness of HD (#*).

Let a0 € Ω be fixed. The space HD is a Banach space with respect to the
norm | |M | |+ \u(ao)\. Lemma 3 shows that the mapping Hf-^f is continuous
from HD(Ω*) into L2(βao). We see furthermore:

THEOREM 1. HD(Ω*) is closed in HD.

PROOF. I t is enough to show t h a t un e HD(Ω*\ u e HD, \\un — zz||—> 0(?2—> oo)
and ww(β0) = u(ao) = O imply u € HD(Ω*) Let un = Hfn with fneRD(Δ). By
Lemma 3, {fn} is a Cauchy sequence in L2(β). Since L2(β) is complete, there
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is /o e L2(β) such that fn-+fo in L\β). We may assume fQ is resolutive. Hence,
for each a e Ω,

Γ Γ
Hfo (a) = l/o d#β = lim \fndUa = lim Hfn(a) = lim κw (α) =u(a).

Thus, foeRD(Δ) and u e HD(Ω*).

2.7. Dirichlet problem on a subdomain.

Let i2* be a resolutive compactification of i2 and let α> be an open set in
Ω. We denote the boundary of ω in i2* by 9*ω and the relative boundary of
ω by 9ω. Given a real function / on d*ω, we can discuss the Dirichlet
problem. If / is resolutive with respect to ω> then we denote the solution by
Hψ. If g is a real function on the relative boundary 9ω, then let g * be equal
to g on dω and to zero on d*ωί\J. If g * is resolutive then we say that g on
dω is resolutive and we denote the solution by Hω

g=Hω

g**.

LEMMA 4. If f £ R(Λ) and g is a resolutive function on dω, then

(f on d*ω A Δ

is resolutive.

[g on

PROOF. Let gι—g—Hf on dω. Since Hf is continuous, it is resolutive
as a function on dω. Now it is easy to see that H°gl + Hf is the Dirichlet
solution of /i with respect to ω.

LEMMA 5. Let Kbe a compact set in Ω. For a real function f on Δ, let

if o n Δ

fκ=\
10 on dK.

Then, feRD(Δ) if and only if Hf~κ)* eHD(Ω- K).

In this case,

Vf,K = \

lO on K

is a BLΌ-function on Ω.
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PROOF. If feRD(Δ\ then HfeHD. On the other hand,
HQ

g~
K, where gι=—Hf on dK. (See the proof of the above lemma.) Let φ be

a BLD-function having compact support in Ω and φ=—Hf on K. Then it is
easy to see that HΩ

g~
κ is the harmonic part of the Royden decomposition of

φ on Ω-K. Hence HΩ

g;
κ e HD(Ω-K\ so that Hf~κ^ e HD(Ω-K). Further-

more, it can be seen that υftK is a BLD-f unction (cf. Brelot [1]).
Conversely, if Hfκ

κ^ eHD(Ω-K\ then there exists a BLD-function ψ
on Ω such that ψ = Hψ~κ)* outside a compact set. Then, we see that Hf is
the harmonic part of the Royden decomposition of φ, so that Hf e HD.

§ 3. Normal derivatives

In this and the following sections, we always assume that Ω* is a resolu-
tive compactification.

3.1 Definition.

We fix a0 6 Ω once for all and let β=βaQ.

DEFINITION. Let u e HD(Ω—K) for some compact set K (may be empty)
in Ω. We say that u has a normal derivative φ on Δ (relative to α0), or ψ is a
normal derivative of u on Δ (relative to α0), if Ψf £ L1 (β) and

<u, vfι κ> Ω-K= —

for any feRD(Δ), where vf,κ is the function defined in Lemma 5.
By virtue of the following lemma, we see that the definition above is

independent of the choice of K:

LEMMA 6. // K and K! are compact sets such that K^K! and if u e HD(Ω —
K\ then

for any feRD(Δ).

PROOF. We see that Hψκ

κ^* is the harmonic part of the Royden decom-
position of υftκ' on Ω — K. Hence,

^ya-K^ <u, vf)κ>Ω-κ-

The following properties are immediate consequences of the definition:
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a) If ,̂-(i = l, 2) is a normal derivative of M, (& = 1, 2), then a1φ1 + a2

(P2 is
a normal derivative of aιuιJra2u2 for any real numbers au a2.

b) If u=const., then it has a normal derivative zero.
c) If φ is a normal derivative of u and 0 is a function on Δ such that

Φ = φ A-almost everywhere, then ψ is also a normal derivative of u.

THEOREM 2. 7/ i2* is α regular compactification, then the normal deriva-
tive of a function u e HD(Ω — K) is, if it exists, uniquely determined β-almost
everywhere.

PROOF. If φλ and Ψ2 are normal derivatives of u, then \<PifdU — \φ2fdβ

for all fe CD(Δ). If Ω* is regular, then this equation holds for any fe C(J).
Hence Ψι = φ2 A-almost everywhere.

3.2 Normal derivatives of Green functions.

The harmonic measure βa with respect to a 6 Ω is /^-absolutely continuous.
Hence, there is a A-measurable function xa on Δ such that dβa — xadβ. We
may assume (by Harnack's principle) that xa are bounded functions.

PROPOSITION 1. The Green function Ga of Ω has a normal derivative qxa

ι)

on Δ.

PROOF. Obviously, fxaeLι(β) for any feR(Δ). Fora larga α>0, the
set K= {b; Ga(b)^>a} is compact and its boundary dK is a smooth surface in
Ω. Then, Hfκ

κ'* = Hf + Hf,~κ^ onΩ-K, where g= -Hf on 9£. ^ Hence, for
any feRD(Δ\

^ jτ + <Gβ,

Now,

Hf>Ω-κ = <min (Gβ, α), fl» = 0

and

Hence

1) q is a constant depending only on the dimension of Ω.' See Q4]. It is denoted by <£>τ in [ΊΓ].
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Therefore, qxa is a normal derivative of Ga on Δ.

COROLLARY. If a measure m on Ω has a compact support, then its Green

potential pm(b) = \Ga(b) dm (a) has a normal derivative q\xadm(a) on Δ.

PROOF. If K is a compact set containing the support of m in its interior,
then pm eHD(Ω-K) and

, v>Ω^κ = \ <Ga, v>Ω-κdm(ά)

for any υ e HD(Ω~K). Hence the corollary follows from the proposition and
the definition of normal derivatives.

3.3 THEOREM 3. If K is a compact set in Ω and if f is a resolutive
function on dK with respect to Ω — K, then H°~κ has a normal derivative
on Δ.

PROOF, (i) First, let /be non-negative constant =c. Let

(H^κ on Ω-K
Sl = I

U on K

and let s be the regularization of si (i.e., s(b) = \im sι(a)). Then, s is a Green

potential whose associated measure is supported on K. Hence, by the above
corollary, 5, hence H®~K, has a normal derivative on Δ.

(ii) Next, let / be a non-negative bounded function on dK. For a
sufficiently large n,

K = {b e Ω - K; H%^(b)>n -1}\JK

is compact in Ω. Then the regularization of

[H%x on Ω-K

[n-1 on K

is a Green potential whose associated measure is supported on K. Hence,
H°+f = H®~K + H®~K has a normal derivative on A. Since H^~κ has a normal
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derivative on Δ by (i), so does HQfκ.
(iii) If / is any resolutive non-negative function, we consider a compact

set Kf containing K in its interior. The restriction fλ of H°~κ on dK is a
non-negative bounded function and we have H®~κ = Hζf~κ' on Ω — K. Hence,
by (ii), H^~κ has a normal derivative on Δ.

(iv) If / is arbitrary, then Hς^"κ = H^~J[fi0-) + HSί'[ΐ^f^ and each term of
the right hand side has a normal derivative on Δ. Hence, so does HD

f~
κ.

COROLLARY. Suppose u — Hf has a normal derivative on Δ for an f e RD(Δ).
Let g be any resolutive function on dKfor a compact set K and let

if o n Δ

\g on dK.

Then Hfl~κr has a normal derivative on Δ.

PROOF. This is immediate from the theorem, since H<f1~
κr = Hf

JrH^~κ

with gι=g — Hf on K

3.4 Reproducing functions.

The space HD0= {u e HD; u(ao) = O} is a Hubert space with respect to the
inner product <wi, u2>. The mapping u^u(a) is linear and bounded on HD0

for each a e Ω. Hence there exists ua e HD0 such that <wα, u> =u(a) for all
u e HD0. Then <wα, u> =u(a) — u(a0) for any u e HD.

PROPOSITION 2. The reproducing function ua has a normal derivative
l — xa on Δ.

PROOF. If f e RD(Δ\ then

<ua, Hf> = Hf(ά) - HM) = -

COROLLARY. na = (l/q)Ga + ua has a normal derivative = 1 on Δ. va =
(1/q) (Ga — Gao) + ua has a normal derivative =0 on Δ.

§ 4. The Neumann problem and the third boundary value problem

4.1 The Neumann problem.

If u e HD has a normal derivative φ on Δ, then it must satisfy \φ dβ = 0.
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We seek the converse problem, i.e., the Neumann problem. We have the
following (cf. [4]):

THEOREM 4. Ifψ e L2(β) and \<Pdβ = 0, then there exists a unique function

u e HD(Ω*) such that u(ao) = O (or = any given real number) and φ is a normal

derivative of u.

PROOF. Let HQ = HD(Ω*)Γ\HDO. By Theorem 1, Ho is a Hubert space as

a closed subspace of HD0. For any v e Ho, there is feRD(J) such that v — Hf.

Then yPfdβ is finite. We see that v-->— \<Pfdβ is a well-defined mapping

on Ho (i.e., the value χPfdβ is independent of the choice of / for a fixed v)

and is linear. By Lemma 3, we have

2dβ < V M

Hence the mapping above is bounded on Ho. Therefore, there is u e Ho such

that O , u> = — \φfdβ. Now, for any fcRD(J\ Hf — Hf(a0) 6 Ho. Hence

<u, Hf> = <u9 Hf-Hf(ao)> = - \φ(f-Hf(a,))dβ = - \φfdβ.

If uιeHD{Ω^) is another solution, then <u — uuHf>=0 for every
feRD(f). Hence, in particular, <zz — z/i, u — wi> =0, which implies u — u\.

4.2 Uniqueness of the Neumann problem in HD.

In general, we don't have uniqueness of the solution in HD (up to an
additive constant) for the Neumann problem.

THEOREM 5. There exists no non-constant HD-f unction with a normal
derivative zero if and only if Ω* is a D-normal compactification.

PROOF. If u e HD has a normal derivative zero, then <w, Hf> =0 for all
f e RD(Λ). Hence, if HD(Ω*) = HD, then u is a constant. If HD(Ω*) is not equal
to HD, then there exists a non-constant HD-f unction u0 such that <u0, Hf> =
0 for all feRD(J).

By this theorem, we have the uniqueness for the Neumann problem in
HD if and only if Ω* is a Z)-normal compactification.

4.3 THEOREM 6. // Ω* is a D-normal compactification, then the family
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{u 6 HD; u has a normal derivative φ e L2(β)} is dense in HD.

PROOF. Let ND be the family. Suppose ND is not dense in HD. Then
there is v e HD such that v(ao) = O, vφO and <v, u> = 0 for all u e ND. Since
J2* is D-normal, v = Hf for some / e RD(Δ). Lemma 3 implies / e L2(β) and since

vφO, [fdUφO. On the other hand, [fdβ = Hf(a0) = 0. Hence, by Theorem

4, there is u e ND such that / is a normal derivative of w. Then

0 = <u9 v> - <M, fl» = - j /

which is a contradiction. Hence, ND is dense in HD.

4.4 T%e operator B.

LEMMA 7. // feRD(J), u = Hf has a normal derivative <PeL2(β) and
— O, then

\\u\\2 <M^φ2 dβ,

\f2dβ<M2\φ2dβ.

(M=Ma0 in Lemma 3.)

PROOF. By Lemma 3, [f2dβ<M\\u\\2. Hence, \\u\\2=<u, Hf> = -[<Pfdβ

A <P2dβ

Hence we have the first inequality. Applying the above inequality again,
we have the second inequality.

Now, let Ω* be a D-normal compactification. Let

L = {<PeL2(β);

We identify functions which are equal /^-almost everywhere. Then L becomes

a Hubert space with respect to the inner product (/, g) = \fg dβ. For any

φ e L, there is a unique uφ e HD (Theorems 4 and 5) such that φ is a normal
derivative of uφ and uφ(a0) = 0. Since we have assumed that Ω* is D-normal,
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uφ = Hf for some / e RD(J). Then / e L, so that φ -*/ is a mapping from L into
itself. It is clear that this mapping is linear. The above lemma implies that
this mapping is bounded.

PROPOSITION 3. The mapping B:<P-+f is a symmetric, negative definite
bounded operator of L into itself.

PROOF. We have seen that B is a bounded operator. For any φu φ2 £ L,

(B<Ph <P2)=\(B<P1)<P2dM = -<u9l9 uψ2>.

Hence, B is symmetric and (B<P, <P)= — \\uφ\\2<0, so that B is negative definite.

4.5 The third boundary value problem.

THEOREM 7. Let Ω* be a D-normal compactification of Ω. Let a be a
positive real number. Given φeL2(β\ there exists f e RD(J), uniquely deter-
mined β-almost everywhere, such that af+ Ψ is a normal derivative of Hf.

PROOF. Let <P0 = <P—\<Pdβ. Then <P0 e L, so t h a t —(l/a)B<P0 6 L. By the

above proposition, B — (l/a)I is an invertible operator on L. Hence, there

exists jfo β L such t h a t [B-- -)fo = — — B φ 0 . There exists a resolutive
J \ a JJ a

function which is equal to fQ A-almost everywhere. Hence, we may assume
that /o is resolutive. By definition, B<P0 (resp. Bf0) is resolutive and <P0 (resp.

/o) is a normal derivative of HBφo (resp. H#/o). Now, let /=/o ——\<PdM. Then

/ is resolutive, feL2(M) and

—

= aHBfΰ + HBφQ--^^<Pdβe HD.

Furthermore, af0 + <P0 = (af + I <P dβ) + {Ψ — \ Ψ dβ) = af+ <P is a normal deriva-

tive of Hf.

If /i is another function such that afι + φ is a normal derivative of Hfl,
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then fx+^ΛφdβdL and B{afι + <P)=f1 (in L). Hence
OC J

Since B — (l/a)I is one-to-one on L, we have

dβ or f = f1(inL).

REMARK. We may be able to extend this theorem to the case a is a im-
measurable positive function on A. Cf. Doob

§ 5. Functions with normal derivative zero

5.1 Function fκ.

Let / be a BLD-function on Ω and K be a non-polar compact set in Ω.
Then there exists a uniquely determined BLD-function fκ which minimizes
|(g [| among BLD-functions g such t h a t / = g q.p. on K (Cf. [3] and [βj). fκ is
harmonic outside K. Let Dκ= {/; BLD-function on Ω such that f=0 q.p. on
iQ. Then f=fκ if and only if / is orthogonal to Dκ.

THEOREM 8. Let Ω* be a resolutive compactificatίon of Ω and let u € HD(Ω
—Ko) for some compact set Ko.

(i) // u — uκ for some non-polar compact set K containing Ko in its
interior, then u has a normal derivative zero on A.

(ii) // Ω* is D-normal and u has a normal derivative zero on Ω, then
u = uκ for any non-polar compact set K containing Ko in its interior.

PROOF, (i) For any fe RD(Λ), vf>κ e Dκ (Lemma 5). Hence, u = uκ implies
<w, vf>κ>i2-ir=:0, so that zero is a normal derivative of u.

(ii) Suppose u has a normal derivative zero on A and let K be any non-
polar compact set containing Ko in its interior. Let g e Dκ and let g=h+g0

be the Royden decomposition of g. Ω* being D-normal, there is feRD(A)
such that h = Hf. Then Hf~κr is the harmonic part of g on Ω — K. Hence
<g , u>Ω-K= <vf>κ, u>Ω-K = 0' Hence, u is orthogonal to Dκ, so that u = uκ.

5.2 A mixed boundary value problem.

THEOREM 9. Let Kbe a compact set in Ω with non-empty interior. Suppose
a BLD-f unction f on Ω and φ e L2(A) are given. Then, there exists u 6 HD(Ω —
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K) such that φ is a normal derivative of u on Δ and

(u on Ω-K

[f on K

is a BLD-f unction on Ω.2) u is unique if Ω* is D-normal.

PROOF. Let aλ be an interior point of K. Then the Green function Gai

is bounded on Ω — K. Let a— sup Ga(b) and let e o^min (α, GaX Then, gQ

is a BLD-f unction on Ω and g0 \ Ω-K e HD(Ω—K).

Let c=\φdβ and ψ = <P — c%ai> Then, ψ e L2(/ )̂ and U d ^ = 0. By Theorem

4, there is «̂  e HD such that 0 is a normal derivative of uΨ. Now, let v —
c \ κ

—uψ — —go) . Then v \ Ω_κ e HD(Ω — K) and v has a normal derivative zero

on Δ by Theorem 8, (i). Hence uι = uψ + ~^-go + v is a BLD-f unction such that

ui\β-κ e HD(Ω-K) and ψ + —(qx<z1) = (P is a normal derivative of wi. Further-

more, M I = / q.p. on K. Hence if we take u—uι\Ω^κ, then it is the required

function.

If ΐi is another solution, then u* — ΐί* e Dκ and it has a normal derivative
zero on Δ. Hence, if i2* is Z)-normal, then u^ — u^ by Theorem 8, (ii), or u—u.

5.3 An application.

We have seen that the Kuramochi compactification Ω% is D-normal. On

the other hand, we have seen that vfl = —(Gα —Gβ(J) + wα has a normal derivative

zero on ΔN for each ae Ω. By Theorem 8, (ii) and by the definition of the
Kuramochi boundary (cf. [β~] and pΓ]), α̂ can be continuously extended over
ΔN. We denote the extended function on ΔN by v*.

LEMMA 8. {v*;«6 i2} separates points of ΔN.

PROOF. Let ξu $2^ΔN and ξιφξ2. Then there exists a continuous
function / on Ω% such that

1) / is a twice continuously differentiable BLD-f unction on Ω,
2) f — fκ for some non-polar compact set K in $,

2) If / is continuous on dK, then the condition that u* is a BLD-function is equivalent to the
condition that \ιma^^,aeQ-jζu{a)—f{b) for any regular boundary point b of Ω—K.
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Since we may assume dK does not contain points of infinity, we can choose /
in such a way that f= const, on a neighborhood of each point of infinity in
the interior of K and also on a neighborhood of a0. Then ΔfΦ 0 only on a
compact set A of finite volume. From property 2) of /, it follows that

\ Af(a)dv(ά) — 0. We can see that the function

h(b)=f(b)+\ va(b)Δf{a)dv(a)

is harmonic on Ω and has a normal derivative zero on ΔN. (Cf. [ΊΓ], p. 170)
Hence, h=const. =c by Theorem 5. Thus,

= - ( VaQ))Δf(a)dv(a) + c.
JA

As b^ξ e ΔN, va(b)->v*(?) uniformly for α 6 l Hence,

Since /(SdΦffaX t h e r e e x i s t s aeA such t h a t v * ( f 0 φ v *

COROLLARY. T/̂ β {vα a e Ω}-compactification coincides with the Kura-
mochi compactification.

THEOREM 10. Lei U= {ua; α6i?}, where ua is the reproducing function
defined in 3.4. Then U^HC(Ω%) and HC(Ω%) is the smallest subspace of HB
with the properties that it contains constants and U, it is closed under V and
Λ operations^ and closed under uniform convergence.

PROOF. Since va is bounded outside a compact set, ua is a bounded func-
tion on Ω for each a 6 Ω. Thus, it is obvious that

and ua + Ga

Hence,

3) If u, v 6 HP, uVv is the least harmonic majorant of max (u, v). Similar for u/\v.
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so that ua = Hvl eHc(Ω%).
Let ξ> be the smallest subspace of HB with the properties given in the

theorem. Since HC{Ω%) satisfies the properties, we have ξ)^Hc(Ω%).

Let C= {/eC(4v); fl>eφ}. Then the properties of § imply that C
contains constants, {v*;α6 Ω} ̂ C , C is closed under max. and min. operations
and under uniform convergence. Since {v*;α6 Ω} separates points of ΔN (by
the previous lemma), we conclude that C = C(JN) by the Stone-Weierstrass
theorem. Hence, &=HC(Ω%).

COROLLARY. The U-compactίfication Ω$ is regular and D-normal.

PROOF. Since UCHD, Ω$ is regular. It follows from the theorem that
Hc(Ω%) = Hc(Ω%). Hence HD(Ω%) = HD(Ω%) = HD, i.e., Ω$ is D-normal.

REMARK. It can be seen that Ω% is also metrizable.
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