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1. Introduction

In the theory of modular lattices, the perspectivity plays an important
role. We have the theorem of perspective mappings, the comparability
theorem and the theorem of distributivity and perspectivity (cf. [6] Theorems
(1.1), (1.2) and (1.3)). But for the non-modular lattices, the properties of
perspectivity are unknown.

U. Sasaki and S. Fujiwara [12] proved that in the matroid lattices the
perspectivity of points is transitive. In this paper, starting from this
significant fact, I investigate some properties of perspectivity in matroid
lattices, and obtain the theorem of distributivity and perspectivity ((4.9)
below) and the comparability theorem ((5.4) below). But the theorem of
perspective mappings is as yet unsolved, even if we use the symmetric
perspectivity (cf. (2.12) below).

In this paper, I treat the matroid lattices from the standpoint of
atomistic symmetric lattices.

2. Symmetric lattices and matroid lattices.

In this paper we deal with a given lattice L with 0.

DEFINITION (2.1). Let α, b e L. («, b)M means (c\J a) ί\b = c\J (a ί\b) for
every c<3, and a±b means aί\b = 0 and (a,b)M. If a±b implies b±a9 then
L is called a symmetric lattice (cf. [13] p. 495). If (α, b)M implies (ό, ά)M9

then L is called a M-symmetric lattice (cf. [14] p. 453). And if αAόφO
implies (α, b)M, then we call L a weakly modular lattice (cf. [1] p. 68).

A lattice L is called left complemented if a, b e L implies the existence of
fei such that

a A bx — 0, (δi, α)M, bλ<,b

(cf. [14] p. 453).

LEMMA (2.2). In a symmetric lattice L, the binary relation " J_" satisfies
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the following axioms:

( ± 1) a ± a implies a — 0;

(±2) a±b implies b±a;

(±3) a±b, a>ι<:a imply aι±b;

(_L 4) a ±b, a\Jb ±c imply a ±b\Jc.

PROOF. (±1) and (±2) are evident. (±3) and (±4) follow from [13]
Theorem 1.1 and Lemma 1.3 respectively.

REMARK (2.3). Lemma (2.2) means that in a symmetric lattice L " j _ " is
the semi-orthogonality in the sense of [7] and [βj. Hence we have the
following definition.

DEFINITION (2.4). A subset S of a symmetric lattice L is called a semi-
orthogonal family, in notation (a; a e S) ±, if for any pair of disjoint finite
subsets Fi, F2 of S, it holds that \J(a; a e F0 ±\J(a; a e F2).

REMARK (2.5). In a symmetric lattice L, if every finite subset of 5 is a
semi-orthogonal family then so is S5 and if aχ\J••• Wαt l α ί + i for every ί — 1, ••-,
7z-l5 then (a{; l<ί<n)± (cf. [8] p. 372).

In a symmetric lattice L, for a point p,a±p is equivalent to αAp = 0.
Hence by above, (pf ; l<^<Jrc)_L if and only if (px\j...\jpi)ίλpi+ι = 0 for
every i = l, •••, 7z —1.

Reference. The above defined "semi-orthogonal family" means the
symmetrically independent family in the sense of

REMARK (2.6). When a symmetric complete lattice L is upper continuous,
i.e. a81 a implies a8r\b | αΛi, then since as f α and (αδ, ft)Λί for every (̂  imply
(α, fe)Λf, the binary relation " _ L " satisfies furthermore the following axiom:

(±5) If α δ t α and a8±b for every 5 then a±b.

And if S is a semi-orthogonal family in L and Si, S2 are disjoint subsets (not
necessarily finite) of S, then \J(a; a e Si) ±V7(«; « ̂  S2). Cf. [8] p. 380.

REMARK (2.7). Since a left complemented lattice L is M-symmetric (cf.
C14] p. 454), it is a relatively semi-orthocomplemented lattice in the sense
of [_7J and [8J. Hence we have the following theorem from [_7J Theorem 3.
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THEOREM (2.8). Let L be a left complemented complete lattice and Z be its
center.

(I) Z is a complete Boolean sublattice of L.

(II) When aae Z for all ae I or b e Z,

\J(aa; ae I)r\b = \J(aar\b; a e L).

REMARK (2.9). The above two properties (I) and (II) mean that L is a Z-
lattice in the sense of Q4Γ] Definition 1.1. From (I) we can define the central
cover e(a) of a as the least central element z such that α<Jz, and we have the
following lemma as in [3] p. 69 Hilfssatz 4-7 (IV).

LEMMA (2.10). In a left complemented complete lattice L,

e(\J(aa; α 6 /)) = \J(e(aa); a 6 /).

DEFINITION (2.11). Let c, b be elements in a lattice L. If there exists x e L
such that

(1) a\J x = b\J x, aΓ\x —

then we say that a and b are perspective and write a-^Jb or simply α — b.

REMARK (2.12). In the symmetric lattice L, if we require that the
perspectivity implies the equi-dimensionality, instead of (1) we must use the
following condition:

(2) a\Jx = b\Jx, a±x, b ± x.

In this case, we may say that a and b are symmetrically perspective (or
5 S

s-perspective) and write α—xb or simply a~~b.
For the perspectivity of points p and q, these two definitions coincide,

since pί\x = 0 is equivalent to p±x.

LEMMA (2.13). Let L be a lattice and Z be its center, when a^b<^z and
z e Z, then a<^z,

PROOF. Cf. [3] p. 31 Hilfssatz 3.8 (III).

LEMMA (2.14). In a left complemented complete lattice L,

a — b implies e(a) = e (b).
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PROOF. Since a^b<^e(b), from (2.13) we have a<^e(b). Hence e(α)<[e(ό).
Similarly e(b)^e(a).

LEMMA (2.15). In a symmetric lattice L, the following conditions hold:

(jjf) Ifp, q are points such that aί\q = 0 and q<a\Jp, then p<La\Jq.

(y") If p is a point and aΓ\p = 0, then a<la\J p.

(a<la\Jp means that a\Jp covers a.)

PROOF. For the proof of (y"\ cf. [6] (2.3). (?') follovs directly from
(??")> since a<a\Jq<La\Jp.

REMARK (2.16). The matroid lattice can be defined in many ways (cf.
Q5] (1.8)). D. Sachs defined the matroid lattice as an atomistic, upper con-
tinuous lattice L which satisfies (Vr/), and proved that it is left complemented
(cf. [9] pp. 330-331), hence as (2.7) it is symmetric. Therefore combining
with (2.15), we may give the following definition (cf. [5Γ\ (1.4) and (1.5)).

DEFINITION (2.17). An atomistic, upper continuous, symmetric lattice is
called a matroid lattice.

THEOREM (2.18). A matroid lattice L is modular, if and only if L satisfies
the following condition:

(L) If p<.q\Ja where p, q are points, then there exists a point r such that
p<=q\Jr and r<,a.

PROOF, (i) Necessity. Cf. [3] p. 76 Hilfssatz 2.8.
(ii) Sufficiency. I will show (a, b)M, it is evident that

for c<,b.

Let p be any point such that p<L(c\Ja)r\b. Since p<^c\Ja, by [βj (1.5), there
is a finite set of points q{(i = 1, ..., n) such that #/<Ξc and

P ^ ?i ^ ^ <ln ^ «.

Hence by (L), there exists a point n such that

p^Lq\\J>i and ri<Lq%\J- \J qn\J a.

Apply (L) again, then there exists a point r2 such that
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T\<Lq2\J T2 a n d Γ 2 ^ ^ 3 V 7

And so on. Lastly we have a point rn such that

r n - ι ^ q n V r n a n d r n ^

Then, putting r = rn9 we have

p<Lqi\J- \Jqn\Jr and r<^a.

Consequently by (L) we have a point q such that

r and q<^qχ\J ΛJ qn<lc, r<^a.

When p = <7, then p<Lc<Lc\J (a Γ\b).

When pφ<7, by (yιr) in (2.15), we have r<^p\Jq. Since p<Ξ& and
we have r<Lb. Hence r<,aΓ\b. Therefore p<,q\Jr<ίc\J(aΓ\b).

Consequently (c\Ja)r\b<,c\J(aΓ\b), and (a,b)M holds.

Reference. (2.18) is essentially due to [ZJ p. 194.

THEOREM (2.19). A matroid lattice L is weakly modular, if and only if L
satisfies the following condition:

(SP) // p<,q\J a and r^a, where p, q, r are points, then there exists a
point s such that p<Lq\Jr\Js and s<,a.

PROOF. Cf. [10] p. 232 and [11] p. 414.

3. Perspectivity of points.

LEMMA (3.1). Let p, q be points in a symmetric lattice L. Then p~~xq if
and only if

(1) q<Lp\J x and

PROOF. Necessity is evident from Definition (2.11).

Sufficiency. From (1), by (2.15) (y') we have p<,q\Jx. Hence p\Jx =
q\Jx. If pi^x, then q<^χ which contradicts qί\x=0. Hence pί\x=0. Con-
sequently p"~xq.

Reference. In a general lattice L, if (1) holds, then we say that p is sub-
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perspective to q. (Cf. [3] p. 71.)

LEMMA (3.2). Let p, qu •••> ?» be points in a symmetric lattice L. If

p^qi\J --ΛJ qn\J x and pΓ\x — 0,

then p is perspective to one of qu • , qn.

PROOF. When pr\(q2\J .-.\J qn\J x) = 0, by (3.1) we have p~~qι. When
P ^ V - W J B W Λ , then as above p^q2 or p<,qz\J.- \Jqn\Jx. And so on.
Hence p is perspective to some q{.

LEMMA (3.3). In a matroid lattice £, if a^b and p is a point with p<a,
then there exists a point q such that p^q and q<,b.

PROOF. Since a — b, there exists x such that

a\J x — b\Jx, a Γ\x = b ί\x = 0.

Since p<,a\jχ=b\Jx, by [5Γ\ (1.5), t h e r e e x i s t p o i n t s q{ (i = l , ••, n) s u c h t h a t

a n d

p ̂  ςr; W . \J qn \J x.

Since pί\x^aίΛx = 0, from (3.2) p is perspective to one of qu ..., ̂ rw.

THEOREM (3,4). A matroid lattice L is modular, if and only if L satisfies
the following condition:

(Li) // p^xq where p, q are points, then there exists a point r such that

ρ~~rq and

PROOF. By (2.18) the modularity of L is equivalent to the following
condition:

(L) If p<^q\Jχ, then there exists a point r such that p<,q\Jr and r<,x.

When p<^χ, (L) always holds. Hence we may write (V) as follows:

(Z/) If p<,q\Jχ, pίΛx=0, then there exists a point r such that p<^

pίΛr — 0 and r<^x.

By (3.1), (Z/) is equivalent to (Li).
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COROLLARY (3.5). A matroid lattice L is modular, if and only ifL satisfies
the following condition:

(L2) If p^xq where p, q are different points, then the line p\Jq contains
a third point r such that r<^x.

PROOF. When p=q, (Lx) is evident. When pφg, by (2.15) (η'\ p^rq is
equivalent to r<Lp\jq and r^p, r^q. Hence from (3.4), this corollary holds.

THEOREM (3.6). A matroid lattice L is weakly modular, if and only if L
satisfies the following condition:

(SPi) // p~~xq and r<^x where p, q, r are points, then there exists either
a point s such that p^sq, s<I#, or a line I such that p^iq, r<.l<,x.

PROOF. By (2.19) the weak modularity of L is equivalent to the follow-
ing condition:

(SP) If p<^q\J x and r<,x, then there exists a point 5 such that p<;
q\Jr\Js and s<Lx.

When p<^χ, (SP) always holds. Since pn#=0 implies pίλ(r\Js) = 0, we may
write (SP) as follows:

(SP') If p<,q\Jx, pί\χ—Q and r<,x, then there exists a point s such
that p<,q\Jr\Js, pΓ\(r\Js) = 0 and r\Js<,x.

When s=r, then p^sq; and when s=\=r, put l=r\Js, then p~~ιq and r<l<,χ.
Hence (SPf) is equivalent to (SPλ).

THEOREM (3.7). A matroid lattice L is weakly modular, if and only if L
satisfies the following condition:

(SP2) If p~~xq and r<,x where p, q, r are points with p φ ^ ? then either
the line p\Jq contains a third point s such that s<^χ, or there exists
a line I such that p\Jq\\l and r<l<Lx.

PROOF, (i) Necessity. From (SPi), there exists either (a) a point s such
that p^sq, s<:X, or (β) a line I such that p~~ιq, r<l<,x.

In the case (a), p\Jq contains a third point s with s<,x. In the case (β),
since p^^wZ, two lines p\jq and I are contained in the plane q\Jl. When
p\Jq and I intersect at a point 5, then since pΓ\l = 0, we have pφs. Similarly
q^s. Hence p\Jq contains a third point 5 such that s<l<,χ. When p\Jq
and I do not intersect, then p\Jq\\l (Cf. [5] (2.2)).

(ii) Sufficiency. We shall prove (SP). When p = q or p<,χ, (SP) is
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evident. Hence assume p<Lq\Jχ<> pί\χ=0 and r<^x, that is p-~xq and r<Lx,
where p#g. Then by (SP2)^ either (a) the line p\Jq contains a third point s
such that s<>x, or (/?) there exists a line I such that p\Jq\\l and r<l<,χ.

In the case (α), p<,q\Js<^q\Jr\Js, s<^x. In the case (/?), there exists a
point 5 such that l = r\Js. Then from p\Jq\\r\Js we have p<lq\Jr\Js, and

THEOREM (3.8). A weakly modular matroid lattice L is modular if every
line in L has no parallel line.

PROOF. This is evident from (3.5) and (3.7).

Reference. (3.8) is proved in [1Γ\ p. 307 using the hyperplane, and in [ΊΓ|
(2.6) using the projective space.

4. Center and perspectivity.

DEFINITION (4.1). Let α5 b be elements of any lattice L. (a, b)D means
(c\Ja)r\b = (c\Jb)\J(a\Jb) for every ceL, and aVb means aί\b=0 and (α, b)D.

If S is any subset of L, denote by SF the set of a such that aVb for all
beS.

DEFINITION (4.2). Let {Sa; a e 1} be a family of subsets with 0 of a
complete lattice L. If

(1°) every a e L is expressible in the form

a = \J(aa; a e /), aae Sa for all a e I,

(2°) αφ/2 implies Sβ<:SF

a,

then we say that L is a direct sum of Sa(ct e /), and write L=\7(5α; a e I).

LEMMA (4.3). Let L be an upper continuous lattice.

(I) a8 f α, αδv6 /or all δ imply

(II) When L=\7(«Sα; a e I) any element a e L is expressible uniquely as

(1) <*

and there exist central elements ea (a e /), such that

l = \J(ea; a € I) and aa = eaΓ\a (a € I).

Hence L = \J(L (0, ea) a a I).
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PROOF. (I) is [3] p. 23 Hilfssatz 2.5 (I).
First half of (II) is [3] p. 24 Hilfssatz 2.6. By [3] p. 21 Hilfssatz 2.3 and

p, 23 Hilfssatz 2.5 (III), Sa is an ideal and complete sublattice of L, hence we
have Sa=L(0,ea) where ea = \J(b; beSa). Since, by [3] p. 24 Satz 2.4, L is
isomorphic to the product of L(0, ea) {cc e /), ea(a e /) are central elements of
L and l = \J(eα; a e /). By [3] p. 29 Hilfssatz 3.6, we have

a = \J(βa\ a e I) Γ\a = \J(eaΓ\a; a £ I).

Hence from the uniqueness of the expression (1), we have aa=eaίλa.

LEMMA (4.4) In a matroid lattice L, the following two propositions are
equivalent.

(a) aVb.

(/?) There do not exist points p, q with p^q, p^a, q<b.

PROOF. From (3.1), this lemma is a special case of [3] p. 72 Hilfssatz
1.3.

THEOREM (4.5). In a matroid lattice L, the perspectivity of points is
transitive, and L is a direct sum of irreducible sublatlice Sa(a e L) of L, that
is L=\^J(Sa; a e /). And any two points in the same Sa are perspective and
two points which are contained in different Sa and Sβ are not perspective.

PROOF. Cf. [12] pp. 186-188 and (3.1).

REMARK (4.6). Applying (4.3) to the above direct sum decomposition of
matroid lattice L, L=\J(Sa; a e /), there exist central elements ea{a e /) such
that l = V7(eΛ; a e I) and Sα=L(0, ea) {a e /), and any element a e L is expres-
sible uniquely as

(1) a = \J(aa; a 6/), aa = eaΓΛa (a € I).

Since Sα = L(0, ea) is irreducible, ea is a point in the center Z of L. If we
denote the set of points ea(a e I) by Ω(Z\ then the center Z is isomorphic to
the lattice of all subsets of Ω(Z).

LEMMA (4.7) Let p, q be points in a matroid lattice L. Then p~~q if and
only if e(p) = e(q).

PROOF. When p — q, by (2.14) we have e(p) = e(g). Conversely e(p) = e(q)
means e(p) — e(q) — ea for some a in (4.6). Hence by (4.5) we have p^q.
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LEMMA (4.8). In a matroid lattice L, if p is a point with p^e(α), then
there exists a point q such that p^q and q<la.

PROOF. Let qΎ(r ej) be points such that a=\J(qΎ; γ ej). Then by (2.10)
we have e(a) = \J(e(gΎ); r ej). Since p<,e(a), by (2.8) there exists ϊ such that
p<,e(qΎ). Hence e(p) = e(qΎ) and by (4.7) we have p-^qΎ.

THEOREM (4.9). (Distributivity and perspectivity). Let a, b be elements
in a matroid lattice L. Then the following three propositions are equivalent.

(a) a,γb.
(/?) There do not exist nonzero elements au bι with aι^bu αi<Jα, bι<Lb.
(r) e(a)Γ\e(b) = 0

PROOF. (α)-•(/?). If there exist au bi such that 0<aι<^a, 0<bχ<^b and
α i ^ δ i , then from (3.3) for a point p<^au there exist a point q<^bu such that
p —' q. By (4.4) this contradicts (a).

(β)-*(T). If there exists a point r such that r<^e(ά)r\e(b), then by (4.8)
there exist points p, q such that r^p, p<ίa and r~~q, q<Lb. By (4.5) p^q,
which contradicts (β.)

(r)->(α). If avb does not hold, from (4.4) there exists points p, q such
that p^q and p<,a, q<ib. Then by (2.14) we have e(p) = e(g). Hence
e(a)Γ\e(b)^>e(p)r\e(q) = e(p)>0, which contradicts (r).

REMARK (4.10). Since (3.3) holds for a~-b, we may write ai^bi instead
of a^h in (4.9) (/?).

Reference. (4.9) is a non-modular case of Theorem (1.3) in [6].

5. Point-weise perspectivity and comparability theorem.

DEFINITION (5.1). Let a be an element of a matroid lattice L and {p*; ί e 1}
be a semi-orthogonal family of points such that α=V7(p, ; £ e /), then {pz ; ΐ 6 /}
is called a base of α.

The existence of the base follows from Zorn's lemma.

DEFINITION (5.2). If two elements a, b of a matroid lattice L5 have bases
{pi; ί e 1} and {q{; ί e 1} respectively with the same cardinal number and
Pi~~qi for all ί e /, then we say that a and b are point-weise perspective, and

P P

write a^b. When a = b = 0, we write a~~b.
p

LEMMA (5.3). In a matroid lattice L5 when a^-b, we have e(ά) = e(b).
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PROOF. From (2.14), in (5.2) we have e(pi) = e(qi) for all ίeL Hence

from (2.10) we have e(α) = e(6).

THEOREM (5.4). (Comparability theorem). Let α, b be any elements in a

matroid lattice L. Then there exist a, a\ b\ b" such that

) β =

b=b'\Jb", V ±b'\

(2°) cί^V and e(θAe(δ") = 0.

In this case e(a) = e(b') = e(a)ί\e(b).

PROOF. Let T be the set of all pairs (pα, qa) of points such that p α < ^ ,
qa^b and pa — qa. And let S be a subset of T, such that

(I) when (pα, qa) and (pβ, qβ) are different elements in S, then both

Pa^Pβ and qa^qβ hold;
(II) {pa\ (pα, qa) 6 S} and {qa; (pa, qa) e S} are semi-orthogonal families.

Denote by Φ the set of S which satisfies (I) and (II). Then by (2.5), a
subset S of T belongs to Φ if and only if all finite subsets of S belong to Φ.
Therefore by Zorn's lemma, there exists a maximal set 5* in Φ.

Put a' = \J(pa (p., qa) e 5*) and b' = \J (qa (pα, ? α ) e 5*). Then by (5.20)
P

we have a~~b'.
By (2.16), since L is left complemented and symmetric, there exist a" and

V' such that

a — a \J a", a _L a'',

δ = ^ U 6'', δx ± b".

If eίa'OAe^O + O, by (4.4) and (4.9), there exist points p7, qΎ such that pΎ<,a",
qΊ<Lb" and pΎ~~qΎ. By (2.5), this contradicts the maximability of S*. Hence
e(α")Ae(δ") = 0.

By (5.3) and (2.10), we have

e(α') = e(60, e(α) = e(αθ ̂  e(α'0, e(b) = e(V) \J e(b"\

Hence e(α)We(δ)= { e ( α 0 W O } A {e(«0Ue(^0} = e ( α θ ^ {e(α'OΓ\e(b")} =e(d).

REMARK (5.5). Since matroid lattices are relatively semi-orthocomple-
mented upper continuous lattices (cf. (2.7)), we can apply the dimension theory

P

[8] to matroid lattices, using the point-weise perspectivity " — π.
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