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1. Introduction

In the theory of modular lattices, the perspectivity plays an important
role. We have the theorem of perspective mappings, the comparability
theorem and the theorem of distributivity and perspectivity (cf. 6] Theorems
(1.1), (1.2) and (1.3)). But for the non-modular lattices, the properties of
perspectivity are unknown.

U. Sasaki and S. Fujiwara [127] proved that in the matroid lattices the
perspectivity of points is transitive. In this paper, starting from this
significant fact, I investigate some properties of perspectivity in matroid
lattices, and obtain the theorem of distributivity and perspectivity ((4.9)
below) and the comparability theorem ((5.4) below). But the theorem of
perspective mappings is as yet unsolved, even if we use the symmetric
perspectivity (cf. (2.12) below).

In this paper, I treat the matroid lattices from the standpoint of
atomistic symmetric lattices.

2. Symmetric lattices and matroid lattices.

In this paper we deal with a given lattice L with 0.

DermiTion (2.1). Let ¢, b€ L. (s, b))M means (c\Ja)N\b=c\U(aNb) for
every ¢<b, and ¢ 1 b means anb=0 and (¢, b)) M. If @ b implies b_La, then
L is called a symmetric lattice (cf. [18] p. 495). If (@, b)M implies (b, a) M,
then L is called a M-symmetric lattice (cf. [14] p. 453). And if anbd=0
implies (a, b)M, then we call L a weakly modular lattice (cf. [17] p. 68).

A lattice L is called left complemented if «, b € L implies the existence of
b, such that

a\Jb=a\U b, aNb =0, (b1, &) M, b <b

(cf. [14] p. 453).

Lemma (2.2). In a symmetric lattice L, the binary relation 1> satisfies
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the following axioms:

(LD ala implies a=0;
(12) alb implies b 1l a;
(L3 a1 b, a<a mply a1 b;

(L4 a L b, a\Jb_lc imply alb\Uec

Proor. (L1) and (1 2) are evident. (1.3) and (_L4) follow from [13]
Theorem 1.1 and Lemma 1.3 respectively.

Remark (2.3). Lemma (2.2) means that in a symmetric lattice L “ > is
the semi-orthogonality in the sense of [7] and [8]. Hence we have the
following definition.

DerintTioN (2.4). A subset S of a symmetric lattice L is called a semi-
orthogonal family, in notation (s; @€ S) L, if for any pair of disjoint finite
subsets F, F, of S, it holds that \ /(a; a € F)) 1L\ J(a; a € F>).

Remark (2.5). In a symmetric lattice L, if every finite subset of S is a
semi-orthogonal family then so is S, and if @,V ... \Ua; La;., for every i=1, ...,
n—1, then (a;; 1<<i<n)L (cf.[8]p.372).

In a symmetric lattice L, for a point p, a [ p is equivalent to a N\ p=0.
Hence by above, (p;; 1<<i<n) L if and only if (p;\v...Up)Npi,1=0 for
every i=1, ..., n—1.

Reference. The above defined ‘“semi-orthogonal family” means the
symmetrically independent family in the sense of [13].

Remark (2.6). When a symmetric complete lattice L is upper continuous,
i.e. as 1 o implies a;N\b 1 anb, then since a; 1 a and (as, bH)M for every & imply
(a, )M, the binary relation “_1 > satisfies furthermore the following axiom:

(15) If asta and a; Lb for every ¢ then a_lb.

And if S is a semi-orthogonal family in L and S;, S, are disjoint subsets (not
necessarily finite) of S, then \ /(a;e€S)) L\J(a;a€S;). Cf.[8]p. 380.

Remark (2.7). Since a left complemented lattice L is M-symmetric (cf.
[147] p. 454), it is a relatively semi-orthocomplemented lattice in the sense
of [7] and [8]. Hence we have the following theorem from [7] Theorem 3.
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TuaeoreM (2.8). Let L be a left complemented complete lattice and Z be its
center.

(I) Z is a complete Boolean sublattice of L.
() When a.€Z forall a€l or be Z,
\J@@a; @€ )Nb=\J(aa N\b; @ €L).
ReMArk (2.9). The above two properties (I) and (II) mean that L is a Z-
lattice in the sense of [4] Definition 1.1. From (I) we can define the central

cover e(a) of @ as the least central element z such that ¢ <z, and we have the
following lemma as in [ 3] p. 69 Hilfssatz 4.7 (IV).

Levmmva (2.10).  In a left complemented complete lattice L,

e(\J(aa; @ €1))=\J(e(an); a €1).

DeriniTioN (2.11). Let «, b be elements in a lattice L. If there exists x € L
such that

(1) e\Jx=>b\ x, eaNx=bNx=0,
then we say that ¢ and b are perspective and write o ~.b or simply a~b.

Remark (2.12). In the symmetric lattice L, if we require that the
perspectivity implies the equi-dimensionality, instead of (1) we must use the
following condition:

2 e\Jx=>b\Uux, o lx, blx

In this case, we may say that « and b are symmetrically perspective (or

s-perspective) and write a:«xb or simply a~b.
For the perspectivity of points p and ¢, these two definitions coincide,
since p N\ x=0 is equivalent to p_Lx.

Lemma (2.13). Let L be a lattice and Z be its center, when a~b<z and
z€Z, then ¢ =<z,

Proor. Cf.[3] p. 31 Hilfssatz 3.8 (III).
Lemma (2.14). In a left complemented complete lattice L,

a~b implies e(a) = e(b).
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Proor. Since a~b<e(b), from (2.13) we have a"e(b). Hence e(a)<e(b).
Similarly e(®) <e(a).

Lemma (2.15). In a symmetric lattice L, the following conditions hold:

(") If p, q are points such that aNng=0 and ¢g<a\Up, then p=<a\Uq.

") Ifpisapoint and aNp=0, then a<<a\Up.
(e <a\Up means that a\Up covers a.)

Proor. For the proof of (7#”), cf. [6] (2.3). (#') follovs directly from
("), since a<a\qg=aUp.

Remark (2.16). The matroid lattice can be defined in many ways (cf.
[5](1.8)). D.Sachs defined the matroid lattice as an atomistic, upper con-
tinuous lattice L which satisfies (7"), and proved that it is left complemented
(ef. [9] pp. 330-331), hence as (2.7) it is symmetric. Therefore combining
with (2.15), we may give the following definition (cf. [5] (1.4) and (1.5)).

Drrinrrion (2.17).  An atomistic, upper continuous, symmetric lattice is
called a matroid lattice.

Turorem (2.18). A matroid lattice L is modular, if and only vf L satisfies
the following condition:

(L) If p=q\Ja where p, q are points, then there exists a point r such that
p=q\r and r=a.

Proor. (i) Necessity. Cf.[3] p. 76 Hilfssatz 2.8.
(ii) Sufficiency. I will show (e, b)) M, it is evident that

(cVa)Nb=c\J(aNb) for c¢=<b.

Let p be any point such that p <(c\Ua)N\b. Since p=<c\Ua, by [5] (1.5), there
is a finite set of points ¢;(: =1, ..., n) such that ¢;=c¢ and

PV UgYa.
Hence by (L), there exists a point r, such that
P=q1\Ir and n=¢\Y..-\Jg,\Ja.

Apply (L) again, then there exists a point r, such that



Perspectivity of Points in Matroid Lattices 105
n=gq\Jrs and rn=q\...Ug,Ya.
And so on. Lastly we have a point r, such that
Tao12qn\J Ty and . =a.

Then, putting r=r,, we have

P=q1\V.Ugq,Ur and r<a.
Consequently by (L) we have a point ¢ such that

p=qur and =V Uq@p=c¢, r=a.

When p=gq, then p<c<cU(anb).

When p==¢, by (7') in (2.15), we have r <puUgq. Since p=<b and ¢=<c=<]b,
we have r<b. Hence r<anb. Therefore pq\uUr=<c\U(anb).

Consequently (c\Ua)N\b<c\U(aNb), and (a, b))M holds.

Reference. (2.18) is essentially due to [27] p. 194.
Traeorem (2.19). A matroid lattice L s weakly modular, 1f and only if L
satisfies the following condition:

(SP) If p<q\a and r=a, where p, q,r are points, then there exists a
point s such that pq\Ur\Us and s<a.

Proor. Cf.[107p. 232 and [11] p. 414.

3. Perspectivity of points.

Lemma (3.1). Let p, g be points in a symmetric lattice L. Then p~.q if
and only vf

@ g=<p\Ux and gNx=0.

Proor. Necessity is evident from Definition (2.11).

Sufficiency. From (1), by (2.15) (7)) we have p<q\uU=x. Hence puUx=
qUx. If p<x, then ¢=x which contradicts ¢gnx=0. Hence pnx=0. Con-
sequently p~.q.

Reference. In a general lattice L, if (1) holds, then we say that p is sub-
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perspective to ¢. (Cf. [3] p. 71.)
Lemma (3.2). Let p, qi, ---, ¢« be points in a symmetric lattice L. If
PE=qVV- Vg Ux and pNx=0,
then p is perspective to one of qi, -, qu

Proor. When pN(g:V..-\Ug,Ux)=0, by (3.1) we have p~¢;. When
P=q:\J---\Ugq,\Jx, then as above p~gq, or p<q3\U...U¢g,Jx. And so on.
Hence p is perspective to some g;.

Lemma (38.3). In a matroid lattice L, if a~b and p is a point with p<a,
then there exists a point q such that p~q and g=b.

Proor. Since «~b, there exists x such that
a\Jx=b\x, aNx=bNx=0.

Since p=a\Ux=b\Ux, by [5] (1.5), there exist points ¢; (i=1, ..., n) such that
(],gb and

P=q¢\J--\J g, \Ux.
Since pNx<=anx=0, from (3.2) p is perspective to one of ¢, ---, ¢,

Turorem (3,4). A matroid lattice L is modular, if and only 1f L satisfies
the following condition:

(L) If p~iq where p, q are points, then there exists a point r such that
p~,q and r=x.

Proor. By (2.18) the modularity of L is equivalent to the following
condition:

(L) If p=quUx, then there exists a point r such that p<¢\Ur and r <.
When p=<w, (L) always holds. Hence we may write (L) as follows:

(L') If p=qUx, pNx=0, then there exists a point r such that p<qur,
pNr=0 and r<ux.

By (3.1), (L") is equivalent to (L,).
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CorOLLARY (8.5). A matroid lattice L is modular, 1f and only if L satisfies
the following condition :

(Lz) If p~.q where p, q are different points, then the line p\Jq contains
a third point r such that r < .

Proor. When p=gq, (L) is evident. When p==¢, by (2.15) (7'), p~,q is
equivalent to r <p\Ug and r%p,r3q. Hence from (3.4), this corollary holds.

Turorem (8.6). A matroid lattice L is weakly modular, if and only if L
satisfies the following condition:

(SPy) If p~.q and r<x where p, q, r are points, then there exists either
a point s such that p~.q, s<x, or a line l such that p~q, r<I=x.

Proor. By (2.19) the weak modularity of L is equivalent to the follow-
ing condition:

(SP) If p<quUx and r=x, then there exists a point s such that p=
gUr\Us and s<x.

When p<x, (SP) always holds. Since pnx=0 implies pN(rUs)=0, we may
write (SP) as follows:

(SP) If p<qux, pNx=0 and r=<=x, then there exists a point s such
that p<<quUrus, pN\(rUs)=0 and rUs=u.

When s=r, then p~; and when s=-r, put /=r\Us, then p~ g and r<I<ux.
Hence (SP’) is equivalent to (SP,).

TueoreMm (3.7). A matroid lattice L is weakly modular, i1f and only if L
satisfies the following condition :

(SP;) If p~.q and r<x where p, q, r are points with p-==gq, then either
the line p\Jq contains a third point s such that s <x, or there exists
a line I such that pUq||l and r<I<ux.

Proor. (i) Necessity. From (SP,), there exists either («) a point s such
that p~.q, s=<=x, or (B) a line / such that p~,g, r<I=<ux.

In the case (@), p\Uq contains a third point s with s<<x. In the case (B),
since p=q\Ul, two lines p\Uq and [ are contained in the plane ¢q\Ul. When
p\Uq and [ intersect at a point s, then since pN\I=0, we have p=s. Similarly
q¢=Fs. Hence puUg contains a third point s such that s</=x. When pugq
and / do not intersect, then puq|/l (Cf. [5] (2.2)).

(ii) Sufficiency. We shall prove (SP). When p=gq or p=<x, (SP) is
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evident. Hence assume p<=qUx, pN\x=0 and r <w, that is p~.q and r <,
where p==¢. Then by (SP,), either («) the line p\Uuq contains a third point s
such that s<"w, or (B) there exists a line [ such that puUq|/l and r<I<u.

In the case (), p=q\Us=q\UrUs, s=ux. In the case (), there exists a
point s such that /=r\Us. Then from puUgq|rUs we have p==qUruUs, and
s<l <.

TueoreM (3.8). A weakly modular matroid lattice L is modular if every
line in L has no parallel line.

Proor. This is evident from (3.5) and (3.7).

Reference. (8.8) is proved in [17] p. 307 using the hyperplane, and in [57]
(2.6) using the projective space.

4. Center and perspectivity.

Dermnition (4.1). Let @, b be elements of any lattice L. (e, b))D means
(cva)Nb=(c\ub)\U(a\Ub) for every c € L, and avb means anb=0 and (a, b)D.

If S is any subset of L, denote by S” the set of ¢ such that «vb for all
besS.

Derinrrion (4.2). Let {S.; a €I} be a family of subsets with 0 of a
complete lattice L. If

(1°) every ae€ L is expressible in the form
a=\J(as; a €1), a, €S, forall ael,
(2°) a =B implies Sz=<S7%,

then we say that L is a direct sum of S.(a € 1), and write L=\"/(S.; a € I).

Lemma (4.3). Let L be an upper continuous lattice.

D a5t a, asvb for all & vmply avb.
(II) When L=\')(S.; a €I) any element a €L is expressible uniquely as

(@H) a=\J(aq; € €1I), Gq € Sq(a €1),
and there exist central elements e,(c € I), such that

1=\J(es; x€1I) and aa=¢esNa (xel).

Hence L=\"J(L(0,e.); « €1I).
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Proor. (I)is [3] p. 23 Hilfssatz 2.5 (I).

First half of (II) is [3] p. 24 Hilfssatz 2.6. By [3] p. 21 Hilfssatz 2.3 and
p, 23 Hilfssatz 2.5 (III), S, is an ideal and complete sublattice of L, hence we
have S,=L(0, e,) where e,=\/J(b; b€ S,). Since, by [3] p. 24 Satz 24, L is
isomorphic to the product of L(0, e,) (e €1), e.(cx € I) are central elements of
Land 1=\/J(e.; « €I). By [3] p. 29 Hilfssatz 3.6, we have

a=\Jle; € Na=\J(eaNa; ael).
Hence from the uniqueness of the expression (1), we have a,=e,Na.

Lemma (4.4) In a matroid lattice L, the following two propositions are
equivalent.

() aVb.
(B) There do not exist points p, ¢ with p~gq, p=a, ¢=>.

Proor. From (8.1), this lemma is a special case of [ 3] p. 72 Hilfssatz
1.3.

Tueorem (4.5). In a matroid lattice L, the perspectivity of points s
transitive, and L is a direct sum of irreducible sublatlice S.(« € L) of L, that
is L=\")(Sq; @ €I). And any two points in the same S, are perspective and
two points which are contained in different S, and Ss are not perspective.

Proor. Cf.[12] pp. 186-188 and (3.1).

Remark (4.6). Applying (4.3) to the above direct sum decomposition of
matroid lattice L, L=\"/(S.; « € I), there exist central elements e,(a € I) such
that 1=\ J(e,; @ €I) and S,=L(0, ¢,) (« € I), and any element « € L. is expres-
sible uniquely as

ey a=\J(ea; @ €1), o =esNa (el

Since S,=L(0, e,) is irreducible, e, is a point in the center Z of L. If we
denote the set of points e, (a € I) by £2(Z), then the center Z is isomorphic to
the lattice of all subsets of 2(Z).

Lemma (4.7) Let p, q be points in a matroid lattice L. Then p~q if and
only if e(p)=e(g).

Proor. When p~gq, by (2.14) we have e(p)=e(¢q). Conversely e(p)=e(q)
means e(p)=e(g)=e, for some « in (4.6). Hence by (4.5) we have p~g.
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Lemma (4.8). In a matroid lattice L, if p is a point with p=<e(a), then
there exists a point q such that p~q and g=a.

Proor. Let ¢,(r €J) be points such that a=\J(¢,; 7 €J). Then by (2.10)
we have e(a)=\J(e(g,); v €J). Since p<e(a), by (2.8) there exists 7 such that
p=e(q,). Hence e(p)=e(g,) and by (4.7) we have p~yq,.

Tureorem (4.9). (Distributivity and perspectivity). Let a, b be elements
n a matroid lattice L. Then the following three propositions are equivalent.

(@) avb.
(8) There do not exist nonzero elements a,, by with a;~ by, a1 <a, b;<b.
@) el@)ne®)=0

Proor. (a)—(#). If there exist aj, b; such that 0<a; <<a, 0<<b;<b and
a ~ by, then from (3.3) for a point p<ai, there exist a point ¢="b,, such that
p~gq. By (4.4) this contradicts ().

(B)— (). If there exists a point r such that r<e(a) N e(d), then by (4.8)
there exist points p, ¢ such that r~p, p<<a and r~gq, ¢=<b. By (4.5) p~yq,
which contradicts (8.)

(M) —(«). If avb does not hold, from (4.4) there exists points p, ¢ such
that p~¢ and p<a@, ¢=<b. Then by (2.14) we have e(p)=e(q). Hence
e(@)Ned)=e(p)Ne(g)=e(p)>0, which contradicts (7).

Remark (4.10). Since (3.3) holds for a:«b, we may write a; ibl instead
of a1~ by in (4.9) (B).

Reference. (4.9) is a non-modular case of Theorem (1.3) in [6].

5. Point-weise perspectivity and comparability theorem.

DeriniTion (5.1). Let @ be an element of a matroid lattice L and {p;;i € I}
be a semi-orthogonal family of points such that a=\_/(p;;i € I), then {p;;i€ I}
is called a base of a.

The existence of the base follows from Zorn’s lemma.

Derinrrion (5.2). If two elements «, b of a matroid lattice L, have bases
{pi; i€l} and {q;; i €I} respectively with the same cardinal number and
pi~q:; for all i €I, then we say that ¢ and b are point-weise perspective, and

write « ib. When ¢=5b=0, we write aib.

Lemma (5.3). In a matroid lattice L, when a«p«b, we have e(a)=c(b).
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Proor. From (2.14), in (5.2) we have e(p;)) =e(g;) for all iel. Hence
from (2.10) we have e(a)=c(b).

Turorem (5.4). (Comparability theorem). Let a, b be any elements in a
matroid lattice L. Then there exist o', a”, b', b such that

1% a=d \Ja', ¢ 1da’,
b=b\Ub”, b Lb,

(2°) 2y and  e(@)ne®”)=0.
In this case e(a")=e(') = e(a) Ne(b).

Proor. Let T be the set of all pairs (p., ¢.) of points such that p, <a,
ga=0b and p,~q,. And let S be a subset of T, such that

(I) when (pa, qo) and (pg, qs) are different elements in S, then both
pa=Fps and ga=Fgs hold;

D) {pa; (pas gu) € S} and {ga; (pas go) € S} are semi-orthogonal families.

Denote by @ the set of S which satisfies (I) and (II). Then by (2.5), a
subset S of T belongs to @ if and only if all finite subsets of S belong to @.

Therefore by Zorn’s lemma, there exists a maximal set S* in @.
Put o' =\J(pa; (Pas o) € S*) and ' =\J(qu; (pa> g) € S*). Then by (5.20)

we have a/i b'.
By (2.16), since L is left complemented and symmetric, there exist ¢” and
b"’ such that

a=a \Jda", a 1Lda”,

b=b\Ub’, b 1L b".
If e(a”)Me(®”) 0, by (4.4) and (4.9), there exist points p,, ¢, such that p,<<a",
¢, =b" and p,~g¢,. By (2.5), this contradicts the maximability of S*. Hence

e(@)Ne®”)=0.
By (5.3) and (2.10), we have

e(a)=e(b), ela)=e(a)Uelad), e)=c®)\Uel).
Hence e(a)Ue®)={e(@)\elc)} N{e(c) e} =e(a)\U {e(d)Ne(d”)} =e(a).

Remark (6.5). Since matroid lattices are relatively semi-orthocomple-
mented upper continuous lattices (cf. (2.7)), we can apply the dimension theory

4

. . . . . .. »
[ 8] to matroid lattices, using the point-weise perspectivity "~ .
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