Note on Miller's Recurrence Algorithm

Hisayoshi Shintani

(Received March 10, 1965)

1. Introduction

In this paper, we are concerned with a recurrence algorithm, originated by J. C. P. Miller [1] ${ }^{1}$, for computing a solution f_{n} of a second-order difference equation

$$
\begin{equation*}
y_{n-1}=a_{n} y_{n}+b_{n} y_{n+1} \quad\left(b_{n} \neq 0 ; n=1,2, \ldots\right), \tag{1.1}
\end{equation*}
$$

in the case where (1.1) has a second solution g_{n} which ultimately grows much faster than $f_{n}[6]$. This algorithm is used for computing Bessel functions [$1,2,4,9]$, Legendre functions [8], repeated integrals of the error function [3], and so on.

Let $P_{n}(k)$ be defined by the formula

$$
\begin{equation*}
P_{n}(k-1)=a_{k} P_{n}(k)+b_{k} P_{n}(k+1) \quad(k=n+1, n, \ldots, 1), \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{n}(n)=1, \quad P_{n}(n+1)=0, \quad P_{n}(n+2)=1 / b_{n+1} . \tag{1.3}
\end{equation*}
$$

Then Miller's algorithm is applied in the following two ways:
1°. when the normalizing condition

$$
\begin{equation*}
m_{0} f_{0}+m_{1} f_{1}+\ldots=c \quad(c \neq 0) \tag{1.4}
\end{equation*}
$$

is known, put

$$
\begin{equation*}
S_{n}(k)=\frac{c P_{n}(k)}{R_{n}} \quad(k=0,1, \ldots, n), \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{n}=\sum_{j=0}^{n} m_{j} P_{n}(j) . \tag{1.6}
\end{equation*}
$$

2°. when f_{0} is known and $f_{0} \neq 0$, put

[^0]\[

$$
\begin{equation*}
T_{n}(k)=\frac{f_{0} P_{n}(k)}{P_{n}(0)} \quad(k=0,1, \ldots, n) \tag{1.7}
\end{equation*}
$$

\]

Under suitable conditions, which are reported to have been obtained by Gautschi $[3,6]$, it is valid that

$$
\begin{equation*}
S_{n}(k), T_{n}(k) \rightarrow f_{k} \quad \text { as } \quad n \rightarrow \infty \tag{1.8}
\end{equation*}
$$

In the sequel, we consider the case where (1.8) holds.
There arises the question how large n should be in order to obtain the approximate values of $f_{k}(k=0,1, \ldots, N+1)$ to the desired accuracy. Such a value n will depend on the value N, the desired accuracy, the coefficients a 's and b 's, and so on. Until now theoretical bounds for the starting value n have been obtained for spherical Bessel functions [2], and for the repeated integrals of the error function [3], and empirical bounds have been obtained for $J_{k}(x)[5]$. In the case where such a bound is not known, usually Miller's algorithm is applied repeatedly for different values of n; the results obtained are compared in accordance with a preassigned tolerence and the process is repeated with n increased by a fixed amount until the criteria for acceptance are satisfied [9].

In the first part of this paper, recurrence formulas are derived for generating $P_{n}(k)$ and R_{n} for increasing n with k fixed. By generating $S_{n}(N)$ and $S_{n}(N+1)$ for increasing n through these formulas, the approximate values of f_{N} and f_{N+1} can be obtained to the desired accuracy and then the approximate values of $f_{k}(k=N-1, \ldots, 1,0)$ can be generated through (1.2). This process seems to be more efficient than the above iterative process.

In the second part of this paper, we consider the case where $a_{r}>0$ and $b_{r}>0(r=1,2, \ldots)$, and show the methods for generating the approximate values of $f_{k}(k=0,1, \ldots, N+1)$ to the desired relative accuracy.

2. Recurrence formulas

We shall first show the following
Theorem 1. $\quad P_{n}(k)(n=k-1, k, \ldots)$ satisfy the recurrence formula

$$
\begin{equation*}
P_{n+1}(k)=a_{n+1} P_{n}(k)+b_{n} P_{n-1}(k) \quad(n+1 \geqq k \geqq 0), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{k}(k)=1, \quad P_{k-1}(k)=0, \quad P_{k-2}(k)=1 / b_{k-1} . \tag{2.2}
\end{equation*}
$$

Proof. Since by definition

$$
\begin{equation*}
P_{n-1}(n+1)=1 / b_{n}, \quad P_{n}(n+1)=0, \quad P_{n+1}(n+1)=1, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n-1}(n)=0, \quad P_{n}(n)=1, \quad P_{n+1}(n)=a_{n+1}, \tag{2.4}
\end{equation*}
$$

(2.1) ia valid for $k=n+1, n$. Hence suppose that (2.1) holds for $k=n+1, n$, $\ldots, q(q>0)$. Then we have

$$
\begin{equation*}
P_{n+1}(q)=a_{n+1} P_{n}(q)+b_{n} P_{n-1}(q), \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n+1}(q+1)=a_{n+1} P_{n}(q+1)+b_{n} P_{n-1}(q+1) \tag{2.6}
\end{equation*}
$$

On the other hand, from (1.2) it follows that

$$
\begin{equation*}
P_{n+1}(q-1)=a_{q} P_{n+1}(q)+b_{q} P_{n+1}(q+1) \tag{2.7}
\end{equation*}
$$

Substituting (2.5) and (2.6) into (2.7), we obtain

$$
\begin{align*}
P_{n+1}(q-1)= & a_{n+1}\left[a_{q} P_{n}(q)+b_{q} P_{n}(q+1)\right]+ \tag{2.8}\\
& +b_{n}\left[a_{q} P_{n-1}(q)+b_{q} P_{n-1}(q+1)\right] \\
= & a_{n+1} P_{n}(q-1)+b_{n} P_{n-1}(q-1) .
\end{align*}
$$

This proves the theorem.
Next put

$$
\begin{equation*}
U_{n}(k)=\sum_{j=k}^{n} m_{j} P_{n}(j) \quad(n \geqq k) . \tag{2.9}
\end{equation*}
$$

Then we have the following

Theorem 2. $U_{n}(k)(n=k, k+1, \ldots)$ satisfy the recurrence formula

$$
\begin{equation*}
U_{n+1}(k)=a_{n+1} U_{n}(k)+b_{n} U_{n-1}(k)+m_{n+1} \quad(n \geqq k), \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{k-1}(k)=0, \quad U_{k}(k)=m_{k} . \tag{2.11}
\end{equation*}
$$

Proof. Since

$$
\begin{equation*}
U_{k}(k)=m_{k} P_{k}(k)=m_{k} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{k+1}(k)=m_{k} P_{k+1}(k)+m_{k+1} P_{k+1}(k+1)=m_{k} a_{k+1}+m_{k+1}, \tag{2.13}
\end{equation*}
$$

(2.10) is valid for $n=k$.

For $n>k$, we have

$$
\begin{align*}
U_{n+1}(k) & =\sum_{j=k}^{n} m_{j} P_{n+1}(j)+m_{n+1} P_{n+1}(n+1) \tag{2.14}\\
& =\sum_{j=k}^{n} m_{j}\left[a_{n+1} P_{n}(j)+b_{n} P_{n-1}(j)\right]+m_{n+1} \\
& =a_{n+1} \sum_{j=k}^{n} m_{j} P_{n}(j)+b_{n} \sum_{j=k}^{n-1} m_{j} P_{n-1}(j)+m_{n+1} \\
& =a_{n+1} U_{n}(k)+b_{n} U_{n-1}(k)+m_{n+1},
\end{align*}
$$

because

$$
\begin{equation*}
P_{n+1}(n+1)=1, \quad P_{n-1}(n)=0 \tag{2.15}
\end{equation*}
$$

Thus the theorem has been proved.
Since $R_{n}=U_{n}(0)$, from this theorem we obtain the following

Corollary. $\quad R_{n}(n=0,1,2, \ldots)$ satisfy the recurrence formula

$$
\begin{equation*}
R_{n+1}=a_{n+1} R_{n}+b_{n} R_{n-1}+m_{n+1} \quad(n \geqq 0) \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{-1}=0, \quad R_{0}=m_{0} \tag{2.17}
\end{equation*}
$$

Making use of (2.1) and (2.16), we can generate $P_{n}(k), S_{n}(k)$, and $T_{n}(k)$ for increasing n with k fixed. Hence, for a specified k, we can obtain the approximate value of f_{k} to the desired accuracy by increasing n.

When $P_{n}(N)$ and $P_{n}(N+1)$ are obtained by means of (2.1), we can use (1.2) to generate $P_{n}(j)(j=N-1, \ldots, 1,0)$. In that case, if $U_{n}(N)$ is computed, R_{n} can be obtained by the formula

$$
\begin{equation*}
R_{n}=\sum_{j=0}^{N-1} m_{j} P_{n}(j)+U_{n}(N) . \tag{2.18}
\end{equation*}
$$

Since by (1.5), (1.7) and (1.8)

$$
\begin{equation*}
\frac{P_{n}(k+1)}{P_{n}(k)} \rightarrow \frac{f_{k+1}}{f_{k}} \quad \text { as } n \rightarrow \infty \quad\left(f_{k} \neq 0\right) \tag{2.19}
\end{equation*}
$$

we have the following
Theorem 3. The ratio $f_{k+1} / f_{k}\left(f_{k} \neq 0\right)$ can be expanded into the continued fraction as follows:

$$
\begin{equation*}
\frac{f_{k+1}}{f_{k}}=\frac{1}{a_{k+1}+} \frac{b_{k+1}}{a_{k+2}+} \frac{b_{k+2}}{a_{k+3}+} \cdots \cdots . \quad(k \geqq 0) \tag{2.20}
\end{equation*}
$$

Proof. By (2.19) it suffices to show that

$$
\begin{align*}
\frac{P_{m+1}(k+1)}{P_{m+1}(k)}=\frac{1}{a_{k+1}+} \frac{b_{k+1}}{a_{k+2}+} \cdots \cdots \cdot & \frac{b_{m-1}}{a_{m}+} \frac{b_{m}}{a_{m+1}} \tag{2.21}\\
& (m=k+1, k+2, \cdots \cdots) .
\end{align*}
$$

By (2.1), (2.3) and (2.4) we have

$$
\begin{equation*}
\frac{P_{k+2}(k+1)}{P_{k+2}(k)}=\frac{a_{k+2}}{a_{k+2} a_{k+1}+b_{k+1}}=\frac{1}{a_{k+1}+} \frac{b_{k+1}}{a_{k+2}} \tag{2.22}
\end{equation*}
$$

so that (2.21) is valid for $m=k+1$. Hence suppose that (2.21) holds for $m=k+1, k+2, \cdots, n$. Then it is valid that

$$
\begin{equation*}
\frac{a_{n+1} P_{n}(k+1)+b_{n} P_{n-1}(k+1)}{a_{n+1} P_{n}(k)+b_{n} P_{n-1}(k)}=\frac{1}{a_{k+1}+} \frac{b_{k+1}}{a_{k+2}+} \cdots \cdots \cdot \frac{b_{n-1}}{a_{n}+} \frac{b_{n}}{a_{n+1}} . \tag{2.23}
\end{equation*}
$$

Replacing a_{n+1} and b_{n} in (2.23) with $a_{n+2} a_{n+1}+b_{n+1}$ and $a_{n+2} b_{n}$ respectively, we have

$$
\begin{align*}
& \frac{\left(a_{n+2} a_{n+1}+b_{n+1}\right) P_{n}(k+1)+\frac{a_{n+2} b_{n} P_{n-1}(k+1)}{\left(a_{n+2} a_{n+1}+b_{n+1}\right) P_{n}(k)+} a_{n+2} b_{n} P_{n-1}(k)}{\quad=\frac{1}{a_{k+1}+} \frac{b_{k+1}}{a_{k+2}+} \cdots \cdots \cdot \frac{b_{n-1}}{a_{n}+} \frac{a_{n+2} b_{n}}{a_{n+2} a_{n+1}+b_{n+1}} .} . \tag{2.24}
\end{align*}
$$

Since by (2.1)

$$
\begin{align*}
\left(a_{n+2} a_{n+1}\right. & \left.+b_{n+1}\right) P_{n}(r)+a_{n+2} b_{n} P_{n-1}(r) \quad(r=k, k+1) \tag{2.25}\\
& =a_{n+2}\left[a_{n+1} P_{n}(r)+b_{n} P_{n-1}(r)\right]+b_{n+1} P_{n-1}(r) \\
& =a_{n+2} P_{n+1}(r)+b_{n+1} P_{n+1}(r)=P_{n+2}(r),
\end{align*}
$$

and

$$
\begin{equation*}
\frac{a_{n+2} b_{n}}{a_{n+2} a_{n+1}+b_{n+1}}=\frac{b_{n}}{a_{n+1}+} \frac{b_{n+1}}{a_{n+2}}, \tag{2.26}
\end{equation*}
$$

(2.21) is valid also for $m=n+1$.

Now we shall show the examples to which the above results can be applied.

Example 1. Bessel functions of the first kind $J_{k}(x)(k=0,1, \ldots)$ satisfy the recurrence formula [9]

$$
\begin{equation*}
J_{n-1}(x)=\frac{2 n}{x} J_{n}(x)-J_{n+1}(x) \tag{2.27}
\end{equation*}
$$

with the normalizing condition

$$
\begin{equation*}
J_{0}(x)+2 \sum_{k=1}^{\infty} J_{2 k}(x)=1 \tag{2.28}
\end{equation*}
$$

Hence we can use (2.1) and (2.16) to obtain the approximate values of $J_{0}(x)$ and $J_{1}(x)$ to the desired accuracy without knowing previously the starting value n. They can be used also to determine the empirical bound for the starting value n for $J_{0}(x)$ and $J_{1}(x)$. Once such a bound is obtained, we can use (1.2) to generate the approximate values of $J_{0}(x), J_{1}(x)$ and so on efficiently.

Example 2. Let

$$
\begin{equation*}
i^{n} \operatorname{erfc} x=\int_{x}^{\infty} i^{n-1} \operatorname{erfc} t \mathrm{dt} \quad(n=0,1, \cdots) \tag{2.29}
\end{equation*}
$$

where

$$
\begin{equation*}
i^{-1} \operatorname{erfc} x=\frac{2}{\sqrt{\pi}} e^{-x^{2}} \tag{2.30}
\end{equation*}
$$

and put

$$
\begin{equation*}
y_{n}=i^{n-1} \operatorname{erfc} x . \tag{2.31}
\end{equation*}
$$

Then $y_{n}(n=0,1, \ldots)$ satisfy the recurrence formula [3]

$$
\begin{equation*}
y_{n-1}=2 x y_{n}+2 n y_{n+1} . \tag{2.32}
\end{equation*}
$$

Since $y_{1}=\operatorname{erfc} x$, it is valid that

$$
\begin{equation*}
T_{n}(1) \rightarrow \operatorname{erfc} x \quad \text { as } n \rightarrow \infty \tag{2.33}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{n}(1)=\frac{2}{\sqrt{\pi}} e^{-x^{2}} \frac{P_{n}(1)}{P_{n}(0)} \tag{2.34}
\end{equation*}
$$

Hence we can use (2.1) to obtain the approximate value of $\operatorname{erfc} x$.
On the other hand, from (6.20) it follows that

$$
\begin{equation*}
\operatorname{erfc} x=\frac{2}{\sqrt{\pi}} e^{-x^{2}}\left[\frac{1}{2 x+} \frac{2}{2 x+} \frac{4}{2 x+} \frac{6}{2 x+} \cdots \cdots\right] . \tag{2.35}
\end{equation*}
$$

J. Patry and J. Keller [7] obtained the expansion

$$
\begin{equation*}
\operatorname{erfc} x=e^{-x^{2}}\left[\frac{1}{c_{0} x+} \frac{1}{c_{1} x+} \frac{1}{c_{2} x+} \cdots \cdots\right] \tag{2.36}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{0}=\sqrt{\pi}, \quad c_{1}=\frac{2}{\sqrt{\pi}}, \quad c_{n+1}=\frac{2}{c_{n}+} \frac{2}{c_{n-1}} . \tag{2.37}
\end{equation*}
$$

As is easily seen, this is equivalent to (2.35), but (2.35) is simpler than (2.36).

3. Case of positive coefficients

In this paragraph, we are concerned with the case where

$$
\begin{equation*}
a_{n}>0, \quad b_{n}>0 \quad(n=1,2, \ldots \ldots) \tag{3.1}
\end{equation*}
$$

This condition is satisfied, for instance, by the recurrence formulas for $I_{n}(x)$, $i_{n}(x)$ and $i^{n} \operatorname{erfc} x$. Our problem is how to generate $f_{k}(k=0,1, \ldots, N+1)$ to the desired relative accuracy. To that end we need the following

Lemma. Put

$$
\begin{equation*}
\frac{f_{N+1}}{f_{N}}=r \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{P_{n}(N+1)}{P_{n}(N)}=r_{n}=r\left(1+e_{n}\right) \quad(n \geqq N+1) . \tag{3.3}
\end{equation*}
$$

Then it is valid that

$$
\begin{gather*}
\frac{P_{n}(k)}{f_{k}}=\left(1+d_{k} e_{n}\right) \frac{P_{n}(N)}{f_{N}} \quad(k=0,1, \ldots, N+1), \tag{3.4}\\
0=d_{N}<d_{N-2}<\ldots<d_{0}<\ldots<d_{N-1}<d_{N+1}=1,
\end{gather*}
$$

and

$$
\begin{equation*}
-1=e_{N}<e_{N+2}<\ldots<0<\ldots<e_{N+3}<e_{N+1}, \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{k}=\frac{r b_{N} P_{N-1}(k)}{P_{N}(k)+r b_{N} P_{N-1}(k)} . \tag{3.7}
\end{equation*}
$$

Proof. It is easy to show by induction that

$$
\begin{equation*}
P_{n}(k)=P_{n}(N) P_{N}(k)+b_{N} P_{n}(N+1) P_{N-1}(k) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{k}=f_{N} P_{N}(k)+b_{N} f_{N+1} P_{N-1}(k) \quad(k=0,1, \ldots, N+1) \tag{3.9}
\end{equation*}
$$

From these, (3.2) and (3.3) we have

$$
\begin{align*}
\frac{P_{n}(k)}{f_{k}} & =\frac{P_{n}(N)}{f_{N}} \cdot \frac{P_{N}(k)+r\left(1+e_{n}\right) b_{N} P_{N-1}(k)}{P_{N}(k)+r b_{N} P_{N-1}(k)} \tag{3.10}\\
& =\frac{P_{n}(N)}{f_{N}}\left[1+\frac{r b_{N} P_{N-1}(k)}{P_{N}(k)+r b_{N} P_{N-1}(k)} \cdot e_{n}\right] .
\end{align*}
$$

This proves (3.4).
Next, substituting (3.3) into

$$
\begin{equation*}
P_{n+1}(N+1)=a_{n+1} P_{n}(N+1)+b_{n} P_{n-1}(N+1), \tag{3.11}
\end{equation*}
$$

we have

$$
\begin{equation*}
r_{n+1} P_{n+1}(N)=r_{n} a_{n+1} P_{n}(N)+r_{n-1} b_{n} P_{n-1}(N) \tag{3.12}
\end{equation*}
$$

From this and

$$
\begin{equation*}
P_{n+1}(N)=a_{n+1} P_{n}(N)+b_{n} P_{n-1}(N), \tag{3.13}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
r_{n+1}-r_{n}=\left(r_{n-1}-r_{n}\right) \frac{b_{n} P_{n-1}(N)}{P_{n+1}(N)} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{n+1}-r_{n-1}=\left(r_{n}-r_{n-1}\right) \frac{a_{n+1} P_{n}(N)}{P_{n+1}(N)} \tag{3.15}
\end{equation*}
$$

Since

$$
\begin{equation*}
r_{N}=0, \quad r_{N+1}=\frac{1}{a_{N+1}}, \quad P_{m}(N)>0 \quad(m \geqq N) \tag{3.16}
\end{equation*}
$$

from (3.14) and (3.15) we have

$$
\begin{equation*}
0=r_{N}<r_{N+2}<\ldots<r<\ldots<r_{N+3}<r_{N+1} \tag{3.17}
\end{equation*}
$$

This proves (3.6).
Lastly, from (3.7) we can easily deduce the relations

$$
\begin{equation*}
d_{k}-d_{k-1}=\left(d_{k}-d_{k+1}\right) b_{k} \frac{P_{N}(k+1)+r b_{N} P_{N-1}(k+1)}{P_{n}(k-1)+r b_{N} P_{N-1}(k-1)} \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{k+1}-d_{k-1}=\left(d_{k-1}-d_{k}\right) a_{k} \frac{P_{N}(k)+r b_{N} P_{N-1}(k)}{P_{N}(k+1)+r b_{N} P_{N-1}(k+1)} . \tag{3.19}
\end{equation*}
$$

Since $d_{N}=0$ and $d_{N+1}=1$, from (3.18) and (3.19) follows (3.5). This completes the proof of the lemma.

Now we shall show the following
Theorem 4. Let

$$
\begin{equation*}
f_{0}^{*}=f_{0}(1+c) \quad\left(|c| \leqq c_{0}<1\right) \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{n}^{*}(k)=\frac{f_{0}^{*} P_{n}(k)}{P_{n}(0)}=\left(1+e_{n, k}\right) f_{k} \quad(k=0,1, \cdots, N+1) \tag{3.21}
\end{equation*}
$$

where f_{0}^{*} is an approximate value of f_{0}. Then, for n such that

$$
\begin{equation*}
n=N+1+2 q \quad(q \geqq 1) \tag{3.22}
\end{equation*}
$$

it is valid that

$$
\begin{equation*}
(1+c)\left(1-e_{n}\right)<1+e_{n, k}<(1+c)\left(1+e_{n}\right) \quad(k=0,1, \cdots, N+1) \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{r_{n}-r_{n+2}}{r_{n+2}}<e_{n}<\frac{r_{n}-r_{n-1}}{r_{n-1}} . \tag{3.24}
\end{equation*}
$$

Proof. From (3.20), (3.21) and (3.4), it follows that

$$
\begin{equation*}
1+e_{n, k}=(1+c) \frac{1+d_{k} e_{n}}{1+d_{0} e_{n}}=(1+c)\left[1+\frac{\left(d_{k}-d_{0}\right)}{1+d_{0} e_{n}} \cdot e_{n}\right] \tag{3.25}
\end{equation*}
$$

We consider the case where n satisfies (3.22). Then it is valid that

$$
\begin{equation*}
1+d_{0} e_{n}>1 \tag{3.26}
\end{equation*}
$$

because $d_{0}>0$ and $e_{n}>0$ by (3.5) and (3.6). Further, from (3.5), it follows that

$$
\begin{equation*}
\left|d_{k}-d_{0}\right|<1 \tag{3.27}
\end{equation*}
$$

Hence we have the inequality

$$
\begin{equation*}
\left|\frac{d_{k}-d_{0}}{1+d_{0} e_{n}}\right|<1 \tag{3.28}
\end{equation*}
$$

and (3.23) is proved.
On the other hand, since by (3.6)

$$
\begin{equation*}
-1<e_{n-1}<0, \quad 0<e_{n+2}<e_{n} \tag{3.29}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{r_{n}-r_{n-1}}{r_{n-1}}=\frac{e_{n}-e_{n-1}}{1+e_{n-1}}>e_{n} \tag{3.30}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{r_{n}-r_{n+2}}{r_{n+2}}=\frac{e_{n}-e_{n+2}}{e_{n+2}}<e_{n} . \tag{3.31}
\end{equation*}
$$

Thus the theorem has been proved.
Now, by (3.24), it holds that

$$
\begin{equation*}
e_{n, k}<e_{n}(1+c)+c \leqq e_{n}\left(1+c_{0}\right)+c_{0} \tag{3.32}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{n, k}>-e_{n}(1+c)+c \geqq-e_{n}\left(1+c_{0}\right)-c_{0} . \tag{3.33}
\end{equation*}
$$

Hence we have the following
Corollary. Under the condition (3.22), if for a positive number $\mu\left(\mu>c_{0}\right)$

$$
\begin{equation*}
e_{n} \leqq \frac{\mu-c_{0}}{1+c_{0}} \tag{3.34}
\end{equation*}
$$

then the inequality

$$
\begin{equation*}
\left|e_{n, k}\right|<\mu \tag{3.35}
\end{equation*}
$$

is valid for $k=0,1, \ldots, N+1$.
Next we shall show the following

Theorem 5. Let

$$
\begin{equation*}
S_{n}(k)=f_{k}\left(1+s_{n, k}\right) \tag{3.36}
\end{equation*}
$$

and suppose that, for a positive number μ,

$$
\begin{equation*}
\left|s_{n, N}\right| \leqq \mu, \quad\left|s_{n, N+1}\right| \leqq \mu \tag{3.37}
\end{equation*}
$$

Then the inequality

$$
\begin{equation*}
\left|s_{n, k}\right| \leqq \mu \tag{3.38}
\end{equation*}
$$

is valid for $k=0,1, \ldots, N+1$.
Proof. From (3.4) and (1.5) it follows that

$$
\begin{equation*}
s_{n, k}=s_{n, N}+d_{k} e_{n}\left(1+s_{n, N}\right) \quad(k=0,1, \ldots, N+1) \tag{3.39}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{n}\left(1+s_{n, N}\right)=s_{n, N+1}-s_{n, N}, \tag{3.40}
\end{equation*}
$$

because $d_{N+1}=1$. Substituting (3.40) into (3.39), we obtain

$$
\begin{equation*}
s_{n, k}=d_{k} s_{n, N+1}+\left(1-d_{k}\right) s_{n, N} \tag{3.41}
\end{equation*}
$$

Since by (3.5)

$$
\begin{equation*}
0 \leqq d_{k} \leqq 1 \quad(k=0,1, \ldots, N+1) \tag{3.42}
\end{equation*}
$$

from (3.41) and (3.37) follows (3.38).
Now we are in a position to apply theorems 4 and 5 for generating the approximate values of $f_{k}(k=0,1, \cdots, N+1)$ such that

$$
\begin{equation*}
\left|s_{n, k}\right| \leqq \mu \quad(k=0,1, \cdots, N+1) \tag{3.43}
\end{equation*}
$$

for a preassigned positive number μ. For this purpose, the following three methods can be considered.

Method 1. Generate $P_{n}(0), R_{n}, P_{n}(N)$ and $P_{n}(N+1)$ for increasing n until
the inequalities

$$
\begin{equation*}
\left|s_{n, 0}\right| \leqq \frac{\mu}{2} \tag{3.44}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|e_{n}\right| \leqq \frac{\mu}{2+\mu} \tag{3.45}
\end{equation*}
$$

are valid for n satisfying (3.22), and then compute $S_{n}(k)(k=0,1, \cdots, N+1)$ by (1.2).

Method 2. Generate $R_{n}, P_{n}(N)$ and $P_{n}(N+1)$ until the condition (3.37) is satisfied, and then compute $S_{n}(k)(k=0,1, \cdots, N+1)$ by (1.2).

When there is known a bound $M(\mu)$ such that the inequality

$$
\begin{equation*}
n \geqq M(\mu) \tag{3.46}
\end{equation*}
$$

implies (3.44), the following method becomes possible.
Method 3. Generate $P_{n}(N), P_{n}(N+1)$ and $U_{n}(N)$ until (3.45) and (3.46) are valid for n satisfying (3.22), and then compute $S_{n}(k)(k=0,1, \ldots, N+1)$ by (1.2) and (2.18).

Among the three methods, the last one seems to be the most efficient, and the methods 1 and 2 can be applied for determining the empirical bound $M(\mu)$ with $N=0$.

Example 3. Let $I_{n}(x)(n=0,1, \ldots)$ be the modified Bessel functions of the first kind and put

$$
\begin{equation*}
y_{n}=e^{-x} I_{n}(x) \tag{3.47}
\end{equation*}
$$

for a fixed value of x. Then they satisfy the recurrence formula [9]

$$
\begin{equation*}
y_{n-1}=\frac{2 n}{x} y_{n}+y_{n+1} \tag{3.48}
\end{equation*}
$$

with the normalizing condition

$$
\begin{equation*}
y_{0}+2 \sum_{j=1}^{\infty} y_{j}=1 \tag{3.49}
\end{equation*}
$$

Generating $S_{n}(0)$ and $S_{n}(1)$ for increasing n until they were in the state of numerical convergence [10] for $x=0.01,0.05(0.05) 1.0,1.5(0.5) 10,15(5) 100$, and 110 (10) 500 , we obtained the following empirical bounds for a digital computer with 39 bits mantissa:

$$
\begin{align*}
& M\left(x, 10^{-6}\right)= \begin{cases}x+9-\frac{62}{39 x+10} & (0<x \leqq 10) \\
0.1 x+74-\frac{6270}{x+105} & (10<x \leqq 500),\end{cases} \tag{3.50}\\
& M\left(x, 10^{-8}\right)= \begin{cases}x+12-\frac{83}{27 x+10} & (0<x \leqq 10) \\
0.1 x+99-\frac{10800}{x+130} & (10<x \leqq 500),\end{cases} \tag{3.51}\\
& M\left(x, 10^{-10}\right)= \begin{cases}x+16-\frac{44}{5 x+4} & (0<x \leqq 10) \\
0.15 x+83-\frac{4514}{x+65} & (10<x \leqq 500) .\end{cases} \tag{3.52}
\end{align*}
$$

These bounds mean that the inequalities

$$
\begin{equation*}
\left|s_{n, 0}^{*}\right| \leqq \frac{\mu}{2}, \quad\left|s_{n, 1}^{*}\right| \leqq \frac{\mu}{2} \tag{3.53}
\end{equation*}
$$

are valid approximately provided $n \geqq \boldsymbol{M}(x, \mu)$, where $s_{n, 0}^{*}$ and $s_{n, 1}^{*}$ are the relative errors of $S_{n}(0)$ and $S_{n}(1)$ to the computed values of $e^{-x} I_{0}(x)$ and $e^{-x} I_{1}(x)$ respectively.

References

[1] British Association for the Advancement of Science: Bessel functions, Part II, Mathematical Tables vol. X, Cambridge (1952).
[2] Corbató, F. J. and J. L. Uretsky: Generation of spherical Bessel functions in digital computers, J. Assoc. Comput. Mach., 6 (1959), 366-375.
[3] Gautschi, W.: Recursive computation of the repeated integrals of the error function, Math. Comput., 15 (1961), 227-232.
[4] Goldstein, M. and R. M. Thaler: Recurrence techniques for the calculation of Bessel functions, Math. Tables Aids Comput., 13 (1959), 102-108.
[5] Lance, G. N.: Numerical methods for high speed computers, London (1960).
[6] Olver, F. W. J.: Error analysis of Miller's recurrence algorithm, Math. Comput., 18 (1964), 65-74.
[7] Patry, J. and J. Keller: Zur Berechnung des Fehlerintegrals, Numer. Math., 6 (1964), 89-97.
[8] Rotenberg, A.: The calculation of toroidal harmonics, Math. Comput., 14 (1960), 274-276.
[9] Stegun, I. A. and M. Abramowitz: Generation of Bessel functions on high speed computers, Math. Tables Aids Comput., 11 (1957), 255-257.
[10] Urabe, M.: Convergence of numerical iteration in solution of equations, J. Sci. Hiroshima Univ., Ser. A, 19 (1956), 479-489.

Department of Mathematics
 Faculty of Science
 Hiroshima University

[^0]: 1) Numbers in square brackets refer to the references listed at the end of this paper.
