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Note on F-operators in Locally Convex Spaces
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The theory of F-operators in Banach spaces has been developed by several
authors (cf. the references in [5,17]). According to [5], a closed, normally
solvable, linear mapping with finite d-characteristic is called an F-operator. It
is the purpose of this paper to generalize this notion of F-operator to locally
convex spaces so that we may maintain a number of the basic results known
in the case of Banach spaces. For the continuous F-operators, such an attempt
has been made by H. Schaefer [97] and then by A. Deprit [4]. Our main
concern here is the discussion of a general theory of F;operators: characteriza-
tion of F-operators, the index theorem for a product, and so on.

§ 1. Let E and F be locally convex Hausdorff spaces (denoted by LCS).
Let » be a linear mapping with domain ®, in £ and rang R, in F. We denote
by M, the null space of u. If u is closed, N, is a closed subspace of E. 1 is
called open if u(A) is an open subset of R, for each open subset 4 of D,.

A linear mapping % of E into F is called compact if there is a neighbourhood
U of 0 in E such that the set £(U) is relatively compact.

We shall say that u is an F-operator when (i) R, and F/R, are finite
dimensional; (i) R, s closed; (iii) u is open. Moreover if u is continuous and
®,=FE, we shall say that u is a continuous F-operator of E into F (According to
[9], u is called a o-homomorphism). The tndex of u is defined as ind u=
dim 9¢, —codim R,

We understand by 3, the space ®, with the weakest locally convex
topology which makes the identical mapping ®,—®, and the mapping «
continuous. Then u becomes a continuous mapping of D, into F which we
shall denote by #. As shown by F. E. Browder (3], p. 66), & is open if and
only if u is open. Therefore u is an F-operator if and only if # is an F-operator.
With this in mind, we can show

Prorosition 1 ([67], Prop. 2.1.). Let u be a closed mapping with dense
domain such that the injections D,—E and D,—F are compact. Then u is
an F-operator.

Proor. We have only to show that # is an F-operator. Let v, & be the
mappings of D, into Ex F defined by v(e)={e, u(e)} and k(e)={e, 0}. Then
v is a monomorphism with closed range and, by assumption, k¥ is compact.
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Owing to a theorem of L. Schwartz ((10], A-16, p. 197), the mapping v—Fk:
e— {0, u(e)} is an open mapping with closed range and with finite dimensional
null space. Similarly, %, is finite dimensional. Consequently, & is an F-
operator. The proof is complete.

Remark 1. Any open linear mapping u with closed range and finite
dimensional null space is closed. Consequently an F-operator is closed. Indeed,
let u, be the restriction of u to a topological supplement E; of R, in ®,. Then
u; is one-to-one and open. Hence the inverse mapping u;! of R, onto E; is
continuous. Now the graph &, of v can be written as

®.={(e, u(e)); e € E1} +{(e, 0); e € M.}
={(i*(f), f); fER}+{(e, 0); e € M}

Since ui! is continuous and R, is closed, the subset {(u;'(f), f); f€R,} is
closed in Ex F. It is known that if M is a closed linear subspace of an LCS G
and N is a finite dimensional subspace of G, then M+ N is closed in G ([2],
p. 28). Therefore it follows that &, is closed.

We note that if £ and F are Banach spaces, owing to the closed graph
theorem the notion of F-operator coincides with the one defined by I. C.
Gohberg and M. G. Krein in [5] (p. 195).

For our later purpose we need the following lemma (cf. [4 ] and [8]). The
proof goes along the same line with modifications as in the corresponding proof
given in A. P. Robertson and W. Robertson ([ 87, p. 144).

For two mappings u,, u., we shall use the notation u, <Cu, if u, is an
extension of u;.

Lemma 1. Let E and F be LCS’s. Suppose that v is a closed linear map-
ping with domain in E and range in F, that v is a continuous linear mapping
of F into E and that k is a compact linear mapping of E into itself such that

vou < Ip—k,

where I denotes the rdentity mapping of E.
Then (1) N, is finite dimensional ; (ii) u s open; (iii) R, s closed in F.

Proor. Since k is compact, there exist a disked neighbourhood U of 0 in
E and a compact set K of E such that £(U)CK.

@) If ee UNNR,, v(u(e))=0 and so e=k(e) € k(U)CK. Hence UNN,CK.
Thus N, has a precompact neighbourhood and so is finite dimensional ([2],
p. 30).

(i) We shall consider the continuous linear mapping & of D, into F. Now
it is sufficient to show that i is open. If i is not open, there exists some disked
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neighbourhood W of 0 in 3,, which we may clearly suppose contained in U,
such that # (W) is not a neighbourhood of 0 in R,. Let O be a base of disked
neighbourhoods of 0 for N,. Then each V € Y meets RN\ a(W)=a (D, \W +
9.); if e is a common element, there is a 2 with 0<<2<_1 and e € @(2W )\ a(W).
Putting 4=2W \ (W +N,), V also meets i(4). Let & be an ultrafilter on D,
containing the sets ANa V), V€. The set 4 belongs to F and @(F)=

F
u(FH—>0. Now k(F) contains k(A)Ck(2W)C 2K, hence converges in E to

~ E .
an element e, € 2K. Since Ip=k+voii on D, F—>ep+v(0)=e, Since u is

~

Du _
closed, we see that e, €D, u(er)=0 and F——>e,. But A4ec¢J andso eo€ 4,

the closure of A4 under the topology of ®,. Thus e, €N, and so e, € N,NA.
But (N, +W)N\A= ¢, and this contradiction proves that & is open.

(i) If fo €N, the sets RN (fo+W) with W €08 form the base of a
Cauchy filter on R,, where OJ is a base of disked neighbourhoods of 0 for F.
Since #(U) is a neighbourhood of 0 in N, there exists an element e, such that
(eo+ NG (fo+ W)= g for each W €O). Let G be an ultrafilter on D,

F
containing the sets (eo+ U)Na '( fo+ W) with W € 0. Then (@) = u(@)— fo.
Now k(@) contains k(ey+ U)Ck(ep)+K, a compact set in E, and so k(Q)

- E
converges in E to an element e; € k(ep)+ K. Since Ip=k+voii on D,, G—>

ei+v(fo). It follows since u is closed that e;+v(fo) € D, and u(ei+v(fo)=
fo€R,. Therefore N, is closed. This proves the lemma.

Now we shall show a theorem concerning the characterizations of F-
operator, which is a generalization of the corresponding result of F. V. Atkinson

(1], p. 4.

Tureorem 1. Let E and F be LCS’s and u be a linear mapping with
domain in E and range in F. Then the following statements on u are equi-
valent:

(i) u s an F-operator;

(i) u s closed and there exist a continuous linear mapping v of F into E
and compact linear mappings k, and k, of E and of F into themselves respec-
tively satisfying the relations:

vou <Ip—k, uov=Ip—k,;
(iii) there ewist a continuous linear mapping v of F into D, and compact
linear mappings k, and k, of D, and of F into themselves respectively satisfy-

ing the relations:

’UOI]:I@u—kl, fl,o’l):Ip'—kz.
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Proor. (i)=(ii). Let E, be a topological supplement of 9, in E. We put
ui=ul|(E:ND,), the restriction of u to E;ND,, which is open and one-to-one
and so that v, =u;! is a continuous linear mapping of R, onto E,N\D,. By i
and p we denote the injection of E'N9D, into E and a continuous projection of
F onto R, respectively. We put v=iov;op, a continuous linear mapping of F
into E. Since N, is finite dimensional, the projection %k; with k,(E))=0 of E
onto N, is of finite rank and so compact. An arbitrary element e in D, can be
written uniquely in the form: e=e,+ e, e € EEND,, e, €N,. Thus we have
for any e €D,

vou(e)=vou(ei+ez)=viou,(e;)=e;=Ig(e)—ki(e).

Consequently, vou <(Ip—k,.

Let F,; be a topological supplement of R, in F. F, is finite dimensional.
Let k, be a continuous projection of F onto F, such that k,(R,)=0. &k, is of
finite rank and so compact. An arbitrary element f in F can be written
uniquely as the sum of f; ¢R, and f; € F,. Thus we have for any feF

uov(fl=uov(fi+ fi)=urei( f)=Hi=Ir(f)—k2(f),

which means that wov=1Ir—k,.

Since an F-operator is closed, (i) implies (ii).

(i)=>(iii)). Now, if u is an F-operator, as remarked already, # is also an
F-operator of ®, into F. Therefore we can infer in a similar way as in the
above proof that (i) implies (iii).

(ii)=> (i). By virtue of Lemma 1, it follows from vou <{Iy—k,; that N, is
finite dimensional, i, is closed and u is open. Therefore we have only to show
that F/R, is finite dimensional. Since uov=1Ir—k,, it follows that R, DOR;,_,,.
But it is known that F/R;,._,, is finite dimensional ([ 8], p. 144). Therefore
F/R, is finite dimensional. Consequently, u is an F-operator. Hence (ii)
implies (i).

The implication (iii)=> (i) may be proved in a similar manner as in the case
(i1)=(i). The proof is omitted.

Thus the proof of the theorem is complete.

Remark 2 (1], Theorem 1). Theorem 1 remains true if we assume that
ky and k; are of finite rank. In fact, a continuous mapping of finite rank is
compact and k,, k; constructed in the proof of (i)=>(ii) are of finite rank.
v being continuous, so it is known that v is also continuous when we impose on
E and F another topology such as weak topology, or Mackey topology. There-
fore if u is an F-operator, then u is also an F-operator in weak topology or in
Mackey topology.

Remark 8 ([1], Theorem 1). Let u be a closed linear mapping with



Note on F-operators in Locally Convex Spaces 247

domain in E and range in F. Then u is an F-operator if and only if there
exist continuous linear mappings v, and v, of F into G and of H into E
respectively such that v;cu and ucwv, are F-operators. In fact, the proof of
“only if” part is a direct consequence of Theorem 1. Conversely, suppose viou
and uow, are F-operators. By Theorem 1, there exist continuous linear
mappings w; and w, of G into E and of F into H respectively such that

wlovlouglE—kl, uovzowzzlp-—kz,

where ki, k, are compact. Similar arguments used in the proof of (ii)= (i)
show that u is an F-operator.
As an application of Theorem 1, we show

Prorosition 2. Let E and F be LCS’s. Let u be a closed liner mapping
with dense domain in E and range in F. Then u' is an F-operator if u is an
F-operator. If E, F have 7-topology and if u’ as a mapping with domain in
F! and range in E. is an F-operator, then u is also an F-operator. In any case,
ind u=—ind «".

Proor. From Remark 2 after Theorem 1, there exists a continuous linear
mapping v of F into £ such that

vou < Ip—k, uov=1I~p—k,

where £, and %, are of finite rank. Then we have for any [’ ¢®,, and any
feF

<veu' (f), f>=<[f,ucv(f)>=<f',Ur—k) (f)>=<Up—k)f', f>,

which means that v'eu’<<I. —k;. Putting f'=0v'(e’) for any e’ ¢ E’, we have
for any e €D,

<u(e), f'>=<u(e), v'(e)>=<vou(e), e'>
=<(Ip—k)(e), e>=<e, Up.—k)(e)>.

Hence we see that u'(f )=z —k})(e’) and so u'ev'=Ip—k]. Now, k] and
kj are also of finite rank and u’ is closed. Therefore by Theorem 1 it follows
that u’ is an F-operator. Moreover, ind uz=dim 9, —codim tRuzdim(}Ru,)“j'—
codim (‘Jtu,)izcodim R,—dim N, =—ind u’. As made in Remark 2, v’ is also
an F-operator if we impose on E’, F' the topology of uniform convergence on
compact disks.

To prove the second part of the proposition, let »” be an F-operator in the
indicated sense, then u” =u becomes an F-operator from the preceding discus-



248 Shigeaki TOcO and Risai SHIR AIsHI
sion. The proof is complete.

CororLLAry. If E and F are Banach spaces, a closed linear mapping with
dense domain in E and range in F is an F-operator 1f and only 1f u’ is an F-
operator.

Proor. We have only to show that if »’ is an F-operator, then u is also
an F-operator. Then R, is closed, so z is an open mapping with closed range
(8], p. 57), and dim N,. <+ o and codim R, <+ oo imply that dim N, <+ oo
and codim R,<+co. Consequently, u is an F-operator.

§ 2. Now we are in a position to prove the following theorem concerning
the product of F-operators ([5], Theorem 2.1). For bounded operators in a
Banach space the theorem was first proved by F. V. Atkinson ((1], p. 8), and
for unbounded operators by I. C. Gohberg and M. G. Krein (cf. [5], Theorem
2.1).

TueoreM 2. Let E, F and G be LCS’s. If u, and u; are F-operators with
domain in E and range in F and with domain in F and range in G respectively,
then usou, s also an F-operator and

ind uzou; >ind u,+ind u.,,

where the equality holds if and only if F=R, +D,,. The condition is satisfied
1f D, 1s dense in F.

Proor. By Theorem 1 there exist continuous linear mappings v, vs, k1, k2
such that

Uloﬁlzlﬁul_kly VZ°u2$IF—k2’

where ®, CF, R, CD,,, D,,CG, R,,CF and ki, k, are compact mappings of
@ul and of F into themselves respectively. Then we have

viovzouzelly Lvio(lp—kz)oliy =v108; —vi0ksol;
= I@ul—kl—vlokzoﬁl.

uyof; is closed since #; is continuous and u, is closed. Therefore by Lemma 1
we see that N,,.;, is finite dimensional, R,,.;, is closed and u;ca, is open. On
account of the definition of #,, these properties are also enjoyed by wujou;.

On the other hand, we have

Ry =(W0u) ' O)=ui" (uz (ONR, )=ui* (R, ,NR,),
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which implies that

1) dim N, ., =dim N, +dim N, N"R,)
and

2 codim R,,.,, =codim R,, +dim R, /R,,..,,
where

©) dim R,,/R,,e., =dim D,,/{D,, "R, + N, )}

=dim (Du, +Ra,))/ R, + )

<dim F/(R, +NR.,)

=dim F/R,, —dim R, +N.,)/R.,.
=codim R,, —dim N,, +dim (R, "N,,).

Consequently, from the equations (1), (2) and (3) we see that codim R,,.., is
finite and

ind usou; >ind u,+ind u..

In view of the relations (3), ind usou;=ind u;+ind u, holds if and only if
F=9®,,+R,,. The last statement of the theorem is almost clear. Thus the
proof is complete.

Remark 4. It is easy to verify that if, in the theorem 2, u; and u, have
dense domains, then u:cu, has also dense domain and (u,ou,)=ujou}.

A linear mapping k& with domain ®, in E and range in F will be called
u-compact if D,OD, and there exist two neighbourhoods U and 7 of 0 in D,
and in R, respectively such that &£ maps UNu'(¥) into a compact subset of F,
that is, the corresponding mapping % of ®, into F is compact.

We next prove the following

Tureorem 3. Let E and F be LCS’s and u be an F-operator with domain
i E and range in F. Let k be a u-compact linear mapping. Then u-+k is an
F-operator and

ind(u+k)=ind w.

Proor. By Theorem 1, there exist a continuous linear mapping v of F
into D, and compact linear mappings %, and %, of ¥, and of F into themselves
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respectively such that
voli= Iy, —ki, tiov=Ip—k,.

We now denote by % the restriction of & to ®,. By definition, % is compact.
We have

vo(ii+k)=voii+vek= Iy, —ks,
(G+Ek)ov=tiov+kov=Ir—ky,

where k;=Fk; —vok and k,=k,—kov. Taking into account that the mappings
ks and ks are compact, it follows from Theorem 1 that #+k is an F-operator.
Thus we can easily conclude that u+% is also an F-operator.

Now we note that the mapping v is an F-operator. Applying Theorem 2
to the products #icv and (Z+k)ov we have

(4) lnd l7l+1nd 'lizlnd(IF—k2>,
(5) ind(z+k)+ind v=ind (Ir —k,).

According to Proposition 4 in [87] (p. 151), ind (Ir —k;)=ind (Ir —k4)=0. There-
fore, from the equations (4) and (5) we obtain

ind(z+k)=ind .
Consequently,
ind (u+%)=ind u.

Thus the proof is complete.
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