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On the Multiplicative Products of x^ and xξ
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In my previous paper [SJ we examined the relationship between the
different approaches of defining multiplication between distributions. We
consider only distributions defined on the real line R. The definition of
multiplicative product due to Y. Hirata and H. Ogata [2] is equivalent to the
one given by J. Mikusiήski [4]. In the sequel the multiplicative product in
this sense of two distributions 5, T, if it exists, will be denoted by ST. We
have shown in [6] that S T exists if and only if (φS)*f, φeQ), when restricting
it to a neighbourhood of 0, is a bounded function continuous at 0. Another
approach suggested by H. G. Tillmann runs as follows: let S(z) and f(z) be
locally analytic functions corresponding to S and T respectively ([7], p. 122).
Putting S€(χ) = S(χ-\-ίε)-S(x-ίε) and f€(x) = f(x + ίε)-T(x-ίε), ε>0, he
defined the product S T to be lim S€t€ if it exists, or more generally the finite

part of S€T€ (in Hadamard's sense) if it exists. As in my previous paper [3],
we understand by SO T the distributional limit lim S€f€ if it exists. We have

shown in [3] that if ST exists, then SOT exists and coincides with ST, but
not conversely.

The main purpose of this paper is to make a comparison between the
various multiplications indicated above when S and T are x°ί and xί respec-
tively.

1. Preliminaries

It is shown in [6] that if ~T exists, then S-̂ -, sT exist and -f-(SΓ)
dx ax dx

= dSτ^sdT L e t g^ b e t h e g e t o f a l l distributions with supports in the
dx dx

positive real axis.

PROPOSITION 1. Let Y be the Heaviside function. Let T be , . Then YT
dx

exists if and only if there exists a neighbourhood U of 0 in R such that S is a
bounded function in U and is continuous at 0. When YT exists, YT—
-4<YS)-S(0)S and especially YT=Tfor TeQ)f.
dx

PROOF. Suppose YT exists. Then YS exists. In view of the relation:
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> Y=-φS- (-g- s) * F, Φ e 2),

by taking ^ = 1 in a neighbourhood of 0 in R, we see that 5 is a bounded

function in a neighbourhood of 0 in R and is continuous at 0 since (φT)*Y

and ( , S)*Y have these properties.
\ ax /

Conversely if S is a bounded function in a neighbourhood of 0 in R and

is continuous at 0, then YS exists, therefore we see that φS and ί-~-S)*Y

are bounded functions in a neighbourhood of 0 in R and are continuous at 0.

Hence (φT)* Y has these properties also. Therefore YT exists, and

YT= γs'=(γsy-s(θ)d.

In addition, if Γe ©i, then we can take 5(0) = 0 and so YT = T.
Thus the proof is complete.

REMARK. We have in [6] (p. 229) that for S, T e 2)', (rhS)T exists for
every h e R, if and only if (φS)*T is a continuous function in R for every
φ e Q). Therefore (thY)T exists for every h e R if and only if T is a distribu-
tional derivative of a continuous function in R. It is also easily shown that
(τhd) S exists for every h e R if and only if 5 is continuous in R. From
Proposition 1 it is easy to construct an example such that SOT exists, but

not ST. For example, let S= F, T=δ. Then T=^Y, and Y is not continu-
a l

ous at 0, therefore ST= Yd does not exist. On the other hand, SOT= Yθd =

±δ ([3], p. 69).

COROLLARY. Let Γ = 5 ( n + 1 ) , n being a non-negative integer. Then x%T
exists if and only if there exists a neighbourhood U of 0 in R such that the
restriction of S to U is a bounded function continuous at 0. When χn+T exists,
xn

+T=χ\YSjn) and especially xn

+T=xnT for T e Q)'+.

PROOF. AS an immediate consequence of Proposition 1, the first part of
Corollary follows by the mathematical induction. If x%T exists,

and
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) ( ) y ( ( ) y k ) for

for k = 0.

Hence we have x»+T=x"(YS')(n\ In addition, if ΓegK, F S ^ S ' by Proposition
1 and so χn

+T=xnT.
We note that x%xm = x%+m for any non-negative integer m. In fact,

x°ίxm exists since xm e S. We have for any φ e Q)

<xa

+xm,φ> = <x°ί, xmφ> = Pf[° xaxmφdx=Pί[° xa+mφdx=<xTm,Φ>,

Jo Jo

where Pf denotes the finite part of the integral. Thus x%xm = x%+m.

Let Ya = -γγ-γ for aφO, —1,-2, and =d(n) for a non-positive integer
-71 ([1], p. 64).

PROPOSITION 2. // ST exists for S, T e ©+, £fee?ι (Fα*5)Γ exists also for
Re(α)>0.

PROOF. S*(φT)v, φ € 0 , is a bounded function in a neighbourhood of 0 in
i? and is continuous at 0. On the other hand x0^1 is locally summable and is
a C°°-function in i?\{0}. Therefore (Ya*S)*(φT)v is a continuous function
near 0. This implies that (Ya*S)T exists.

REMARK. If Re(α) = 0 and aφO, (Ya*S)T does not exist in general even
if ST exists. In fact, let X be the set of all the continuous functions S with
support in [0, 1] and let T=d. Then ST=S(0)S exists. Suppose (Ya*S)d
exists for every 5 e l . Then there exists a neighbourhood U={t; |i|<^4}
such that Ya*S is a bounded function fs(t) in U. Since X is a Banach space,
we can take the same U for every S e X and ess. sup |/s(ί)|^JSΓ||5||, where
K is a positive constant and | |5| | denotes sup| S(t)\. This may be shown as in
the proof of Proposition 2 in [3] (p. 53), so the proof is omitted. Using
Banach-Steinhauss theorem we can find a point xQ, 0 < # 0 < ^ , such that

exists for every S e X. (*) is the value of the distribution fs(t) at x0 which
we shall also denote by fs(x0). Then

| / 5 ( * 0 ) | ^ t f | | S | | .

Therefore we can find a function F(t) of bounded variation such that
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fs(xo)={1 S(t)dF(t).
Jo

Let S be any φ e 2) with support in (0, x0). Then

Hence we have

in (0, Λ;0). However this is a contradiction since (χ0 — t)a is not of bounded
variation in [0, χo~]\.

REMARK 2. Proposition 2 does not hold in general for SOT. This will
follow from Theorem 2 below.

L. Schwartz has noticed in [5] (p. 39) that the value Pf \ xaφ(χ)dx, φ e 2),
Jo

is invariant by change of the variable, but when a is a negative integer the
statement does not hold in general. Here we note that if h(χ) is a C°°-function
on [0, a~\ and n is a positive integer, then

Jo

2. The product x%xf

It follows from Proposition 5 in [6] (p. 229) that the product x%xξ exists
if and only if, for any φ c 2), there exists a zero neighbourhood in which
φx%*(xξy is a bounded function continuous at 0. In this case
= (φx°L*(xξy)(0). We note that

|Pf\ φ(x)xa(x-t)βdx = Pf \

(φxa

+*(xβy)(t)=l * ° for f>0,

Pΐ[°φ(x)xa(x-t)βdx for ί<0.
Jo

PROPOSITION 3. // Re(α + /9)> —1, then x%xξ exists and equals xa

+

+β.

PROOF. Let φ be any element of 2). We may assume that supp0CCα> D̂
with ό>0.

Consider first the case Re(/9)>0. If ί>0, we have (φx^(xβy)(t) =
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ί f \ β '

1 —•—) dx. Since Re(a + /?)> — 1 , we have xa+

\ x /
for x^it, where \ xRG(a+β)\φ(x)\ dχ<oo. Therefore

0

tends to [*φ(x)χa+βdχ= <x%+β, φ> a s ί - > 0 . If ί < 0 , we have (φx%*(xβ)v)(t)
Jo

= P f Γ φ{x)xa(t + t')βdx + [b φ(x)xa(x + t')βdx with ί ' = - t . Since
Jo Jt'

• h

|C?Λ;<OO for sufficiently small t',

it follows that limΓ φ(x)xa(x + t')βdx= ["φ(x)xa+βdx = <xa

+

+β, φ(x)>. On
t'-+oJt' Jo

the other hand, after a change of variable #—•#£', we have for aφ a negative
integer

limPfΓ'ς
ί'-»0 Jθ

and for a = a negative integer

limPf Γ φ(x)xa(x
ί'-»o Jo

Therefore (0Λ;ΐ*(Λ;/ |)v)(ί) tends to <Λ;+ + ^, ^ > as ί->0. Consequently
(φx%*(xξy) (ί) is continuous at 0 and has the limit <χ%+β, φ>.

Similarly in the case Re(α)>0.
Next consider the case - l < R e ( α ) , Re(/9)^0. If £>0, (φxa

+*(x0y)(t) =
bφ(x)xa(x-t)βdx=[b *φ(x + t)(x + t)axβdx and \(x + t)axβ\<^xR«a+β) for

Jt

x>0. Since Re(α + ^ ) > - l 5 (φx%*(x%y)(t) tends to [*φ(x)xa+βdx =
Jo

<xa

+

+β,φ> as ί^O. If ί < 0 , then (φχ%*(χβy)(t)=[bφ(x)xa(x-t)βdx and
Jo

\χa(χ-t)β\<xRe(a+β\ Since Re(α + / 9 ) > - l , (φχ°ί*(xβy) (t) tends to

\ 0(Λ;)Λ:α+/5c?Λ; = <Λ;++/3

? 0 > as ί->0. Consequently (φx°ί*(xiy)(t) is continuous
Jo

at 0 and has the limit <χ%+β, φ>. Thus, x^xi exists and equals χTβ, which
was to be proved.

PROPOSITION 4. // Re (ct-\-β)<L — 1, then x%x'l does not exist.

PROOF. We put

[xa for * ^ 1 ,

[0 for x < 1,
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and h(x) = x% — g(χ\ where g(χ)χξ. always existsts.
(a) Consider the case where Re ( α + /?)= — 1 and Re(α), ReQ9);> —1 but

a,β=/= — l. In the case £>0, by the substitution xs = t, we have

»~(Λ : + /5 + 2) (Λ _\/3 Jc> I ± oy W-o.

Here if Im(α + /9) = 0,

| (/&(#)* ( # ί ? ) v ) (t)\ = \ c/s-f /QΊLI —>"θo
J i s p ~τ~ J.

as ί-*0. Thus x%χί does not exist. If Im(a + β)Φ0,

1

9Λ4-/3 + 1

s^a+β

ct + β + l

where for aφO the expression in the brackets tends to B(—a—β — 1
as ί->0, hence (h(χ)*(χ^y)(t) is not continuous at 0. Thus x%xξ does not

exist. For α = 0, x°+xξ= Y(xβ

+

+ι)\ where xi+ι is not continuous at 0.

By Proposition 1, x%xξ does not exist.
(b) Consider the case where Re ( α + /?)=— 1 and a, β are not negative

integers. Since Re(α + /2-f l ) = 0 , we may assume Re(α)<0. Hence there is
a positive integer n such that — rc<^Re(α) < — n + 1 , that is, —1<1
1ϋe(a + n —1)<0 and — l < R e 0 3 — zι + l ) ^ 0 . Suppose x%x1 exists, then

χa+n-iχβ-n+ι a j s o e x i s t s by Remark 1 to Proposition 5 in [ΊΓ] (p. 229), which
contradicts the consequence of (a). Therefore xa

+χξ. does not exist in this case.
(c) Consider the case where Re(α + #)= — 1 and a is a negative integer

— n. We put β = n — 1 + n . Let r = 0. Suppose x^nxn

+~ι exists, then x+n(xn~ιY)
=(x+nxn~1)Y=x+ιY also exists, contradicting Proposition 1. If r^=0, by the
substitution xs — t^ we have

1

s~ " r ί ( l — s)n~ +τt ds
t

Since the expression in the brackets tends to B(—τί, n + rί) as ί->0,
ff)*(*+~1+T|')v)(0 is not continuous at 0. Thus Λ +ΛĴ  does not exist.
(d) Finally, consider the case Re(α+ /?)<—!. Let α be not a negative
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integer. There exists a complex number ϊ such that Re(a + β + Y) = — 1 and
Im(a + Y)ΦO. According to Proposition 2, if x%xξ exists, then xTΎχ% exists
from the equation:

ra r7"1 τa+Ύ

Similarly for the case where β is not a negative integer. If α, β are negative
integers —m, —n respectively, we have the equations x~mxm~1 = x+1, x+nxn

— Y. Assuming x+mx+n exists, then x^Y would exist, which contradicts
Proposition 1.

Thus the proof is complete.

As a consequence of Propositions 3 and 4, we have

THEOREM 1. // and only if Re(α-f/3)> —1, x%x'l exists and equals x%+β.

3. Conditions for the existence of x%Oxξ.

From Theorem 1 in [SJ and Theorem 1, x%Oxξ exists in the case
Re(α + /?)> —1 and x%Oxξ = x%+/3. In the sequel we consider the multiplicative
product xa

+θx1 in the case Re(α + /?)<I — 1. There exists a positive integer
p such that — p — l < R e ( α + /9)<:— p. Let S=x% and T=x%. Then we have
for any φ e ©

(1) ^_ ^

^ S£ T£ d x

Case A. a, /9 are not integers.

As # + (z) we can take

® """27 sinαTΓ ^ ~ ^ '

where ( - ^ = e

α(1°si2l+/(argz-a)\ 0<arg z<2τr. Then we have

« + /3

f ^ 2 + g 2) 2 sinα(τr-6>) sin^(τr-θ), β5 £ f f = ^
sm aπ sm βπ

It is easily verified that for any integer k, 0<Lk<Lp — 1, we have
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ξCL+β + k

sin ait sin {

where fk (β) = sin a (π—θ) sin β (π—θ) + (— 1)* sin aθ sin βθ. We also note that
if A: is any integer such that 0<Lk<Lp — 1 when a + βφ—p, or ()<;&<;/> — 2
when α + /9 = — p, then

(4) (the finite part of Γ xkSeΐ6dx as ε->0) = ~ ^ + o +

PROPOSITION5. W'Λê  — 2<Re(α + /?) :^ —1 α^cί α, /? are noί integers,
then x%Oxi exists if and only if a—β is an odd integer, and x%Oχli = χVrβ.

PROOF. Let a + βφ — 1. Let us consider the relation (1). Evidently we
have

(5) ( Γ 1 + [~)S6Teφ(x)dx= [" xa+βφ(x)dx + o(l\ as ε^O.

We may put φ(x) — φ(0) = xg(x), g(x) e S. Since χS€f€ is bounded on
we have

(6)

as

and

(7)

C0S
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+ sin « r Bin/fa )„

By calculation we shall obtain

P f )„ >**-'-> efoWdO + oίX), as

4α/9 cos (α-/9)ff I
(8) Pf Jo B i n - * - W ) <» = ( α + / ? + 1 ) ( α + ^ 0 Bin-'θ g(θ)dθ,

where #(0) = cos(α:-/?)(-^--0\

π

Now we show that \ sin~a~βθg(θ)dθφ0. To this end we assume
Jo

π

\ sin~a~βθ g(θ)dθ = 0 and we shall deduce a contradiction. By calculation in
Jo<>0

the same way as before

g(θ) dθ =

π_ π

Iΐ[2sin-a~βθg(θ)dθ = 0, then [2sm-a-/3+2nθg(θ)dθ = Q for every non-negative
Jo Jo

π

integer n, hence \ P(sin2^)sin"α~^^ ((9)c?<9 = 0 for any polynomial P(χ). Then,
Jo

by the approximation theorem of Stone-Weierstrass we conclude that

[2ψ(θ)sin-a-βθg(θ)dθ=0 for any 0(ί) e C[o, ]. Therefore sin^
Jo 2

which is a contradiction.
Consequently, from the relations (1), (5), (6), (7) and (8) we obtain

<s? Φ^> — <C#++ / 3, φ^> + — \ s in α

sin α7Γ sin βπ (a + β + l)(a + β) Jo

as

Thus Λ Ϊ O * ? exists only in the case where α—/9 is an odd integer.
Next, let α + /9= — 1. As before, we have for any φ e Q)

^

= <^;x, 0>+0(O)Γ 5,(^)^(^)^ + 0(1), as ε->0.
J-i
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By (3)

π
( 9 ) f

J t a n -isin απ sin βπ J t a n-i£ sin Θ

J Λ

ooβ(α-/ί)-5- J o s m

(l), as ε^O.

Hence it follows that x%Oχί does not exist.
Consequently, when — 2 < Re (# + /?)<! — 1 and α, /? are not integers, then

xΊOxi exists if and only if a—β is an odd integer. From the foregoing proof
we see that x%θχi = χVβ if the left hand side exists. Thus the proof is
complete.

PROPOSITION 6. // Re(α: + /2)<I — 2 and a, β are not integers, x%Oχi does
not exist.

PROOF. When a + β is not a negative integer, we can take a positive
integer p^>2 such that — p — 1 < R e ( α + /?)<!— p. Then we have for any
φeQ)

k = 0

as

where

(10)

x [2 sin-a-βθ cos(a-β)(^r-θ)dθ + o(l\ as e-»0,
Jo V Δ /

and
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(11) \\xSsTsdx= g i n ς X βV \l_i βiir-'-Ό cos

sin OTΓ sin

x \ sm~a~βθcos(a — β)( o — 0)dθ-i-o(l), as ε-^-0

Since ί2sin-α βθ cos(a-β)(-^--θ)dθφO (see the proof of Proposition 5), and

cos(α—/9)-~-, (α —/?)sin(α —/9)-~ do not vanish simultaneously, it followsz z
from the equations (10), (11) that x°ίθxi does not exist.

Next we suppose that <x + β= —p, p being a positive integer. Owing to
the equation (3) we have

(12)

and

, i O , r l cos^1)? ί- loge + o(l) for ^ = 2,
(13) Ό ^ a Λ Γϊ

j t a n - . e SHIP ( _ i o g ε + ( D _ 2 ) \ cosί-36i sin 6» log sin 6»

for />I>3, as ε->0.

Consequently, since φ is arbitrary, it follows that x%OχΊ does not exist.
Thus the proof is complete.

Case B. α, /? are integers.

When n is an integer, we can take as χn+(z)

(14) - - ^ - zw Log( - z) = - -~- (log 12ΓI + i(arg z - r)),
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where 0 < arg z < 27Γ.
Let S=x+n and T=x^rp

9 where n, p are integers such that n^O, p7>l.
Then we can write

S£ f€= —2- I zε I -p{(θ-π) cos 7i0-sin τi0 log| * £ | )

x ((θ — π) cos(n —p)θ-}-sin(n —p)θ \og\ z€\),

where zε = x + iε and 0=tan~ x —.
xWe also note that for any integer A;, 0<Lk<Lp — 2, we have

(15) \ * * S e f β ί i * = ~ r 2
J-l π

— sin 7î  sin(n — p)θ(log \ zε \ )2 — (θ — π) sinpθ log | zε

And it is easy to see that

(16) (the finite part of Γ xkSeT£dx as ε->0) = l
J-i — p-h

With the aid of these relations we can show the following

PROPOSITION 7. In the case Re(α-h/2)<I — 1, where a— — n and β = n—p
are integers such that n^>0, /?^>1, χ%Oxξ. does not exist.

PROOF. For any φ eQ), we can write

as

Here from (15) we obtain

(17) \ xp-1SsTεdx=ΛΛ --*,,--((θ-πfcosnθcos(n-p)θ
J - l ^ Jiangs Sin Ό

-(d-π) sinpθ log|zε\)dθ

o- —^)cos nθcos(n—p)θ+-^-smpθ log|z£| )
Δ / ώ /

2 _ !
+
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x cos(n — p)ΘdΘ— \ —:—n—sin pθ log sin0d0 + o(l), as ε~>0.cos ( n —p) Θdθ— \ :—«— sin pθ log sir

Since the coefficient of logε is — -«- and 0 is arbitrary, Λ Ϊ O Λ ^ does not

exist, which completes the proof.

Case C. Either a or β is an integer.

Let β be an integer n but a be not an integer. Let S=χ% and Γ=Λ;?.,

where — p — l < R e ( α + τι)<l— p for some integer />^>1. From (2) and (14) we
have, for any integer k such that 0<Lk^p —1?

(18) \ Λ;* 5, fe dx = -VcTr,^r" \ sin-β- | |-*-2β cos*

x ((θ — π) cos 7î  —sin n^ log sin θ) dθ

pθί + n + k + 1 ] O 0 . ε /-Tr-tan-if

+ TΓsin^r J -, sin-α-Λ-*-2β cos*fl sinα(^-^) sin

and

(19) (the finite part of ( l xk S€ Tε dx as ε -»0) = -^—

PROPOSITION 8. // Re ( α + /?)<! — 1, where β is an integer n but a is not
an integer, then xΊOxi does not exist.

PROOF. In the same way as in the proof of Proposition 5, we have

Σ L, \ Λ*SfiΓcdΛ + o(l), as ε->0.

Here we have by (18)

as ε -> 0,

where
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g(β) = sina(θ — π) sin nθ — sin aθ sin n(π—θ\

h(θ)=θ(sina(θ — π)cos nθ + sin aθ cos n(π — θ))

— 7Γ (sin α: (0—π) cos rc0 + sin aπ) — g(θ) log sin θ.

Furthermore we have for any non-negative integer k

)^—^θg(θ)dθ= CM
πsmaπ

x sin"a-w0 cos(a-n)(θ- ~γ-

x cos

n-1) (α+τι-2) ""' (a+n — 2k + l)(a+ n-2k)
π

" ^ ( 2 sin-"-κ+2*6i cos(α-n)(β - -ξ-) dβ,

7T

where (2 sin-α~w-20g(θ)dθφθ for ^<0. Therefore * ? O i does not exist
Jo

for any negative integer n. Consequently,

for n I
1 Jo ~ x '

(20)

3 i n-α-»0cos(α — Λ ) Π ? —-o-Jcϊ0 = O for Λ ^ I .

Next we shall show that x%Oχ\ does not exist for rcΞ>0. In this case,
with the aid of (20), we obtain

Sf
α+rc + 1 V α+7i + l Jo1

f o r n = 0>

f o r n ^ a s
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where

&(0) = c o s — O ^ K Θ sin(ct — n)(θ— « ) — γ>-sin((α — n)β — πa)

a+n / π \ .
— c o s — 2 — ^ eos(α— n)[ θ — —n-jiog sinσ.

Furthermore we have for π, ;> 1

n-l)(a+n-2)

Consequently we obtain for π, ̂  0

J _+
+ 7 i ) ( α : + l) c o s 2

X

Jo

π

Suppose \ sin~α+w0cos(α — n)[θ — -«- )dθ = 0, then we have
Jo V ^ /

sin~α '"w + 2*0 cos(α: — n)[θ— n )dθ = 0 for a n y n o n - n e g a t i v e i n t e g e r A:, w h i c h

0 \ 2 /

is a contradiction as shown in the same way as in the proof of Proposition 5.
Therefore x%Oχn+ does not exist for any non-negative integer n.

Thus the proof is complete.

As a consequence of Propositions 5, 6, 7 and 8, we obtain

THEOREM 2. x%Oxξ exists if and only if — l<Re(α + /3)? or — 2 <
Re(α + /9)<1 — 1 and a—β is an odd integer and α, βφ±l, ±2, ± 3 , . In
these cases, x%Oxξ^xcί~rβ holds true.

4. The product x" xζ.

As noticed at the outset of Section 3, xί xξ exists in the case where

- l and x^-x^^x^Ox'i^xlxί^xT^
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THEOREM 3. x^ xΊ exists for any a and β. xi xξ.^x0^13 holds if a + β is
not a negative integer, but it does not hold in general if a + β is a negative
integer.

PROOF. We can immediately see that χ% χ% exists always for any a, β
from our discussions given in Section 3. Let Re ( α + /?)<! — 1 and a + β be not
a negative integer. We take an integer p^>l such that — p — l < R e ( α
—p. From the relations (4), (16), we have for any integer k such that

(the finite part of \ xkS6Tεdx as ε->0) = — . „ , , , .«-.

Consequently if a + β is not a negative integer, x% x% = x%+β holds true.
It remains to show the last part of the theorem. Let a + β be a negative

integer — p. In view of (4)

the finite part of \ xk S6 T£dχ as ε -* 0
J-i

h for °^k^p-2

If α, β are not integers, then by (3)

the finite part of [* χp~ι S6 Tedχ as ε-• 0

sin m sin βu ) 0 ~ i a

where fp^ι(Θ)=sina(π-Θ)smβ(π-Θ) +(-lY'1 sinaθsinβθ. If a= — n,
β = n—p, then we have by (17)

the finite part of \ χp~ι S6 Tedχ as ε -> 0
J - l

1 f Γ c o s ^ 1 ^
~~ ^r^ \ — ^ T Γ Λ — s i R pθ l°% s i n ^ ^ + log 2.

7Γ J Q S in Ό

Consequently we have
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4 ^ i = 4 + i + ( - l ) M - ^ z j j j - x (the finite part of ^ S6ΐ€dχ\

where the last term does not vanish in general. Thus the proof is complete.

EXAMPLES. By actual calculation we can show the following formulas:

for n = 0, 1, 2, ....
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