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In some non-modular, atomic lattices, the covering property plays an
important role instead of the modularity. For example, a geometric lattice,
which is called a matroid lattice, is characterized as an upper continuous,
relatively atomic lattice having the covering property (see[5]and [ 2; p. 264 )).
It is obvious that the symmetry of the modular relation implies the covering
property, and it was proved by Sasaki [9] and Sacks [8] that in a matroid
lattice the modular relation is symmetric. In other words, if a relatively
atomic lattice is upper continuous, then “the covering property is equivalent to
the symmetry of the modular relation”. The main result of this paper (Theorem
2) is that the same statement holds if a relatively atomic lattice is orthocom-
plemented. We remark that the covering property has no meaning in non-
atomic lattices. And, by the above consideration, it seems that in some non-
atomic lattices the symmetry of the modular relation plays an important role
like the covering property in atomic lattices.

§ 1. Definitions and preliminary lemmas. In this section, we give
some definitions and lemmas which are already known.

Drrinrrion 1. In a lattice L, we say that (a, b) is a modular pair and
write (a, )M if (c\Ua)Nb=c\U(anb) for every ¢ <<b. We say that (q, b) is a
dual modular pair and write (e, H)M™* if (a\Ub)N\c=a\U(bNc) for every ¢ >a.
A lattice L is called M-symmetric if in L the modular relation is symmetric,
that is, (a, )M implies (b, a)M. L is called symmetric if (a, 5)M, aNb=0
imply (b, a)M (see [107]). Some authors ([4], [8]) call a M-symmetric lattice
a semi-modular lattice.

DreriniTION 2. Let L be a lattice with 0. In L, we say that b covers ¢ and
write a<<b if a <b and there does not exist ¢ with a<c<b. An element p €L
is called a point (or an atom) if 0<p. L is called atomic if every non-zero
element contains a point. L is called relatively atomic if a<<b implies a<a\U
p=> for some point p. It is easy to show that L is relatively atomic if and
only if every non-zero element of L is the join of some set of points.

Derinition 3. We say that an atomic lattice L has the covering property,
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if the following statement holds in L:
(C) If pisa pointand pXxa then a<aUp.

Lemma 1. (i) The covering property (C) is equivalent to each of the
Sollowing statements.

(Cy) If pis a point then (p, a)M for every a.

(Cy) Ifpisapointand pXa\Jb then anb=(a\Up)N\b.

(ii) If the lattice L is relatively atomic then moreover (C) is equivalent

to each of the following statements.

(Cs) If p, q are points and pXa, p<_a\J/q then q<a\Up (exchange
property).

(Cy) If anb<a then b<<a\Ub.

Proor. The equivalence of (C,) and (C) was proved by Theorem 1 of [2;
p. 250]. The equivalence of (C.,), (C3), (C;) and (C) was proved by Theorem 2
of [57].

Remark 1. Birkhoff’s condition of semi-modularity is as follows ([ 1, Chap.
VII)):

Ifa<x,a<yand x+y, then x<<x\Uy and y<<x\Uy. Here, it is easy to
see that a=xy. Hence (C,) implies this semi-modularity.

Lemma 2. If an atomic lattice L is symmetric then it has the covering
property.

Proor. If pis a point then (a, p)M always holds. Since L is symmetric,
(p, @)M holds when anp=0. If anp=0, then p <a, and hence (p, a)M holds
obviously. Therefore (C;) holds.

RemMArk 2. An upper continuous, relatively atomic lattice having the
covering property is called a matroid lattice ((5]), and it was proved that a
matroid lattice is M-symmetric (9], Theorem 1; [ 8], Theorem 6) and hence
symmetric. Therefore, if a relatively atomic lattice L is upper continuous then
the following three statements are equivalent.

() L is M-symmetric.

(B) L is symmetric.

(r) L has the covering property.

DeriniTion 4. Let L be an atomic lattice. An element of L is called a line
if it is the join of two different points. An element of L is called finite if it is

zero or is the join of a finite number of points.

Lemma 3. In a relatively atomic lattice with the covering property,
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(i) flisalineand p<l then pis a point, and
(i) all finite elements form an ideal.

Proor. These are consequences of Theorem 4.1 of [4] (it follows from
Remark 1 that the assumption of the theorem is satisfied).

§ 2. Relatively atomic lattices with the covering property.

Turorem 1. If L is a relatively atomic lattice with the covering property,
then, in L, the following five statements are equivalent.

() If11isaline, then (a, )M holds for every a.

B) Iflisalineand a<a\Ul, then anl<l.

@) If p, q are points and p<_q\Ja (a==0), then there exists a point r
such that p<q\Ur, r<a.

(0) If pisa point, a or b is finite and p<a\Ub (a 30, b==0), then there
exist two points q, r such that p<_q\Ur, g <a, r<b.

(&) If a is finite then (a, b)M, (b, a)M, (a, b)M* and (b, a)M* hold for
every b.

Proor. (@)= (B). Let a<<a\Ul and anl<c<l. It follows from («) that
(cva)Nl=c\U(@anl)=c. On the other hand, since ¢« <a\Uc<<a\Ul we have
a\Jc=a or a\Jl. Hence c=anl or a, which means a "\l <[ (eIl < is obvious).

B)=(@). Let p<{q\Ua. When p=g, any point r < a is the required, and
when ¢ <a, r=p is the required. Hence, assume that p%-¢ and ¢ % a. Then,
since a\U(p\Uq)=a\Ug>a by the covering property, it follows from (3) that
an(pUq<<p\Uq. By Lemma 3 (i), r=anN(p\Ugq) is a point and r <<a. Since
gX%a we have ¢=r, and hence r<p\Uq implies p<<q\Ur by (Cs).

(r)=(9). Let p be a point and p<<a\Ub. And we may assume that a is
finite, that is, there is a finite number of points ¢, ---, ¢, such that a=gq, ...
Ugs. Sinece p<<q:\U...\Ugq,\Ub, it follows from (7) that there exists a point r,
such that p<<q:\Uri, rn<<¢q.\U..-\Uq,\Ub. And, from (7) again, there exists a
point r, such that r;<{g¢:\Ur;, r:=¢qs\U...\Ugq,\Ub. Continuing this process,
lastly we have a point r, such that r,,<{q,\Ur,, r,<<b. Then, we have
P=q:\J.--\Ugq,Jr,. Hence, it follows from (7) that there exists a point ¢ such
that p<Cq\Ur,, ¢<a.

(0)=(e). It suffices to prove that (a, )M and (a, b)M* hold if a or b is
finite. It is evident that (c\Ua)N\b=c\U(anb) for ¢<b. Let p be a point
such that p <<(c\Ua)"b, and we shall show that p<_c\U(anbd). Since p<<c'Ua
and c¢ or e is finite by Lemma 3 (ii), it follows from (J) that there exist two
point g, r such that p<{q\Ur, ¢q<Cc,r<<a. When p=gq, then p<_c < c\U(ab).
When p =+ ¢, by (Cs) we have r<<p\Uq<<b\Uc=0b. Hence r=_anband p<qur
< c\U(anb). Therefore (a, b)M holds since L is relatively atomic. Next, it is
evident that (¢\Ub)"\c=a\U(bN\c) for ¢c=a. If p is a point such that p<{
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(@\Ub)Nc then we can show that p<<a\U(b\c) by the same way as above,
provided that a or 5 is finite. Therefore (a, 5)M* holds.
(e)= () is trivial. This completes the proof.

CoroLLary. If L is a matroid lattice (see Remark 2), then the following
five statements are equivalent.

() If11isaline, then (a, )M for every a.

B) Iflisalineand a<a\Jl, then anl<l.

@) If p, q are points and p<_q\Ja (a30), then there exists a point r
such that p<q\Ur, r<a.

(0) If pisapoint and p<a\Ub (a0, b=0), then there exist two points
g, r such that p<_q\Ur, ¢g<a, r<b.

(e) L s modular.

Proor. The implications (¢)= ()= (8)= (¥) and (0)=> (¢) are obvious from
the proof of the theorem. To prove (7)= (), we only remark the following
fact: If p<<a\Ub then it follows from the upper continuity of L and Lemma 3
(i) that there exists a finite element a, such that p <a,\Ub, a1 <a.

This corollary is an extension of [ 6], Theorem 2.18.

Lemma 4. Let L be a relatively atomic lattice with the covering property.
And assume that the statement (v) of Theorem 1 holds.

@ (e, ) M* if p is a point and p<_a\Jb then there exist two points q, r
such that p<_q\Ur, ¢<a, r<<b (a0, b=0).

(i) (a, ) M*& (b, a)M*.

Proor. (i) =. Let p<<a'Ub and put c=aUp. When b\ ¢ X a, we have
a point r such that r <bN\c,rXa. Since r<<c=alp, it follows from () that
there exists a point ¢ such that r<{¢\Up, ¢ <a. Since r X a, we have r=¢ and
hence p<<q\Ur by (C;). Next, when b \c <a, it follows from (e, H)M* that
a=a\J(bNc)=(a\Ub)"\c=p. Hence, any point r < b and g=p have the desired
property.

&. This implication can be proved by the same way as (0)=>(¢) in the
proof of Theorem 1.

(ii) Since the right side of the statement (i) is symmetric in a, b, we have
the symmetry of the dual modular relation.

Lemma 5. If both L and the dual of L are relatively atomic lattices with
the covering property, then L is M-symmetric.

Proor. It follows from Lemma 1 that (C,) holds in L. Hence, in the dual
of L, a\Ub>a implies b>anb. This implies the statement (8) of Theorem 1,
and hence (7) of Theorem 1 holds in the dual of L. Thus, it follows from
Lemma 4 that, in the dual of L, the dual modular relation is symmetric. Since
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(a, b)M* in the dual of L is equivalent to (b, )M in L, L is M-symmetric.

Remark 8. If L satisfies the condition of Lemma 5, then, in L, all the
statements (a)—(¢) of Theorem 1 hold. Because, (C,) holds in the dual of L,
which means that ¢\Ub>ae implies b>aNb in L. This implies the statement
(B) and other statements of Theorem 1.

§ 3. Orthocomplemented, relatively atomic lattices. In an ortho-
complemented lattice, the orthocomplement of an element « is denoted by at.

TueoreMm 2. If L is an orthocomplemented, relatively atomic lattice, then
the following three statements are equivalent.

() L is M-symmetric.

(B) L is symmetric.

(r) L has the covering property.

Proor. (@)= (B) is obvious, and (B)=> (7) follows from Lemma 2. (=(a).
Since the orthocomplementation ¢ —at is a dual-automorphism of L, if L has
the covering property, then L satisfies the condition of Lemma 5, and hence L
is M-symmetric. This completes the proof.

This theorem is a generalization of the main part of the corollary of
Theorem 4.4 of [4].

Exampres. (i) The lattice of all closed subspaces of a Hilbert space is
orthocomplemented, relatively atomic and has the covering property. Hence,
it is M-symmetric.

(i) The system of propositions in quantum theory is formulated by Piron
[7] as a relatively orthocomplemented (=orthomodular), atomic, complete
lattice with the covering property. Since a relatively orthocomplemented,
atomic lattice is relatively atomie, the above lattice is M-symmetric.

Remark 4. It follows from Remark 8 that, in an orthocomplemented,
relatively atomic, symmetric lattice, all the statements (a)—(¢) of Theorem 1
hold. Especially, if a or o is finite then (e, )M and (b, a)M hold for every b.

TuroreMm 3. Let L be an orthocomplemented, relatively atomic, complete,
symmetric lattice. L is continuous if and only vf it 1s modular.

Proor. The “if” part is a consequence of the well known theorem of
Kaplansky [8]. The “only if” part is proved by Remark 4 and the corollary
of Theorem 1.
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